I/Q -Modulator Circuit for 7-Tesla MRI Smart Power Amplifier

presented by Bin Sun

supervised by **Prof. Dr.-Ing. Klaus Solbach**

Institute of Microwave and RF-Technology University of Duisburg-Essen

February 5, 2013

Motivation

why we need smart power amplifier? how is the I/Q modulator constructed?

- Motivation
 why we need smart power amplifier?
 how is the I/Q modulator constructed?
- PCB Design & Theory how to handle so many passive and active elements?

- Motivation
 why we need smart power amplifier?
 how is the I/Q modulator constructed?
- PCB Design & Theory how to handle so many passive and active elements?
- Circuit Test & Analysis how to verify their functionalities?

- Motivation
 why we need smart power amplifier?
 how is the I/Q modulator constructed?
- PCB Design & Theory how to handle so many passive and active elements?
- Circuit Test & Analysis how to verify their functionalities?
- Conclusion

Motivation I

Nuclear Magnetic Resonance

Motivation II

RF Pulse Generation

- $f_{Larmor} = rac{\gamma}{2\pi} B_0$, e.g. $f_{Larmor} \simeq$ 298MHz at 7T
- RF power amplifier linearization scheme
 - cartesian feedback
 - carrier is I/Q modulated before power amplification. The distorted signal is then fed back through an I/Q demodulator. The separated I and Q components are fed back to perform the linearization.

Motivation III

Thesis Task: I/Q Modulator Circuit

- Functions to realise:
 - · I/Q Modulator
 - amplitude/phase control of baseband signals
 - DC operating point set of the modulator in 2 ways
- · How to realise?

Answer: circuit modularization!

Motivation IV

Thesis Task: I/Q Modulator Circuit

PCB Design & Theory

Design Methodology

modular design: top down, bottom up

modular programming is a programming style that breaks down program functions into independent, interchangeable modules

- circuit modularization
 - DC operating point set
 - by potentiometers
 - by DAC through I²C control
 - · Phase/amplitude adjustment
 - differential amplifier
 - · adder amplifier
 - · cross-coupling
 - I/Q modulator

DC Operating Point Set I

by potentiometers

- block isolation through DIP switch
 - advantage: isolation between function blocks
 - disadvantage: cost extra PCB area
- 4 test pins designed for test

DC Operating Point Set II

by DAC through I2C control

- block isolation through DIP switch
- 4 test pins designed for circuit test
- pull-up and pull-down resistors

DC Operating Point Set by I²C

A Simple |2 C Bus Application

DC Operating Point Set by I²C

The Arduino Platform

- · open-source
- simple, cheap, easy to use
- Arduino "UNO"
 - powered through USB or enternal power source
 - communication through USB
- ATTENTION: mother board and daughter board should have the same GND level!

Phase/Amplitude Adjustment I

differential amplifier

- · 2 test points
- differential or single-ended input
- · gain user defined

- symmetrical output
 - harmonics suppresion
 - EMI reduction

Phase/Amplitude Adjustment II

adder amplifier

- · 2 test points
- DC level controlled by V_{OCM}

- symmetrical output
 - long line signal transfer allowed
 - outputs should equal in length in PCB design

Phase/Amplitude Adjustment III

cross-coupling

- $I = \cos(t)$, $Q = \sin(t)$
- $QBBP = -[m \cdot \sin(t) n \cdot \cos(t)] = \sqrt{m^2 + n^2} \sin(t + \varphi)$ $m, n \in [-gain, +gain]$

I/Q Modulator I

- no test points
- inputs and outputs of AD8345 and MAX2471 are AC coupled and terminated with 50Ω resistors
- MAX2471 acts as balun
 - signal conversion from assymmetrical to symmetrical
 - immunity to external noises

I/Q Modulator II

S-parameter S₂₁ Measurement

$$\begin{array}{c} O = V_{x}, Q = V_{const} \\ S_{21} = \frac{V_{2}^{-}}{V_{1}^{+}}|_{V_{2}^{+}=0} = V_{x}e^{j0^{\circ}} + V_{const}e^{j90^{\circ}} \\ O = V_{const}, Q = V_{x} \\ S_{21} = \frac{V_{2}^{-}}{V_{1}^{+}}|_{V_{2}^{+}=0} = V_{x}e^{j90^{\circ}} + V_{const}e^{j0^{\circ}} \end{array}$$

$$igoderight I = cos(V_X), \ Q = cos(V_{DC} + 90^{\circ}) = -sin(V_X)$$

•
$$\underline{S}_{21} = cos(V_x)e^{j0} - sin(V_x)e^{j90^\circ}$$

$$igcup I = R_e \left\{ A_1 e^{j(\omega_1 t + \varphi_0)} \right\}$$
, and $Q = R_e \left\{ A_1 e^{j(\omega_1 t + \varphi_0 + 90^0)} \right\}$

 <u>S</u>₂₁ doesn't exist any more because S-parameters are supposed to characterise linear networks

I/Q Modulator III

S_{21} ADS Simulation

Whole I/Q Modulator Circuit I

Whole PCB Schematic

Whole I/Q Modulator Circuit II

Whole PCB Layout

PCB Assembly

PCB Assembly

Circuit Test & Analysis I

DC current consumption of activ components

Element	DC Current Consumption	Amount	-5V Total	+5V Total
AD8345	70mA	1		
AD8132	12mA	4	48mA	123.5mA
MAX5115	200 μ A	1		
MAX2471	5.5mA	1		

Current consumption shown on the power suppliers:

• -5V: 0.04A~0.05A

+5V: 0.12A~0.13A

Potential problems:

- can only roughly evaluate the components
- for example if MAX5115 is not working, the current won't change magnificently

Circuit Test & Analysis II

Functionality of the Phase/Amplitude Adjustment

Circuit

- $I = 50 \text{mV} \cos (2\pi 1000 \text{Hz})$
- Q = -50mV $\sin(2\pi 1000$ Hz)

Circuit Test & Analysis III

Functionality of the DC operating point set by potentiometers

Circuit Test & Analysis IV

Functionality of the DC operating point set by DAC

- error become larger when voltage increases
 - voltage is not exact +5V when powered by USB
 - solution: use lab power supply

Circuit Test & Analysis V

RF Functionality of the IQ Modulator

Circuit Test & Analysis VI

RF Functionality of the IQ Modulator

Conclusion

Thesis summary

- circuit modularization
 - $\cdot \sqrt{\text{simplify the routing task}}$
 - ✓ provide isolation between function blocks
 - × cost extra PCB material
- future work
 - DAC output voltage imperfection power the Arduino board through external power source between 7V~12V instead of USB
 - · I/Q modulator imperfection
 - design the microstrip lines even shorter
 - · symmetrical outputs of circuits equal in length

Thank you for your attention!

Questions?