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Abstract

A least-squares spectral collocation scheme for the steady and un-
steady Stokes equations is proposed. The original domain is decomposed
into quadrilateral subelements and on the element interfaces continuity of
the functions is enforced in the least-squares sense. The collocation condi-
tions and the interface conditions lead to overdetermined systems. These
systems are directly solved by QR decomposition of the underlying ma-
trices. By numerical simulations it is shown that the direct method leads
to better results than the approach with normal equations. Furthermore
it is shown that the condition numbers can be reduced by introducing the
Clenshaw-Curtis quadrature rule for imposing the average pressure to be
zero.

Keywords: Stokes equations, least-squares, spectral collocation, direct solvers,
condition numbers, improved stability

1 Introduction

Spectral methods (see, e.g., Canuto et al. [2], Gottlieb and Orszag [5], [15] or
Deville et.al. [3]) employ global polynomials for the numerical solution of differ-
ential equations. Hence they give very accurate approximations for smooth solu-
tions with relatively few degrees of freedom. For analytical data exponential con-
vergence can be achieved. If one deals with problems with non-smooth solutions
(e.g., discontinuities or layers) the usual (global) continuous spectral approach
yields very poor approximation results. To avoid these difficulties the original
domain has to be decomposed into several subdomains where jumps at the in-
terfaces are allowed. Gerritsma and Proot showed in [6] the good performance
of discontinuous least-squares spectral element methods. In [10] we extended
the above approach to one-dimensional singular perturbation problems where
the least-squares spectral collocation schemes lead to a stabilization. Heinrichs
extended the in [11] proposed least-squares spectral collocation method to a tri-
angular decomposition [13] of the original domain and achieved good numerical

1wilhelm.heinrichs@uni-due.de
2thorsten.kattelans@uni-due.de

University of Duisburg-Essen, Engineering Mathematics, Universitaetsstr. 3, D-45117 Essen,
Germany

1



results. Here we extend the method to a decomposition in quadrilaterals of the
original domain and apply these scheme to the two-dimensional Stokes equa-
tions. The collocation conditions together with the interface conditions lead to
an overdetermined system that can be approximately solved by least-squares.
The essential enhancements of the here introduced scheme is the increased ac-
curacy because of the use of a direct solver. For the overdetermined system we
compute the QR decomposition of the associated matrix and solve the system.
Because of avoiding the normal equations we obtain linear systems of equations
with dramatically reduced condition numbers and so round-off errors do not
have such a big influence to the approximation results.
For the Stokes problem the velocity and the pressure cannot be approximated
independently due to the well known Babus̆ka - Brezzi condition. If the ve-
locity and the pressure are approximated by polynomials of the same degree
eight spurious modes are introduced which lead to an unstable system (see
Bernardi, Canuto and Maday [1]). A well-known compatible approximating
velocity-pressure pair is the so-called PN×PN−2 formulation, see, e.g., Rønquist
[21]. Heinrichs [7], [9] employed this technique for the splitting of the Stokes
equations. There the velocity components are approximated by polynomials in
PN and the pressure by two degrees lower order polynomials in PN−2 . The
resulting discrete system constitutes a saddle point problem which is diffcult to
solve numerically.
Least-squares techniques offer theoretical and numerical advantages over the
classical methods. Spectral least-squares methods were first introduced by Ger-
ritsma and Proot in [17], [18], [19]. Heinrichs investigated least-squares spectral
collocation schemes in [11], [12], [13] that lead to symmetric and positive definite
algebraic systems which circumvent the LBB stability condition. In summary,
our approach has the following advantages:

• equal order interpolation polynomials can be employed

• it is possible to vary the polynomial order from element to element

• improved stability properties for singular perturbation problems [4], [10]
and Stokes or the Navier-Stokes equations [11], [12], [13], [17], [18], [19]

• good performance in combination with a decomposition of the original
domain

• direct and efficient iterative solvers for positive definite systems can be
used

• implementation is straightforward.

The paper is organized as follows. In Section 2, the first-order formulation of
the Stokes equations is introduced. In Section 3 we describe the least-squares
spectral collocation scheme, specify the domain decomposition and demonstrate
two strategies of avoiding the pressure constant. Section 4 shows the numerical
simulations with the results for the steady Stokes equations in subsection 4.1
and for the unsteady one in subsection 4.2. Finally, a conclusion is presented.
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2 The Stokes equations

In order to apply least-squares the Stokes problem is transformed into an equiv-
alent first-order system of partial differential equations. This is accomplished
by introducing the vorticity ω = ∇× u as an auxiliary variable. By using the
identity

∇×∇× u = −∆u +∇(∇ · u)

and the incompressibility constraint ∇ · u = 0 we obtain

∂u

∂t
+ ν∇× ω +∇p = f in Ω , t ∈ [0, tend] (1)

∇ · u = 0 in Ω , t ∈ [0, tend] (2)
ω −∇× u = 0 in Ω , t ∈ [0, tend] (3)

where uT = [u1, u2] denotes the velocity vector, p the pressure, fT = [f1, f2] the
forcing term and ν the kinematic viscosity. Here it is assumed that the density
equals unity. We impose the average pressure to be zero; i.e.,

∫

Ω

p dx = 0, (4)

since the pressure is only determined up to a constant.
For the time integration we use a second-order BDF scheme (see, e.g., [7]): If
∆t denotes the step size in t and the index n + 1 indicates that the functions
are evaluated at the time step tn+1 = (n+ 1)∆t, the approximation of (∂u

∂t )n+1

can be written as
3
2u

n+1 − 2un + 1
2u

n−1

∆t
. (5)

Spectral least-squares methods for the Stokes and Navier-Stokes equations were
first introduced in [17], [18] and [19]. Heinrichs [11] first investigated least-
squares spectral collocation schemes for the Navier-Stokes equations and ex-
tended these methods to a triangular decomposition of the domain combined
with adaptive mesh refinement in reference [13]. Here we extend the least-
squares spectral collocation scheme for the Stokes equations to a quadratic de-
composition of the domain and investigate a direct solver (QR decomposition)
for the discrete algebraic systems. Furthermore we study the condition numbers
of the algebraic systems for different discretizations of the Stokes equations.

3 The least-squares spectral collocation scheme

For the spectral approximation we introduce the polynomial subspace

PN = {Polynomials of degree ≤ N in both variables x1, x2}.
Now all unknwon functions are approximated by polynomials of the same degree
N , i.e., u1, u2, ω, p are approximated by interpolating polynomials uN

1 , uN
2 , ωN ,

pN ∈ PN . Furthermore we have to introduce the standard Chebyshev Gauss-
Lobatto collocation nodes which are explicitly given by

(ξi, ηj) =
(
− cos

(
iπ

N

)
,− cos

(
jπ

N

))
, i, j = 0, . . . , N.
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In the following we write the spectral derivatives. First one has to introduce
the transformation matrices from physical space to coefficient space. Since we
employ a Chebyshev expansion we obtain the following matrix:

T = (ti,j) =
(

cos
(
i
jπ

N

))
, i, j = 0, . . . , N.

Further we need the differentation matrix in the Chebyshev coefficient space
which is explicitly given by D̂ = (d̂i,j) ∈ RN+1,N+1 with

d̂i,j =





2j
ci

, j = i+ 1, i+ 3, . . . , N

0 , else

and

ci =
{

2 , i = 0
1 , else.

Now we are able to write explicitly the spectral derivative matrix D for the first
derivative which is given by

D = TD̂T−1 ∈ RN+1,N+1.

The spectral operator can be efficiently evaluated by Fast Fourier Transforma-
tions (FFTs) in O(N logN) arithmetic operations. We further introduce the
identity matrix I ∈ RN+1,N+1. By tensor product representation A ⊗ B =
(Abi,j)i,j we are now able to write the spectral derivatives:

∂

∂x
∼= D1 := D ⊗ I ,

∂

∂y
∼= D2 := I ⊗D.

To decompose the domain Ω into quadratic elements Ωi,j := (xi−1, xi)×(yj−1, yj),
i, j = 1, . . . ,

√
K, where K denotes the number of elements, we define the ele-

ment borders for an equidistant decomposition by:

xi := −1 + i
2√
K
, yj := −1 + j

2√
K
, i, j = 0, . . . ,

√
K.

Now the collocation nodes and the differentation matrices on the kth element
are given by

xk
i :=

1
2
[(xk − xk−1)ξi + xk−1 + xk], yk

j :=
1
2
[(yk − yk−1)ηj + yk−1 + yk]

and

D1,k :=
−2

xk − xk−1
D1, D2,k :=

−2
yk − yk−1

D2

with i, j = 0, . . . , N , k = 1, . . . ,K.
Now we are able to write the discrete spectral system on each element:

4






Ψ 0 νD2,k D1,k

0 Ψ −νD1,k D2,k

D2,k −D1,k I ⊗ I 0

D1,k D2,k 0 0







uN
1,k

uN
2,k

ωN
k

pN
k




=




gN
1,k

gN
2,k

0

0




in Ω̄N
k ,

for k = 1, . . . ,K. In the steady case Ψ and g are given by

Ψ = 0 , g = f

and in the unsteady case (since we use the second-order BDF scheme (5) for
time integration) by

Ψ =
3

2∆t
· I , g = f +

2
∆t

u− 1
2∆t

u.

At the interfaces between the elements, we require (as Heinrichs in [13]) con-
tinuity of both the functions and normal derivatives of u1, u2. For p we only
require continuity and for ω we do not explicitly require interface conditions.
The following plot shows the spectral element mesh for K = 9 elements and a
polynomial degree of N = 8 on each element.

Figure 1: Spectral element mesh for K = 9 and N = 8.

Next we have to realize the discrete formulation of eqn. (4). The first way to do
this is to cancel the last row and column in the matrix of the complete discrete
system. As shown in subsection 4.1 (figure 2) the better way is to apply the
Clenshaw-Curtis quadrature rule (see, e.g., [16]):

∫

Ω

p dx ∼=
N∑

i=0

N∑

j=0

ωiωjp(ξi, ηj)
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where Ω = [−1, 1]2 denotes the standard domain, (ξi, ηj) the Chebyshev Gauss-
Lobatto nodes on Ω and

ωi :=





1
N2 − 1

, i ∈ {0, N}

4
N

N
2∑

j=0

1
c̄j

cos
(

2πij
N

)

1− 4j2
, 1 ≤ i ≤ N − 1

with

c̄j :=
{

2 , j ∈ {0, N/2}
1 , 1 ≤ j ≤ N/2− 1

the integrations weights.
The above system of differential equations together with the boundary and
interface conditions and the condition for the pressure (eqn. (4)) are written
into a matrix A and compiled into an overdetermined system Az = r.
For the solution of the systems Heinrichs used, e.g., in [11], [12] and [13] the
normal equations ATAz = AT r.
It is well known that the spectral derivative martices D have relatively large
condition numbers

κ2(D) =
max
||x||2=1

||Dx||2
min

||x||2=1
||Dx||2

and the use of the corresponding normal equations lead to systems with even
larger condition numbers (κ2(DTD) ∼= κ2(D)2)). Because of the roundoff errors
and the large condition numbers of the systems one cannot obtain the best
quality of approximations. Here we want to avoid the normal equations to get
better approximations and so we make use of a direct solver for the system
Az = r by using the QR decomposition (computed with MATLAB 7.3.0), see,
e.g., [20], of the matrix A where we achieved the following system:

Az = r ⇐⇒ QRz = r.

If A ∈ Rm,n with m > n then Q ∈ Rm,m is an orthogonal matrix (i.e. Q−1 =
QT ) and R ∈ Rm,n is an upper triangluar matrix of the type

R =
[
R̃
0̃

]
, R̃ ∈ Rn,n , 0̃ ∈ Rm−n,n.

Consequently, we obtain

ψ := QT r , Rz = ψ.

Furthermore we used the pseudoinverse, see, e.g., [20], (also known as Moore-
Penrose inverse) A+ of the matrix A to solve the system Az = r. The numerical
experiments have shown that the approximation results by using the pseudoin-
verse are the same as using QR decomposition. The disadvantages of using
pseudoinverses are higher computational costs (see subsection 4.1, figure 5).
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4 Numerical simulations

We consider the steady and unsteady Stokes equations. In the following two
subsections we denote by Ã the matrix obtained by cancelling the last column
and the last row of the complete system and by Â the one obtained by includ-
ing the additional Clenshaw-Curtis quadrature condition to avoid the pressure
constant. The condition numbers are computed by means of a singular value
decomposition of the associated matrix.

4.1 The steady Stokes equations

First, we consider the steady case of the Stokes equations. Figure 2 shows the
condition numbers κ2(Â), κ2(Ã) and κ2(ÂT Â) for K = 4, K = 36 and K = 64
elements with different polynomial degrees N . For higher element numbers and
high polynomial degrees we do not list the condition numbers because of the
influence of the round-off errors.
The condition numbers are rigorously reduced if we do not use the normal
equations. A further reduction of the condition numbers is obtained if we use
the Clenshaw-Curtis quadrature rule to avoid the pressure constant instead of
cancelling one row and one column of the complete system matrix.
For other parameters K and N we obtain similar results and so we do not list
them here.

2 3 4 5 6 7 8 9 10
10

2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

N

co
nd

iti
on

 n
um

be
r

(a) K = 4

2 3 4 5 6 7 8
10

3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

N

co
nd

iti
on

 n
um

be
r

(b) K = 36
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(c) K = 64

Figure 2: Condition numbers for K = 4, K = 36, K = 64 elements and different
polynomial degrees N (κ2(Â) : +; κ2(Ã) : ∗; κ2(ÂT Â) : o).
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The convergence rates of the least-squares spectral collocation scheme is demon-
strated by means of the model problem also introduced in [7] with ν = 1. The ex-
act velocity components and the pressure are defined on the square Ω := [−1, 1]2

by

u1(x, y, t) := cos(γt) sin
(πx

2

)
cos

(πy
2

)
(6)

u2(x, y, t) := − cos(γt) cos
(πx

2

)
sin

(πy
2

)
(7)

p(x, y, t) :=
1
4

cos2(γt)(cos(πx) + cos(πy)) + 10(x+ y) cos(γt). (8)

This exact solution satisfies the Stokes equations if the following forcing term is
used

f(x, y) =




ν
π2

2
cos(γt) sin

(πx
2

)
cos

(πy
2

)

−ν π
2

2
cos(γt) cos

(πx
2

)
sin

(πy
2

)




−



π

4
cos2(γt) sin(πx)− 10 cos(γt)

π

4
cos2(γt) sin(πy)− 10 cos(γt)


 (9)

+


 −γ sin(γt) sin

(πx
2

)
cos

(πy
2

)

γ sin(γt) cos
(πx

2

)
sin

(πy
2

)

 .

For the steady case of the Stokes equations we set γ = 0.
We use the QR decomposition of the matrix Â to solve the discrete algebraic
systems and numerically calculate the discrete L2-error norms of the velocity
components and the pressure. The corresponding numerical results are pre-
sented in the Tables 1 - 3.

N ||u1 − uN
1 ||L2 ||u2 − uN

2 ||L2 ||p− pN ||L2

N = 2 1.797 · 10−1 1.809 · 10−1 6.088 · 10−1

N = 4 3.082 · 10−3 3.042 · 10−3 5.869 · 10−2

N = 6 1.340 · 10−4 1.311 · 10−4 7.061 · 10−3

N = 8 2.885 · 10−6 2.844 · 10−6 1.939 · 10−4

N = 10 1.938 · 10−8 1.936 · 10−8 2.008 · 10−6

N = 12 5.621 · 10−11 5.622 · 10−11 8.636 · 10−9

N = 14 4.425 · 10−13 4.689 · 10−13 4.852 · 10−11

N = 16 4.316 · 10−13 4.041 · 10−13 2.316 · 10−11

N = 18 5.207 · 10−13 4.977 · 10−13 8.734 · 10−11

N = 20 6.956 · 10−13 7.618 · 10−13 8.395 · 10−11

Table 1: L2-errors of the velocity components and the pressure for K = 4 ele-
ments.
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N ||u1 − uN
1 ||L2 ||u2 − uN

2 ||L2 ||p− pN ||L2

N = 2 4.280 · 10−2 4.434 · 10−2 4.128 · 10−1

N = 4 4.101 · 10−5 4.448 · 10−5 1.264 · 10−3

N = 6 3.285 · 10−7 3.147 · 10−7 1.082 · 10−5

N = 8 9.049 · 10−10 8.933 · 10−10 8.119 · 10−8

Table 2: L2-errors of the velocity components and the pressure for K = 36
elements.

N ||u1 − uN
1 ||L2 ||u2 − uN

2 ||L2 ||p− pN ||L2

N = 2 2.711 · 10−2 2.884 · 10−2 3.382 · 10−1

N = 4 1.425 · 10−5 1.562 · 10−5 5.011 · 10−4

N = 6 6.291 · 10−8 6.072 · 10−8 2.335 · 10−6

Table 3: L2-errors of the velocity components and the pressure for K = 64
elements.

Tables 1-3 show the high spectral accuracy of our scheme if the number of el-
ements is constant and the polynomial degree increases. If we compare the
approximation errors of the same polynomial degree with different numbers of
elements we observe the expected slight improvement in the results.
Table 1 obviously shows the influence of round-off errors for N ≥ 16.

In the figures 3 and 4 we compare the approximation errors by solving the
normal equations ÂT Âz = ÂT r and by solving the system Âz = r with QR
decomposition. We obtain the same errors if the polynomial degree is low, i.e.
N = 2, 4, but if the polynomial degree increases the errors obtained by normal
equations increase if a particular N is exceeded. The reason of this behaviour
is the high condition numbers of the normal equations and thus the strong
influence of round-off errors. Errors obtained by QR decomposition continuous
decrease by increasing N . By using QR decomposition we avoid the very high
condition numbers and so we obtain the improved approximations.
Since we have an analogue performance of the velocity component u2 we here
just show the results for u1.
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Figure 3: L2-error of (a) the velocity component u1 and (b) the pressure, ob-
tained by the normal equations and by the QR decomposition for K = 36.
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Figure 4: L2-error of (a) the velocity component u1 and (b) the pressure, ob-
tained by the normal equations and by the QR decomposition for K = 64.

Next we check the numerical results obtained by solving the system of equations
with the pseudoinverse Â+ of the matrix Â. We got the same numerical results
as by using QR decomposition and so we do not show the results here.

For comparing computational costs we show in figure 5 the used CPU-times for
solving the system of equations by normal equations, QR decomposition and
pseudoinverse. All results are computed with MATLAB 7.3.0 with the following
code:

• normal equations: z=(Â’*Â)\(Â’*r)
• QR decomposition: z=Â\r
• pseudoinverse: z=pinv(Â)*r
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Figure 5: CPU-time required for solving the system of linear equations with
pseudoinverse (×), QR decomposition (o) and the normal equations (∗) on (a)
4, (b) 36 and (c) 64 elements.

Since the use of the pseudoinverse needs extremely more time and produces
same accuracy as the use of QR decomposition we only used QR decomposition
for solving the systems. The application of normal equations is less expensive
but the quality of approximation is worse than the one obtained by using QR
decomposition. In the following section we apply our scheme to the unsteady
Stokes equations.

4.2 The unsteady Stokes equations

Now we consider the unsteady case of the Stokes equations. The exact velocity
components and the pressure are defined as in (6)-(8), the corresponding forcing
term by (9) and we recall that ν = 1

Re where Re denotes the Reynolds number.
Because we consider the unsteady case we set γ = 5 as in [7]. From [11] it is
known that for a well balanced system it is recommended to scale the momentum
equations by ∆t. By numerical experiments we observed the same. Without
scaling the incompressibility condition is no more fulfilled after time integration.
Figure 6 shows ||∇ ·u|| for K = 4, N = 10, Re = 1 and ∆t = 1

58 in case without
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scaling.

Figure 6: Temporal evolution of ||∇ · u|| for K = 4, N = 10, Re = 1, ∆t = 1
58

in the case without scaling.

In the scaled case we obtained a stable scheme. Figure 7 shows temporal evo-
lution of the L2-errors in the velocity components and in the pressure. We
observe no enlargement of the oscillating errors in time, expressing stability of
the numerical solution.

(a) (b)

Figure 7: Temporal evolution of (a) the velocity error and (b) the pressure error
for Re = 100, ∆t = 1

1000 , K = 4 and N = 10.

Since the numerical results in the unsteady case are similar to those in the
steady case we here only show a few results. In Table 4 we demonstrate the
condition numbers of the matrices Â and recall that κ2(ÂT Â) ∼= κ2(Â)2.
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Re ∆t κ2(Â)
100 1

10 3.1067 · 104

100 1
100 9.0105 · 104

1000 1
100 8.7253 · 104

Table 4: Condition numbers of the scaled matrix Â for K = 4, N = 10, different
Reynolds numbers and different timesteps.

In the next three tables we show the approximation errors for the unsteady case
of the Stokes equations. The time derivative is approximated by the second
order BDF scheme (5). We set

Eu1 := max{||u1 − uN
1 ||L2 : t ∈ [0, 1]},

Eu2 := max{||u2 − uN
2 ||L2 : t ∈ [0, 1]},

Ep := max{||p− pN ||L2 : t ∈ [0, 1]}

since figure 7 shows that the maximum error is obtained in [0, 1].
Tables 5-7 show the good performance of the here presented scheme for time-
depend Stokes problems.

∆t Eu1 = Eu2 Ratio Ep Ratio
1
10 2.885 · 10−3 — 2.496 · 10−1 —
1
20 7.386 · 10−4 3.906 6.331 · 10−2 3.943
1
40 1.858 · 10−4 3.975 1.586 · 10−2 3.992
1
80 4.657 · 10−5 3.990 3.973 · 10−3 3.992

Table 5: Approximation errors for K = 4, N = 10 and Re = 1.

∆t Eu1 = Eu2 Ratio Ep Ratio
1
10 1.326 · 10−1 — 5.354 · 10−1 —
1
20 3.563 · 10−2 3.722 1.358 · 10−1 3.943
1
40 9.085 · 10−3 3.922 3.404 · 10−2 3.989
1
80 2.281 · 10−3 3.983 8.532 · 10−3 3.990

Table 6: Approximation errors for K = 36, N = 8 and Re = 100.

∆t Eu1 = Eu2 Ratio Ep Ratio
1
10 1.890 · 10−1 — 7.322 · 10−1 —
1
20 5.067 · 10−2 3.730 1.855 · 10−1 3.947
1
40 1.292 · 10−2 3.922 4.656 · 10−2 3.984
1
80 3.244 · 10−3 3.983 1.166 · 10−2 3.993

Table 7: Approximation errors for K = 64, N = 6 and Re = 100.
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5 Conclusion

We presented a least-squares spectral collocation scheme for the steady and
unsteady Stokes equations where the original domain has been decomposed
into quadrilateral subelements. To avoid high condition numbers of normal
equations a direct solver (QR decomposition of the matrices) was used for the
overdetermined systems. The numerical simulations confirm the high accuracy
of the proposed spectral least-squares scheme and solving the overdetermined
systems with QR decomposition yields better approximation results. The com-
putational cost of QR decomposition is higher than using normal equations.
Using pseudoinverse shows same results as using QR decomposition but causes
much higher computational costs.
In the unsteady case we have shown the good performance of the here presented
scheme for different Reynolds numbers, different time steps and various number
of elements.
In the second part of the paper we intend to present results for the incompress-
ible Navier-Stokes equations. First results are already contained in [14].
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