Investigation of Measurement Techniques for the Determination of the Dielectric Constant of Substrate Boards for Microwave Circuits

Presented by Aik Loon Hoo 2252468

Supervised by Prof. Dr.-Ing. K. Solbach

UNIVERSITÄT
DUISBURG
ESSEN

Outline

- Motivation
- Assumptions
- Method I: Capacitance Measurement.
- Method II: Full Sheet Resonance method.
- Method III: An Evaluation through a simple Microstrip Transmission Line Resonator.
- Total Results and Comparison.
- Conclusion

Motivation

- To investigate the measurement method for determination of relative dielectric constant of a substrate board:
- Example of substrate RO4003:
 - manufacturers' result: 3.38 ± 0.05
 - recommended for use in circuit design: 3.55
- -Three methods to be concerned here.

Assumptions

Stray electric field at the edge of the board.

- (a) Air-filled laminate panel.
- (b) Dielectric substrate filled laminate panel.

Assumptions

- (a) Air-filled microstrip line with thickness of h.
- (b) Air-filled laminate panel with thickness of d. (d=2h)

Assumptions

End-effect length ΔI (method I)

Treated as open-ended transmission line resonator (method III)

Fringing
Capacitance
(method I)

Microstrip transmission line.

Characteristic Impedance, Zc

Method I: Capacitance Measurement.

- Several methods to determine the stray electric field.
- It can be represented as a Fringing / Edge capacitor or an Endeffect length ΔI.

Method I: Capacitance Measurement.

Formula for the determination of the parallelplate substrate board's capacitance C_{ε_r} :

$$\begin{aligned} C_{total/measured} \; &= \; \frac{\varepsilon_r \varepsilon_o W \cdot L}{h} + \; 2 C_{e1/f} + 2 C_{e2/f} \\ &\qquad \qquad C_{\varepsilon_r} \end{aligned}$$

Method I: Capacitance Measurement.

Determination of relative dielectric constant of the laminate panels (Inclusion of stray fields):

$$\varepsilon_r = \frac{C_{\varepsilon_r} \cdot h}{\varepsilon_o \cdot A}$$

Connecting probes

10

Setup

Substrate Board (Test sample)

Probe

Connection of test sample of Substrate board to the network analyzer.

 Determination of relative dielectric constant the substrate boards:

$$\varepsilon_r = \frac{{c_o}^2}{4f_{mn}^2} \cdot \left\{ \left(\frac{m}{L}\right)^2 + \left(\frac{n}{W}\right)^2 \right\}$$

 C_0 : Speed of light. (2.9979x10⁸ ms^{-1})

fmn : Resonance frequency.

(m,n) : Corresponding resonance mode.

W : Width of the conducting.

L: Length of the microstrip line.

 This method has to be carried out in few directions for the resonance frequencies measurement and the matching of resonance modes of m along the length and n along the width.

- Example results of RO4350 test sample:
- Measured dimensions:

-Length : 457.83 mm

-Width : 305.33 mm

 Modified dimensions with inclusion of stray fields by end-effect length(Dimensions have been enlarged):

-Length : 460.162 mm

-Width : 307.788 mm

Example results of RO4350 test sample:

Peaks	f _o (MHz)	modes	Dielectric Constant, ξ _r	Dielectric Constant, ξ _r (Inclusion of stray field)	
1	170.7	(1,0)	3.68	3.64	
2	255.8	(0,1)	3.68	3.63	
3	308.5	(1,1)	3.66	3.61	
4	341.9	(2,0)	3.67	3.63	
5	428.4	(2,1)	3.65	3.61	
6	511.5	(0,2)	3.69	3.63	
7	513.0	(3,0)	3.67	3.63	
8	540.4	(1,2)	3.67	3.61	
		Average	3.67	3.62	

Manufacturer's results for RO4350:

Graph of ε_r versus f_o (MHz) of Sample RO4350

 A piece of substrate has been cut out and treated as a simple microstrip transmission line and open-ended transmission line resonator.

 The measured resonance frequency through S21measurement will be used to tune the corresponding dielectric constant of the substrate in a simulation (ADS).

- A simple Microstrip Transmission Line Resonator has been designed with aid of a simulation(ADS).
- Fabrication of the resonator. (Sample RO4350)
- S21 measurement has been carry out on the resonator.
- Measured resonance frequency will be used to tune the dielectric constant.

By bring near the probe to the strip line without touching it as creating a capacitive coupling to the measurement.

- The 1st peak of resonance frequency has been measured and recorded down. It's
 251.7 MHz of resonance frequency.
- It's 3.574 of the relative dielectric constant of the substrate (RO4350).
- Manufacturer's results for RO4350:
 3.48±0.05.

Total results of all three methods

Graph results of relative dielectric constant for sample RO4350

All results and comparison

- Test sample RO4350:
- Average dielectric constant of three methods: 3.70
- Manufacturer's dielectric costant:
 3.48±0.05
- Recommended for use in circuit design:
- 3.66 (from datasheet)

Conclusion

- Average relative dielectric constant of substrate boards show an improvement result with inclusion of stray electric field through these measurement techniques compared to manufacturer's results.
- It's suggested to include the effect in the determination methods of relative dielectric constant.

Thank You for Your attention!

Extra Slides

- Capacitive coupling:
- Capacitive coupling is needed to obtain more precise results of resonance frequencies measurement.
- The of resonance frequencies will be shifted at above magnitude of -20dB.

Papers

- Resonance frequencies of high capacitive coupling have been shifted for few kHz compared to low capacitive coupling.
- Hence, Some papers have been added to reduce the capacitive coupling, in order to get more precise result of resonance frequencies.

Example: m1 Freq= 171.6MHz dB(S(2,1))= -34.033 m3 Freq= 172.2MHz dB(S(2,1))= -34.033 It is shifted few kHz of resonance frequency.

Capacitive coupling:

1st peak (MHz)	dB(S(2,1))	2st peak (MHz)	dB(S(2,1))	3rd peak (MHz)	dB(S(2,1))	C1(pF)
174,22	-84,06	348,39	-53,83	522,51	-42,09	0,01
174,22	-72,96	348,39	-40,47	522,51	-45,30	0,02
174,22	-59,38	348,39	-42,04	522,51	-40,22	0,05
174,21	-47,82	348,38	-36,29	522,50	-17,33	0,10
174,21	-24,01	348,38	-16,38	522,49	-8,49	0,20
174,20	-11,08	348,36	-1,16	522,46	-2,02	0,50
174,19	-8,71	348,33	-0,47	522,42	-0,15	1,00
174,15	-1,36	348,27	-0,01	522,34	-0,01	2,00
174,12	-0,28	348,22	-0,01	522,28	0,00	3,00

Limitation of capacitive coupling for the corresponding resonance frequencies.

Total results of all three methods

Test sample RO4350:

RO4350	
Test methods	Relative dielectric constant, Er
Method I(A)	3,74
Method I(B)	3,72
Method I(C)	3,73
Method II	3,62
Method III	3,67
Average	3,70