
SCHRIFTENREIHE DER FAKULTÄT FÜR MATHEMATIK
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Abstract

In this paper we develop a penalty method to approximate solutions of
the free boundary problem for minimal surfaces. To this end we study the
problem of finding minimizers of a functional Fλ which is defined as the
sum of the Dirichlet integral and an appropriate penalty term weighted
by a parameter λ. We prove existence of a solution for λ large enough as
well as convergence to a solution of the free boundary problem as λ tends
to infinity. Additionally regularity at the boundary of these solutions is
shown, which is crucial for deriving numerical error estimates. Since every
solution is harmonic, the analysis may be largely simplified by considering
boundary values only and using harmonic extensions.
In a subsequent paper we develop a fully discrete finite element procedure
for approximating solutions to this one-dimensional problem and prove an
error estimate which includes an order of convergence with respect to the
grid size.

Keywords: minimal surfaces, free boundary problem, finite element approxi-
mation, convergence
MSC(2010): 53A10, 49Q05, 65N30

0 Introduction

A “minimal surface with free boundaries” or a “solution of the free boundary
problem” is a stationary point of Dirichlet’s integral among all disk type sur-
faces, whose boundary curves lie on a prescribed support surface S.
One main example is, when S is given as a topological torus. Then there is a
stationary surface, which“fills the hole of S”, but there are also more stationary
solutions which are positioned inside the tube. In order to specify the position
of the solution more precisely and avoid degeneration, one can choose a poly-
gon, which does not meet the surface S, and demand, that the boundary of the
minimal surface on S is “linked” with that polygon (see Figure 1).
Of course, the problem is also well defined for support surfaces of higher topo-
logical type.

∗Fakultät für Mathematik, Universität Duisburg-Essen, Thea-Leymann-Straße 9,
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Figure 1: A minimal surface linked
with a polygon.

The free boundary problem is a variant of the classical “Plateau Problem”,
which consists in finding a disk type minimal surface spanning a prescribed
closed boundary curve Γ. Analytically both problems are investigated very well.
There are existence results, valid under weak assumptions on the data, and one
can show regularity of solutions up to the boundary under natural assumptions
on S or Γ respectively. In the first section we give an overview about the most
pertinent analytic results. A comprehensive treatise on minimal surfaces and
related topics can be found in the monographs by Dierkes, Hildebrandt, Sauvi-
gny and Tromba [1], [2], [3] and Nitsche [12].
Besides the highly nonlinear nature of the Plateau Problem or the Free Bound-
ary Problem, the numerical approximation of solutions is difficult in both cases
for the following reason: the subsidiary condition, namely that the boundary
points have to lie on a prescribed set, is a pointwise condition and hence is
unfavorable for numerics.

For the Plateau Problem many authors have developed different methods to
tackle this difficulty: for the sake of conciseness we refer here only to Dziuk and
Hutchinson [4], where a detailed overview on previous results can be found. In
the papers by Dziuk and Hutchinson ([4], [5]) the fact is used, that the Dirichlet
integral over the unit disk B can be written as integral over ∂B by using the
harmonic extension. This functional is defined on the space of reparametrisa-
tions of Γ, so the boundary condition has been hidden into the functional.
Dziuk and Hutchinson are the first authors who give a fully discrete, finite
element procedure for approximating (minimizing and stationary) minimal sur-
faces, which also yields an order of convergence with respect to the grid size.
Further error estimates for their setting are shown in Pozzi [13].

The only work on the approximation of solutions to the free boundary problem,
which we are aware of, is the dissertation of Tchakoutio [14]. He applies the
method of [4] and [5] to torus type support surfaces and also obtains conver-
gence results similar as in [5]. Our results here are more general as Tchakoutios’
in that we allow arbitrary support surfaces S.

In this paper we develop a new approach to the free boundary problem by
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using a penalty method. To this end we will set up a new class of “Penalty
Problems”, which approximate the original free boundary problem in a suitable
way and also replace the boundary condition. This is independent of the topo-
logical type of the support surface S, but only yields minimizers rather than
merely stationary surfaces.
In a subsequent paper (see [9]) we will apply methods of Dziuk and Hutchinson
([4], [5]) to approximate solutions of these penalty problems numerically and
prove a convergence result, which yields an order of convergence with respect to
the grid size. For this proof, besides the (geometrically motivated) assumption
on the non-degeneracy of the second variation, we will not need any further
a-priori assumptions.

Our method is based on the following idea: let B ⊂ R2 be the unit disk, λ > 0
a parameter, δ the signed distance function to S, X : B → R3 a parametriza-
tion of a surface, and D(X) = 1

2

∫
B
|∇X|2 the Dirichlet integral. We consider

functionals of the form

D(X) + λ

∫
∂B

δ(X)2|Xϕ|.

Here the second term “penalizes” by assigning large values if the distance of the
boundary of X and the surface S increases. We want to minimize this func-
tional among all functions whose boundary curves lie in a neighbourhood of S
and are linked with a prescribed polygon. The procedure is mostly inspired by
the classical existence theory.

Because of technical difficulties we will use a slightly modified version Fλ of
the above functional (see Definition 4). We can then show that the correspond-
ing variational problems Pλ have a solution, assuming λ is large enough (see
Theorem 5).
In this way we have replaced the free boundary condition by adding a penalty
term, but solutions Xλ of the penalty problems Pλ are in general no solutions of
the free boundary problem. So the next step is to prove, that these solutions Xλ

converge to a solution of the free boundary problem as λ→∞ (see Theorem 9).
The proof crucially relies on the classical existence theory. Furthermore we can
even show an order of convergence with respect to λ (see Theorem 10).

Since we can show that solutions Xλ of Pλ are harmonic functions, Fλ(Xλ)
is uniquely determined by the boundary values γ = Xλ|∂B . We can there-
fore write Eλ(γ) rather than Fλ(Xλ) and similarly as in the work of Dziuk
and Hutchinson ([4], [5]) we may reformulate the penalized problem into one-
dimensional variants P∗λ (see Theorem 15), which in turn is more favorable for
numerics.
Additionally we prove that solutions γ of P∗λ are of class C2 (see Theorem 14),
which will later also be important for the numerical analysis.

Finally we give an outlook to our subsequent paper [9], where we introduce
a discretization Eλh(γh) of Eλ(γ) and prove an error estimate of the follow-
ing form: Let γ be a minimizer of the one-dimensional problem P∗λ, such that
δ2Eλ(γ) is positive definite. Then there is a unique solution γh of the discrete

3



problem with
‖γ − γh‖H1

2
≤ ch,

where c is independent of h. In section 7 we sketch the employed algorithm and
comment on some numerical examples.

1 The Free Boundary Problem

In this section we give a short review of the solution to the free boundary prob-
lem for minimal surfaces. Here we present a greatly reduced version of the
chapters 1.1 to 1.3 in [3]. For more comprehensive reasoning we refer to [3].

Consider a closed set S ⊂ R3. By Tµ = Tµ(S) := {x ∈ R3 | dist(x, S) < µ}
we denote its tubular µ-neighbourhood and by M(S) the set of all homotopy
classes of closed paths in S.

Assumption A Suppose there is a number µ > 0 such that the inclusion map
S → Tµ induces a bijection from M(S) to M(Tµ).

LetB ⊂ R2 be the unit disk and choose a closed polygon Π in R3 with Π∩Tµ = ∅.
Then the class of admissible functions is defined as

C(Π, S) :=
{
X ∈ H1

2 (B,R3)
∣∣ X|∂B(w) ∈ S for a.e. w ∈ ∂B, L(X|∂B ,Π) 6= 0

}
.

Here X|∂B is the L2-trace of X and L denotes the linking number of two closed
curves. Although X|∂B is not necessarily continuous, one can show that the
linking number is well defined (see [3], ch. 1.1, theorem 3).
For the exact definition and properties of the linking number see [3], ch. 1.2
and the literature cited therein.

The main existence result (cp. [3], ch. 1.3, Theorems 1 and 2) is

Theorem 1 Let S be a closed set satisfying assumption A. If there is a closed
polygon Π in R3 with Π∩Tµ = ∅, such that the class C(Π, S) is not empty, then

there is a solution X̃ of the variational problem

P(Π, S) : D(X)→ min in C(Π, S),

where D(X) = 1
2

∫
B
|∇X|2 denotes the Dirichlet integral. Any solution X̃ is a

minimal surface and minimizes the area functional A(X) in C(Π, S).

Remark To avoid degeneration of minimizing sequences and exclude trivial so-
lutions, we may specify the topological position of the solution surface relative
to the boundary surface S in advance. Here we have chosen to preassign a non-
trivial linking number, however also similar topological devices may be equally
pertinent, cp. chapter 1.1 in [3].

For the convenience of the reader we present the main ideas of the existence
proof:

Let A and B be closed sets, then g(A,B) := sup{dist(x,B) | x ∈ A} denotes
the greatest distance of A to B. A sequence Xk ∈ H1

2 (B,R3) is said to be a
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“generalized admissible sequence” (g.a.s.) for P(Π, S), if there is a sequence of
closed sets Sk such that Xk ∈ C(Π, Sk) and limk→∞ g(Sk, S) = 0 holds true.
We set e := inf{D(X)| X ∈ C(Π, S)} and
e∗ := inf{lim infk→∞D(Xk)| (Xk) is a g.a.s. for P(Π, S)}. Evidently we have
e∗ ≤ e.
Now we choose a “g.a.s.” Zk with limk→∞D(Zk) = e∗, which we call a “gen-
eralized minimizing sequence” (g.m.s.). It is possible to pass from the sequence
Zk to a “g.m.s.” Yk of functions with absolutely continuous boundary curves.
Then we get a “g.m.s.” Xk by taking the harmonic extension of these boundary
curves.

Lemma 2 Let Xk be a “generalized minimizing sequence” for P(Π, S) of har-
monic functions. Then there is a subsequence, which converges weakly in H1

2 (B)
and uniformly on every subset Ω ⊂⊂ B to a harmonic function X̃ ∈ C(Π, S).

(See proof of Theorem 1 in [3].) We denote the subsequence again by Xk.
The lower semicontinuity of the Dirichlet integral with respect to weak conver-
gence in H1

2 yields D(X̃) ≤ lim infk→∞D(Xk) = e∗ ≤ e ≤ D(X̃) and therefore
D(X̃) = e = e∗.

For solutions of P(Π, S) the following regularity result holds:

Theorem 3 Let S be a 2-dimensional compact submanifold of R3 of class Cm

or Cm,β, m ≥ 3, β ∈ (0, 1). Then any stationary point of the Dirichlet inte-
gral in C(Π, S) is of class Cm−1,α(B) for any α ∈ (0, 1) or of class Cm,β(B)
respectively.

This is mainly the statement of Theorem 1 in ch. 2.8. of [3]. One can easily see
that S is an “ admissible support surface” (in the sense of Definition 1 in ch. 2.6
of [3]) since -by assumption- S is a compact submanifold. Furthermore the
statement of Theorem 1 loc. cit. is formulated for solutions of semifree boundary
problems, but all considerations in the proof are strictly local and can hence be
carried over in essentially the same way (see the remarks at the end of chapter 2.4
in [3]).

2 The Penalty Functional

From now on we will always assume that S fulfills

Assumption B Let S ⊂ R3 be a 2-dimensional compact submanifold of class C3.

Clearly, Assumption B implies Assumption A.
Consider a suitably small neighborhood U ⊂ R3 of S and a C3-function
G : U → R such that

S = {x ∈ U : G(x) = 0},

i.e. S is the zero level set of the function G. It is well known that we may choose
G as the signed distance function relative to S (cp. for example Appendix in
[7]), however we do not explicitly require ∇G 6= 0 on S, hence also other choices
for G might be appropriate.
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Definition 4 Let λ > 0 be a parameter and G ∈ C3(U) such that S = G−1(0).
Furthermore consider a point P ∈ R3 and a mapping % ∈ H1

2 (∂B) with % ≥ 0,
%(0) = 1 and %(π) = 0. For X ∈ H1

2 (B,R3) ∩H1
2 (∂B,R3) with X(∂B) ⊂ U we

define the penalty functional

Fλ(X) := D(X)+λ

∫
∂B

G(X)2

√
|Xϕ|2 +

1

λ
+

1

λ

∫
∂B

(
|Xϕ|2 + %|X − P |2

)
. (1)

By (r, ϕ) we denote polar coordinates in B.

Remark The main idea behind the definition of the functional Fλ above consists
in adding a term to Dirichlet’s integral which penalizes the functional for not
assuming boundary values on the prescribed surface S. Additionally we add a
small third term which allows us to work in the class H1

2 (∂B) and a fourth one
which (for an appropriate choice of the point P ) removes the invariance with
respect to rotations of B.

We now want to choose a µ > 0, such that the µ-neighbourhood Tµ of S fulfills
some important properties. At first we choose µ > 0 so small that Tµ ⊂ U .

Because G ∈ C3(U), there is an open set Ũ with Tµ ⊂ Ũ ⊂ U , in which G as
well as its first, second and third derivatives are bounded. Therefore we may
assume that G as well as its first and second derivatives are Lipschitz continuous
in Tµ. Furthermore let µ be so small that the inclusion map S → T2µ induces
a bijection from M(S) to M(T2µ).
This choice of µ would be sufficient for most of the following results. For later
purposes in Section 5 we select µ > 0 so small that - in addition to the other
requirements - we have that the absolute values of principle curvatures of S are
bounded by 1

2µ and that for all µ0 < 2µ the parallel surface to S at distance µ0

is again of class C3.

Let Π be a closed polygon, such that Π ∩ T2µ = ∅. Now we can define the
class of admissible functions:

C :=
{
X ∈ H1

2 (B,R3) ∩H1
2 (∂B,R3)

∣∣ X(∂B) ⊂ Tµ, L(X|∂B ,Π) 6= 0
}

(2)

Again, L is the linking number of two closed curves, which can be defined here
in a classical way as X|∂B is continuous (recall that H1

2 (∂B) is embedded in

C0, 12 (∂B)). We remark that the class C does not depend on λ. Furthermore
it is not empty, if we assume that C(Π, S) is not empty (see remark following
Theorem 5).

We are now concerned with the following questions:
Is the variational problem

Pλ : Fλ(X)→ min in C (3)

solvable, at least if λ is large enough? And in case this is true, do solutions Xλ

of the problems Pλ converge to a solution X̃ of P(Π, S) for λ→∞ in a suitable
way?

In the next sections we will show that these questions can be answered in the
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affirmative. Hence as far as a numerical treatment is concerned, it is convenient
to consider problem Pλ rather that the original problem P(Π, S). A main ad-
vantage of our approach is that - in this way - we do not need to enforce the
pointwise boundary condition X|∂B(∂B) ⊂ S.

3 Existence of a Solution

For 0 ≤ t ≤ µ we set
h(t) := min

z∈Tµ\Tt
G(z)2,

where T0 := ∅. Then h(0) = 0 and h(t) > 0, if t > 0. By definition h
is continuous and increasing. If G is the signed distance function, we have
h(t) = t2.
Our main goal in this section is to prove the following existence theorem:

Theorem 5 Let the class C(Π, S) be non empty and consider a solution X̃ of

P(Π, S). Then for all λ > max
{
D(X̃)+2

µh(µ2 )
,
∫
∂B

(
|X̃ϕ|2 +%|X̃−P |2

)}
=: λ0(µ, X̃)

the variational problem Pλ is solvable. Every solution of Pλ is a harmonic
function.

First we note that the class C is not empty, since by Theorem 1 there is a solu-
tion X̃ of P(Π, S), which, by Theorem 3, is smooth up to the boundary.

We set eλ := inf{Fλ(X)| X ∈ C} and pick a minimizing sequence for Pλ,
i.e. a sequence Xk ⊂ C with limk→∞ Fλ(Xk) = eλ.
There is a constant Mλ, such that D(Xk) ≤ Fλ(Xk) ≤ Mλ for all k. This
implies that there is a subsequence Xk, that converges weakly in H1

2 (B) to a
function X ∈ H1

2 (B).
Furthermore the trace Xk|∂B converges in L2(∂B) to X|∂B . Because Xk is
a minimizing sequence, we have

∫
∂B
|(Xk)ϕ|2 ≤ λFλ(Xk) ≤ λMλ. So there

is another subsequence Xk, whose boundary values Xk|∂B converge weakly in
H1

2 (∂B) to X|∂B whence X ∈ H1
2 (B) ∩H1

2 (∂B).

Lemma 6 For 0 < µ0 < µ and a solution X̃ of P(Π, S) let λ ≥ λ0(µ0, X̃).
Consider a minimizing sequence Xk for Pλ, that converges weakly in H1

2 (B) to
a function X ∈ H1

2 (B) ∩H1
2 (∂B). Then X(∂B) ⊂ Tµ0

holds true.

Proof: Assume there was a subsequence Xk with Xk(1, ϕk) /∈ Tµ0
for some

ϕk ∈ [0, 2π]. If ∂Tµ0
2
∩Xk(∂B) = ∅ we obtain

λ

∫
∂B

G(Xk)2

√
|(Xk)ϕ|2 +

1

λ
≥ λ

∫
∂B

G(Xk)2|(Xk)ϕ| ≥ λh
(µ0

2

)
2πµ,

because Xk|∂B lies completely in Tµ\Tµ0
2

(recall, that h is increasing) and,

because of Π∩T2µ = ∅ and L(Xk|∂B ,Π) 6= 0, the boundary curve Xk|∂B has to
wind around a µ-neighbourhood of Π, so the length of Xk|∂B has to be at least
2πµ (see Figure 2).
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S

∂Tµ0

∂Tµ0
2

∂Tµ

µΠ

Figure 2: The case ∂Tµ0
2
∩Xk(∂B) = ∅

If ∂Tµ0
2
∩Xk(∂B) 6= ∅ (see Figure 3) we obtain

λ

∫
∂B

G(Xk)2

√
|(Xk)ϕ|2 +

1

λ
≥ λ

∫
∂B

G(Xk)2|(Xk)ϕ| ≥ λh
(µ0

2

)
2
µ0

2
,

because Xk|∂B takes values in Tµ0
2

as well as in Tµ\Tµ0
and therefore two parts

of Xk|∂B with length µ0

2 have to be contained in Tµ0
\Tµ0

2
.

S

∂Tµ0

∂Tµ0
2

∂Tµ

µ0

2 Π

Figure 3: The case ∂Tµ0
2
∩Xk(∂B) 6= ∅

These two estimates yield

λ

∫
∂B

G(Xk)2

√
|(Xk)ϕ|2 +

1

λ
≥ λµ0h

(µ0

2

)
.
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As already seen, we have X̃ ∈ C. Additionally G(z) = 0 holds for all z ∈ X̃(∂B).

For λ ≥ λ0(µ0, X̃) = max

{
D(X̃)+2

µ0h(µ02 )
,
∫
∂B

(
|X̃ϕ|2 + %|X̃ − P |2

)}
and every k we

get

Fλ(Xk) ≥ λ
∫
∂B

G(Xk)2

√
|(Xk)ϕ|2 +

1

λ
≥ λµ0h

(µ0

2

)
≥ D(X̃) + 2

≥ D(X̃) +
1

λ

∫
∂B

(
|X̃ϕ|2 + %|X̃ − P |2

)
+ 1 = Fλ(X̃) + 1 ≥ eλ + 1.

This is a contradiction as Xk is a minimizing sequence. We conclude, that
our assumption was wrong and therefore Xk(∂B) ⊂ Tµ0 holds true for every
k > k0(λ).
Since Xk converges weakly in H1

2 (B) to X, the boundary values Xk|∂B converge
in L2(∂B) to X|∂B . So there is a subsequence, which converges almost every-
where and we get X|∂B(w) ∈ Tµ0

for almost all w ∈ ∂B. As X|∂B is continuous,
X(∂B) ⊂ Tµ0 holds true. �

The following corollary will be used later.

Corollary 7 Let 0 < µ0 < µ and X̃ be a solution of P(Π, S). Further let
λ ≥ λ0(µ0, X̃) and Xλ be a solution of Pλ. Then Xλ(∂B) ⊂ Tµ0

holds true.

Proof: This is a direct consequence of Lemma 6 applied to the constant sequence
Xk := Xλ for all k. �

By Lemma 6 we now have X(∂B) ⊂ Tµ0
⊂ Tµ, for λ large enough. Hölder’s

inequality yields

|Xk(ϕ2)−Xk(ϕ1)| ≤
∫ ϕ2

ϕ1

|(Xk)ϕ| ≤
√
ϕ2 − ϕ1

√∫ ϕ2

ϕ1

|(Xk)ϕ|2

≤
√
ϕ2 − ϕ1

√
λMλ.

Therefore the Xk|∂B are equicontinuous and because of Xk(∂B) ⊂ Tµ they
are uniformly bounded. Applying the theorem of Arzelà-Ascoli we can extract
another subsequenceXk, which converges uniformly on ∂B. As L(Xk|∂B ,Π) 6= 0
holds for all k, we get L(X|∂B ,Π) 6= 0. We conclude that X ∈ C and therefore

eλ ≤ Fλ(X).

We will now make use of a well known lower semicontinuity result (see for
example Theorem 1.8.2 in [11]):

Lemma 8 Let f(x, z, p) ∈ C0(Rn, U,RnN ), where U ⊂ RN . Let f be convex in
p for all (x, z), f(x, z, p) ≥ 0 for all (x, z, p) and fp ∈ C0(Rn, U,RnN ). Consider
a domain Ω ⊂ Rn with zk(Ω), z(Ω) ⊂ U and zk ⇁ z in H1

1 (Ω). Then we have∫
Ω

f(x, z,∇z)dx ≤ lim inf
k→∞

∫
Ω

f(x, zk,∇zk)dx.
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We apply this lemma with n = 1, N = 3, f(x, z, p) = λG(z)2
√
|p|2 + 1

λ +
1
λ

(
|p|2 + %(x)|z − P |2

)
and U = Tµ. In connection with the lower semicontinu-

ity of the Dirichlet integral we obtain

Fλ(X) ≤ lim inf
k→∞

Fλ(Xk) = eλ

and therefore Fλ(X) = eλ. We conclude that X is a solution of Pλ.

Every solution X of Pλ is a minimizer of the Dirichlet integral among all vari-
ations with compact support in B, because these do not change the boundary
integrals. Therefore X is a weak solution of the Laplace equation and a stan-
dard regularity result (see for example [7], Corollary 8.11.) yields that X is a
classical solution and hence harmonic.

4 Convergence for λ→∞
In this section we investigate the connection between solutions of Pλ and those
of P(Π, S). Invoking Corollary 7 the following convergence result follows from
the classical theory.

Theorem 9 Consider a solution X̃ of the free boundary problem P(Π, S) and
solutions Xλn of the problems Pλn , where λn →∞ as n→∞. Then

lim
n→∞

D(Xλn) = lim
n→∞

Fλn(Xλn) = D(X̃)

holds true and there is a subsequence of Xλn , which converges in H1
2 (B) and

uniformly on every subset Ω ⊂⊂ B to a solution of P(Π, S).

Proof: By Theorem 3 we obtain X̃ ∈ C and thus

lim sup
n→∞

D(Xλn) ≤ lim sup
n→∞

Fλn(Xλn) ≤ lim sup
n→∞

Fλn(X̃)

= lim sup
n→∞

(
D(X̃) +

1

λn

∫
∂B

(
|X̃ϕ|2 + %|X̃ − P |2

))
= D(X̃). (4)

For all n ≥ N0 we have λn > max
{
D(X̃)+2

µh(µ2 )
,
∫
∂B

(
|X̃ϕ|2 +%|X̃−P |2

)}
. From the

properties of the function h it follows that the function f(τ) := D(X̃)+2

τh( τ2 )
is contin-

uous and strictly decreasing on (0, µ]. Furthermore we have limτ→0 f(τ) =∞, so
for every n ≥ N0 there exists exactly one µ0 = µ0(n) < µ with λn = f(µ0(n))

and we obtain λn = max
{
D(X̃)+2

µ0h(µ02 )
,
∫
∂B

(
|X̃ϕ|2 + %|X̃ − P |2

)}
. By applying

Corollary 7 we get Xλn(∂B) ⊂ Tµ0(n) and thus Xλn ∈ C(Π, Tµ0(n)) for all
n ≥ N0.

Using the notation introduced in Theorem 1, we infer from limn→∞ µ0(n) = 0
the relation limn→∞ g(Tµ0(n), S) = 0. Whence Xλn is a “generalized admissible
sequence” for P(Π, S) and

D(X̃) = e = e∗ ≤ lim inf
n→∞

D(Xλn) ≤ lim inf
n→∞

Fλn(Xλn). (5)
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The estimates (4) und (5) prove the first assertion.

Since limn→∞D(Xλn) = D(X̃) = e holds true, the harmonic functions Xλn

form a “generalized minimizing sequence”. Therefore by Lemma 2, there is a
subsequence of Xλn , which converges weakly in H1

2 (B) and uniformly on every
subset Ω ⊂⊂ B to a solution P(Π, S). From weak convergence in H1

2 (B) we
get strong convergence in L2(B) by Rellich’s theorem. Since also the Dirichlet
integrals converge, we obtain strong convergence in H1

2 (B). �

Theorem 10 Let G be the signed distance function of S, X̃ a solution of

P(Π, S), λ > max
{

4
µ3 (D(X̃) + 2),

∫
∂B

(
|X̃ϕ|2 + %|X̃ − P |2

)}
and Xλ a solu-

tion of Pλ. Then there is a constant C that does not depend on λ such that

|D(X̃)−D(Xλ)| ≤ C
3
√
λ
, |D(X̃)− Fλ(Xλ)| ≤ C

3
√
λ
.

Remark In order to simplify the notation in the proof, we have assumed that G
is the signed distance function. With the same arguments it can be shown that,
if G is a function with polynomial growth of order n, the order of convergence
is 1

2n+1 .

Proof: Similary to the proof of the previous theorem we infer

D(Xλ)−D(X̃) ≤ Fλ(Xλ)−D(X̃) ≤ Fλ(X̃)−D(X̃)

=
1

λ

∫
∂B

(
|X̃ϕ|2 + %|X̃ − P |2

)
=
C1

λ
. (6)

Setting µ0 := 3

√
4
λ (D(X̃) + 2), we have µ0 < µ. According to Theorem 1

there is a solution Ỹµ0 of the problem P(Π, Tµ0), because the closed set Tµ0

fulfills Assumption A and we have X̃ ∈ C(Π, Tµ0
). By the definition of µ0 we

have λ ≥ max
{

4
µ3
0
(D(X̃) + 2),

∫
∂B

(
|X̃ϕ|2 + %|X̃ − P |2

)}
. Corollary 7 yields

Xλ(∂B) ⊂ Tµ0
and thus Xλ ∈ C(Π, Tµ0

). It follows that

D(X̃)− Fλ(Xλ) ≤ D(X̃)−D(Xλ) ≤ D(X̃)−D(Ỹµ0
). (7)

As X̃ and Ỹµ0 are minimal surfaces by Theorem 1, we obtain

D(X̃)−D(Ỹµ0
) = A(X̃)−A(Ỹµ0

). (8)

In order to continue estimating this term, we have to show, that Ỹµ0
is also a

solution of the problem P(Π, ∂Tµ0
).

Since the closed set Tµ0 fulfills a chord-arc condition, Ỹµ0 ∈ C0(B) holds (see

ch. 2.5, Theorem 4 in [3]). Assume there was a w ∈ ∂B with Ỹµ0
(w) ∈ Tµ0

.

Then, because Ỹµ0
is continuous, there is an ε > 0 such that Ỹµ0

(B ∩Bε(w)) ∈
Tµ0 . From the linking condition we infer that the minimal surface Ỹµ0 is certainly

not a constant and therefore DB∩Bε(w)(Ỹµ0
) > 0. According to the Riemann

mapping theorem we choose a conformal mapping σ from B to B\Bε(w). Be-
cause of D

B\Bε(w)
(Ỹµ0

) = DB(Ỹµ0
(σ)) we get a function Ỹµ0

(σ) ∈ C(Π, Tµ0
)

with D(Ỹµ0
(σ)) < D(Ỹµ0

), which is not possible. This shows that Ỹµ0
cannot

11



take boundary values in Tµ0
and we obtain Ỹµ0

(∂B) ⊂ ∂Tµ0
.

Again because of continuity, Ỹµ0(∂B) is contained in a connected component of
∂Tµ0

, which we denote by ∂T 1
µ0

. This is a parallel surface of S with distance
µ0 < µ and thus, according to our choice of µ in section 2, a compact subman-
ifold of class C3. In particular, by Theorem 3 we have Ỹµ0

∈ C2(B). Now we
define a mapping Yµ0

by

Yµ0
=

{
Ỹµ0

(2r, ϕ) in B 1
2

Ỹµ0(1, ϕ) + µ0(2r − 1)N(Ỹµ0(1, ϕ)) in B\B 1
2

,

where N denotes the inner normal of ∂T 1
µ0

. By construction we have Yµ0
∈

C2(B 1
2
) ∩ C2(B\B 1

2
) ∩ C0(B) and thus Yµ0

∈ C(Π, S). We obtain

A(X̃)−A(Ỹµ0) = A(X̃)−AB1/2
(Yµ0) = A(X̃)−A(Yµ0) +AB\B1/2

(Yµ0)

≤ AB\B1/2
(Yµ0

), (9)

because X̃ also minimizes the area functional according to Theorem 1. We
denote the principal curvatures of S by κi, i = 1, 2. By our choice of µ their
absolute values are bounded by 1

2µ . For the principal curvatures κ̃i of the parallel

surfaces with distance µ0 ∈ [0, µ]

κ̃i =
κi

1± κiµ0

holds, depending on the choice of orientation (see ch. 14.6. in [7]). We obtain

|κ̃i| ≤
|κi|

1− |κiµ0|
≤ 1

2µ
(

1− |µ0|
2µ

) ≤ 1

µ
.

Therefore the absolute values of the principal curvatures of ∂T 1
µ0

are bounded

by 1
µ . Setting γ(ϕ) := Ỹµ0

(1, ϕ) we have for all r ∈ ( 1
2 , 1):

(Yµ0
)r = 2µ0N(γ(ϕ)), (Yµ0

)ϕ = γ′(ϕ) + µ0(2r − 1)〈∇N(γ(ϕ)), γ′(ϕ)〉.

It follows that

AB\B1/2
(Yµ0

) =

∫ 2π

0

∫ 1

1
2

|(Yµ0
)r × (Yµ0

)ϕ|drdϕ

≤
∫ 2π

0

∫ 1

1
2

|(Yµ0
)r||(Yµ0

)ϕ|drdϕ

=

∫ 2π

0

∫ 1

1
2

2µ0|γ′(ϕ) + µ0(2r − 1)〈∇N(γ(ϕ)), γ′(ϕ)〉|drdϕ

=

∫ 2π

0

∫ 1

1
2

2µ0

(
|γ′(ϕ)|2 + 2µ0(2r − 1)〈γ′(ϕ),∇N(γ(ϕ)) · γ′(ϕ)〉

+ µ2
0(2r − 1)2〈∇N(γ(ϕ)), γ′(ϕ)〉2

) 1
2

drdϕ

≤
∫ 2π

0

µ0

(
|γ′(ϕ)|2 + 2µ0|〈γ′(ϕ),∇N(γ(ϕ)) · γ′(ϕ)〉|

12



+ µ2
0〈∇N(γ(ϕ)), γ′(ϕ)〉2

) 1
2

dϕ.

Depending on the choice of orientation, the Weingarten mapping of ∂T 1
µ0

is
±∇N . Note that by a theorem of Hamilton-Cayley we have for the three fun-
damental forms I, II and III the identity KI − 2HII + III = 0 (see ch. 1.2,
equation (28) in [1]) and therefore III ≤ |K|I + 2|H||II|. We obtain

〈∇N(γ(ϕ)), γ′(ϕ)〉2 ≤ |κ̃1κ̃2||γ′(ϕ)|2 + |κ̃1 + κ̃2||〈γ′(ϕ),∇N(γ(ϕ)) · γ′(ϕ)〉|,

and thus with |κ̃1|, |κ̃2| ≤ 1
µ and µ0 < µ:

AB\B1/2
(Yµ0) ≤

∫ 2π

0

µ0

(
(1 + µ2

0|κ̃1κ̃2|)|γ′(ϕ)|2

+ (2µ0 + µ2
0|κ̃1 + κ̃2|)|〈γ′(ϕ),∇N(γ(ϕ)) · γ′(ϕ)〉|

) 1
2

dϕ

≤
∫ 2π

0

µ0

(
2|γ′(ϕ)|2 + 4µ0|〈γ′(ϕ),∇N(γ(ϕ)) · γ′(ϕ)〉|

) 1
2

dϕ.

For γ′(ϕ) 6= 0 we have

|〈γ′(ϕ),∇N(γ(ϕ)) · γ′(ϕ)〉| = |〈γ
′(ϕ),∇N(γ(ϕ)) · γ′(ϕ)〉|

|γ′(ϕ)|2
|γ′(ϕ)|2 ≤ 1

µ
|γ′(ϕ)|2,

since the normal curvature is bounded by the principal curvatures (see ch. 1.2,
definitions (20) and (21) in [1]). For γ′(ϕ) = 0 this inequality is trivial and it
follows that

AB\B1/2
(Yµ0

) ≤
∫ 2π

0

µ0

(
6|γ′(ϕ)|2

) 1
2 dϕ =

√
6µ0

∫ 2π

0

|γ′(ϕ)|dϕ

=
√

6µ0l(γ) =
√

6µ0l(Ỹµ0
|∂B). (10)

According to ch. 4.6, Remark 10 in [3] the inequality

l(Ỹµ0 |∂B) ≤ 2

µ
D(Ỹµ0) (11)

holds, as ∂T 1
µ0

fulfills a ‘µ-sphere condition’. Collecting (7), (8), (9), (10) and
(11) we infer

D(X̃)− Fλ(Xλ) ≤ D(X̃)−D(Xλ) ≤ 2
√

6
µ0

µ
D(Ỹµ0

)

≤ 2
√

6
µ0

µ
D(Xλ) ≤ 2

√
6
µ0

µ
Fλ(Xλ) ≤ 2

√
6
µ0

µ
Fλ(X̃)

= 2
√

6
µ0

µ

(
D(X̃) +

1

λ

∫
∂B

(
|X̃ϕ|2 + %|X̃ − P |2

))
≤ 2
√

6
µ0

µ

(
D(X̃) + 1

)
=

2
√

6

µ
3

√
4

λ
(D(X̃) + 2)

(
D(X̃) + 1

)
=

C2
3
√
λ
. (12)

Because λ is bounded from below, the assertion follows from (6) and (12). �
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5 Regularity

In this section we show that the boundary values Xλ|∂B of a solution Xλ of
Pλ are of class C2: this will be important later for the numerical analysis (see
Jenschke [9]).

We recall some basic results about fractional order Sobolev spaces (see [5, § 3]).
The spaces Hs

2(∂B) and Hs
2(B) can be defined for all real s, but apart from the

classical cases s ∈ N (and H0
2 := L2) we will only need the following cases.

For f : ∂B 7→ R the H
1/2
2 (∂B)-seminorm is defined by

|f |2
H

1/2
2 (∂B)

=

∫
∂B

∫
∂B

|f(ϕ)− f(ϕ̃)|2

|ϕ− ϕ̃|2
dϕdϕ̃

and for u : B 7→ R the H
1/2
2 (B)-seminorm is defined by

|u|2
H

1/2
2 (B)

=

∫
B

∫
B

|u(x)− u(x̃)|2

|x− x̃|3
dxdx̃.

In both cases the corresponding norm is given by

‖ · ‖2
H

1/2
2

= ‖ · ‖2L2
+ | · |2

H
1/2
2

.

Furthermore we have

|f |
H

3/2
2 (∂B)

= |fϕ|H1/2
2 (∂B)

, |u|
H

3/2
2 (B)

= |∇u|
H

1/2
2 (B)

and
‖ · ‖2

H
3/2
2

= ‖ · ‖2H1
2

+ | · |2
H

3/2
2

.

If u ∈ Hs+1/2
2 (B) for s ∈ { 1

2 , 1,
3
2}, then u has a well defined trace f on ∂B and

‖f‖Hs2 (∂B) ≤ c‖u‖Hs+1/2
2 (B)

.

(See Chapter 1, Section 9.2 in [10].) Such an estimate is in general not true for

s = 0, but if a function u ∈ H1/2
2 (B) fulfills ∆u ∈ L2(B), then u again has a

trace f and

‖f‖L2(∂B) ≤ c
(
‖u‖

H
1/2
2 (B)

+ ‖∆u‖L2(B)

)
. (13)

(See Chapter 2, Section 7.3, Theorem 7.3 in [10].) Conversely, if f ∈ Hs
2(∂B)

for s ∈ {0, 1
2 , 1,

3
2}, then there is a unique harmonic function Φ(f) defined on B

with trace f as before, and in particular

‖Φ(f)‖
H
s+1/2
2 (B)

≤ c‖f‖Hs2 (∂B). (14)

(See Chapter 2, Section 7.3, Theorem 7.4 in [10].)

Collecting the above results we are able to prove the following lemma:

Lemma 11 Let u ∈ H1
2 (B)∩H1

2 (∂B) be a harmonic function. Then the deriva-
tives ∂u

∂x and ∂u
∂y have L2-traces on ∂B and∫

B

∇u · ∇Ψ =

∫
∂B

∇u · νΨ

holds true for all Ψ ∈ C∞(B), where ν denotes the outer normal of ∂B.
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Proof: As u|∂B ∈ H1
2 , it follows from (14) and the uniqueness of the har-

monic extension that u ∈ H
3/2
2 (B). Evidently we have ∂u

∂x ∈ H
1/2
2 (B) and

∂u
∂y ∈ H

1/2
2 (B). Furthermore these derivatives are again harmonic functions, so

according to (13) ∂u
∂x and ∂u

∂y have L2-traces on ∂B. Choosing a sequence of

functions gk ∈ C∞(∂B) with limk→∞ ‖u − gk‖H1
2 (∂B) = 0, we obtain from the

linearity of Φ and (14)

‖∇u−∇Φ(gk)‖
H

1/2
2 (B)

≤ ‖u− Φ(gk)‖
H

3/2
2 (B)

≤ c‖u− gk‖H1
2 (∂B).

Thus limk→∞ ‖∇u−∇Φ(gk)‖L2(B) ≤ limk→∞ ‖∇u−∇Φ(gk)‖
H

1/2
2 (B)

= 0. Fur-

thermore from the linearity of the trace operator and (13) we infer

‖∇u · ν −∇Φ(gk) · ν‖L2(∂B) ≤ ‖∇u−∇Φ(gk)‖L2(∂B) ≤ c‖∇u−∇Φ(gk)‖
H

1/2
2 (B)

and therefore limk→∞ ‖∇u · ν −∇Φ(gk) · ν‖L2(∂B) = 0. Clearly∫
B

∇Φ(gk) · ∇Ψ =

∫
∂B

∇Φ(gk) · νΨ

is fulfilled for all Ψ ∈ C∞(B), so the assertion follows by approximation. �

Using the result above, we can derive a natural boundary condition for solutions
of Pλ.

Lemma 12 Let Xλ be a solution of Pλ, then there is a function f ∈ H1
2 (∂B,R3),

such that
λG(Xλ)2(Xλ)ϕ√
|(Xλ)ϕ|2 + 1

λ

+
2

λ
(Xλ)ϕ = f (15)

almost everywhere on ∂B. If additionally (Xλ)ϕ ∈ C0, 12 (∂B) holds, we even

have f ∈ C1, 12 (∂B,R3).

Proof: Consider Ψ ∈ C∞(B,R3), then

0 =
∂

∂t
Fλ(Xλ + tΨ)

∣∣∣∣
t=0

=

∫
B

〈∇Xλ,∇Ψ〉

+ λ

∫
∂B

G(Xλ)2 〈(Xλ)ϕ,Ψϕ〉√
|(Xλ)ϕ|2 + 1

λ

+ 2G(Xλ)〈∇G(Xλ),Ψ〉
√
|(Xλ)ϕ|2 +

1

λ


+

2

λ

∫
∂B

(〈(Xλ)ϕ,Ψϕ〉+ 〈%(Xλ − P ),Ψ〉).

According to Theorem 5 the map Xλ ∈ H1
2 (B,R3) ∩H1

2 (∂B,R3) is a harmonic
function and thus Lemma 11 yields∫

B

〈∇Xλ,∇Ψ〉 =

∫
∂B

〈∇Xλ · ν,Ψ〉 =:

∫
∂B

〈(Xλ)r,Ψ〉.

Therefore we have∫
∂B

(
〈(Xλ)r,Ψ〉+ 2λG(Xλ)

√
|(Xλ)ϕ|2 +

1

λ
〈∇G(Xλ),Ψ〉+

2

λ
〈%(Xλ − P ),Ψ〉

)
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+ λ

∫
∂B

G(Xλ)2 〈(Xλ)ϕ,Ψϕ〉√
|(Xλ)ϕ|2 + 1

λ

+
2

λ

∫
∂B

〈(Xλ)ϕ,Ψϕ〉 = 0.

Integration by parts over the interval [ϕ0, ϕ0 + 2π] yields for all Ψ with Ψ|∂B ∈
C∞c (∂B\{ϕ0},R3)

−
∫
∂B

〈∫ ϕ

ϕ0

(Xλ)r + 2λG(Xλ)

√
|(Xλ)ϕ|2 +

1

λ
∇G(Xλ) +

2

λ
%(Xλ − P )dϕ̃,Ψϕ

〉

+ λ

∫
∂B

G(Xλ)2 〈(Xλ)ϕ,Ψϕ〉√
|(Xλ)ϕ|2 + 1

λ

+
2

λ

∫
∂B

〈(Xλ)ϕ,Ψϕ〉 = 0.

(Here we have to keep in mind that the indefinite integral of a periodic function
need not be periodic as well.) By Du Bois-Reymond’s Lemma there is a constant
C(ϕ0) ∈ R3, such that

−
∫ ϕ

ϕ0

(Xλ)r + 2λG(Xλ)

√
|(Xλ)ϕ|2 +

1

λ
∇G(Xλ) +

2

λ
%(Xλ − P )dϕ̃

+ λG(Xλ)2 (Xλ)ϕ√
|(Xλ)ϕ|2 + 1

λ

+
2

λ
(Xλ)ϕ = C(ϕ0)

almost everywhere on [ϕ0, ϕ0 + 2π]. Therefore we set

fϕ0 = C(ϕ0) +

∫ ϕ

ϕ0

(Xλ)r + 2λG(Xλ)

√
|(Xλ)ϕ|2 +

1

λ
∇G(Xλ) +

2

λ
%(Xλ − P )dϕ̃.

Then fϕ0
∈ H1

2 (∂B\{ϕ0},R3) holds, because the integrand is of class L2(∂B).
Moreover fϕ0 satisfies equation (15) almost everywhere on ∂B. As ϕ0 was ar-
bitrary, we can consider the functions f0 and fπ. They coincide almost ev-
erywhere on ∂B, because both satisfy equation (15) and therefore we have
f0 = fπ =: f ∈ H1

2 (∂B,R3).

If additionally (Xλ)ϕ ∈ C0, 12 (∂B) holds, the harmonic function Xλ has bound-

ary values of class C1, 12 . Therefore we have Xλ ∈ C1, 12 (B). (See Theo-

rem 8.34. and Lemma 6.38. in [7].) It follows that (Xλ)r ∈ C0, 12 (∂B) and

thus fϕ0
∈ C1, 12 (∂B\{ϕ0},R3). With the same argument as above we conclude

fϕ0 := f ∈ C1, 12 (∂B,R3). �

In order to prove regularity of Xλ, we have to solve the equation for (Xλ)ϕ.
For that we will use a very specific version of the Implicit Function Theorem.
(In the following the norm of a matrix always denotes the operator norm.)

Theorem 13 Let F (x, y) : R× Rm → Rm be continuous and continuously dif-
ferentiable with respect to y. Assume that |F |C0,α(R×Rm) < ∞ holds. Let

(a, b) ∈ R×Rm be a point with det ∂F∂y (a, b) 6= 0 and F (a, b) = 0. Then there is
an open neighbourhood V1 ⊂ R of a, a neighbourhood V2 ⊂ Rm of b as well as a
uniquely determined mapping g ∈ C0(V1, V2) with |g|C0,α(V1) <∞ and g(a) = b
such that F (x, g(x)) = 0 for all x ∈ V1.
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If additionally ∂F
∂y is uniformly continuous on R×Rm and

∥∥∥∥(∂F∂y (a, b)
)−1

∥∥∥∥ ≤ C
for all (a, b) ∈ Ω, where Ω ⊂ {(x, y) ∈ R×Rm | F (x, y) = 0, det ∂F∂y (x, y) 6= 0},
we can choose V1 = Bε(a), where ε is independent of (a, b) ∈ Ω.

Remark 1 In contrast to the main assertion it is of course crucial for the
additional assertion to hold that F is defined on the whole space R × Rm and
has a global Hölder constant. Notice that we do not need boundedness of F .

Remark 2 We only need and prove the version of the theorem containing the
additional assertion. It is quite obvious from the proof that the main assertion
holds as well.

Proof: We follow the reasoning in [6], only adding and changing arguments
where it is necessary.
We set B := ∂F

∂y (a, b) ∈ GL(m,R) and define the mapping G : R × Rm → Rm

by G(x, y) := y −B−1F (x, y). Then since F (x, y) = 0⇐⇒ y = G(x, y), we will
therefore consider a fixed-point problem.

Set K := |F |C0,α(R×Rm). Because ∂G
∂y (x, y) = I − B−1 ∂F

∂y (x, y), where I de-

notes the m×m unit matrix, we obtain ∂G
∂y (a, b) = 0. It follows that∥∥∥∥∂G∂y (x, y)

∥∥∥∥ =

∥∥∥∥∂G∂y (x, y)− ∂G

∂y
(a, b)

∥∥∥∥ =

∥∥∥∥B−1

(
∂F

∂y
(x, y)− ∂F

∂y
(a, b)

)∥∥∥∥
≤ ‖B−1‖

∥∥∥∥∂F∂y (x, y)− ∂F

∂y
(a, b)

∥∥∥∥ ≤ C ∥∥∥∥∂F∂y (x, y)− ∂F

∂y
(a, b)

∥∥∥∥ .
Since all components of the matrix ∂F

∂y are uniformly continuous, there exist ε̃ >

0 and r̃ > 0 which are independent of (a, b) ∈ Ω, such that
∥∥∥∂G∂y (x, y)

∥∥∥ ≤ 1
2+KC

for all (x, y) ∈ Bε̃(a)×Br̃(b) ⊂ R× Rm.
We choose r > 0 with r < r̃. As G(a, b) = b and F is uniformly continuous,
there is an ε > 0 which is independent of (a, b) with ε ≤ ε̃ such that

|G(x, b)− b| = |B−1(F (x, b)− F (a, b))| ≤ C|F (x, b)− F (a, b)| ≤ r

2

for all x ∈ Bε(a). We set V1 = Bε(a) and V2 = Br(b), then according to the
mean value theorem it follows for all x ∈ V1 and y, ỹ ∈ V2 that

|G(x, y)−G(x, ỹ)| ≤ 1

2 +KC
|y − ỹ| ≤ 1

2
|y − ỹ|. (16)

Setting ỹ = b we have for all x ∈ V1

|y − b| ≤ r =⇒ |G(x, y)− b| ≤ r. (17)

For every fixed x ∈ V1 the mapping y 7→ G(x, y) is therefore a mapping from the
closed ball V2 to itself, which by (16) is also a contraction. The Banach Fixed-
Point Theorem yields for all x ∈ V1 the existence of exactly one y =: g(x) ∈ V2,
such that G(x, y) = y or F (x, y) = 0 respectively.
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Consider a function ϕ(x) ∈ C0(V1,Rm) with ‖ϕ−b‖C0(V1) ≤ r and |ϕ|C0,α(V1) ≤
1 + KC, then for the mapping defined by ψ(x) := G(x, ϕ(x)) we again obtain
ψ(x) ∈ C0(V1,Rm) with ‖ψ − b‖C0(V1) ≤ r because of (17). Furthermore ac-
cording to (16) we have

|ψ(x)− ψ(x̃)|
|x− x̃|α

=
|G(x, ϕ(x))−G(x̃, ϕ(x̃))|

|x− x̃|α

≤ |G(x, ϕ(x))−G(x, ϕ(x̃))|
|x− x̃|α

+
|G(x, ϕ(x̃))−G(x̃, ϕ(x̃))|

|x− x̃|α

≤ 1

2 +KC

|ϕ(x)− ϕ(x̃)|
|x− x̃|α

+ ‖B−1‖ |F (x, ϕ(x̃))− F (x̃, ϕ(x̃))|
|x− x̃|α

≤ 1

2 +KC
(1 +KC) +KC ≤ 1 +KC,

which shows that |ψ|C0,α(V1) ≤ 1 + KC holds, too. The mapping ϕ 7→ ψ is
therefore a mapping Φ from the closed subset

A := {ϕ ∈ C0(V1,Rm) : ‖ϕ− b‖C0(V1) ≤ r, |ϕ|C0,α(V1) ≤ 1 +KC}

of the Banach space consisting of all bounded functions of class C0(V1,Rm) to
itself. From (16) we infer for ϕ1, ϕ2 ∈ A

‖Φ(ϕ1)− Φ(ϕ2)‖C0(V1) = sup
x∈V1

|G(x, ϕ1(x))−G(x, ϕ2(x))|

≤ 1

2
sup
x∈V1

|ϕ1(x)− ϕ2(x)| = 1

2
‖ϕ1 − ϕ2‖C0(V1).

The mapping Φ: A → A is therefore a contraction and hence has exactly one
fixed point g ∈ A ⊂ C0(V1,Rm). This function g ∈ C0,α(V1, V2) satisfies
G(x, g(x)) = g(x) or F (x, g(x)) = 0 respectively for all x ∈ V1 and coincides
with the mapping obtained above. �

Theorem 14 Let Xλ be a solution of Pλ, then we have Xλ ∈ C2(∂B).

Proof: We define F (ϕ, z) : R× R3 → R3 by

F (ϕ, z) :=
λG(Xλ(1, ϕ))2z√

|z|2 + 1
λ

+
2

λ
z − f(ϕ),

where f is the function from Lemma 12. (We have identified the functions de-
fined on ∂B with 2π-periodic functions on R.) Then for almost all ϕ ∈ R we
obtain F (ϕ, (Xλ)ϕ(1, ϕ)) = 0 .

We have Xλ(1, ϕ) ∈ H1
2 (R) ⊂ C0, 12 (R) and f(ϕ) ∈ H1

2 (R) ⊂ C0, 12 (R). The func-

tion G2 is Lipschitz continuous on Tµ and therefore G(Xλ(1, ϕ))2 ∈ C0, 12 (R).
Since all these functions are periodic, they even have globally finite Hölder con-
stants. The functions λz√

|z|2+ 1
λ

and 2
λz are globally Lipschitz continuous. As

λz√
|z|2+ 1

λ

is also bounded, F (ϕ, z) is globally 1
2 -Hölder continuous. Furthermore

F (ϕ, z) is continuously differentiable with respect to z and we derive

∂Fi
∂zi

=
2

λ
− λG(Xλ)2z2

i(
|z|2 + 1

λ

) 3
2

+
λG(Xλ)2√
|z|2 + 1

λ

,
∂Fi
∂zj

= −λG(Xλ)2zizj(
|z|2 + 1

λ

) 3
2

, i 6= j.
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As above it can be shown that the derivatives are globally 1
2 -Hölder continuous

and therefore uniformly continuous. A straightforward calculation shows

det
∂F

∂z
=

 2

λ
+

λG(Xλ)2√
|z|2 + 1

λ

2 2

λ
+

G(Xλ)2(
|z|2 + 1

λ

) 3
2

 ≥ ( 2

λ

)3

.

Therefore ∂F
∂z is invertible. Because of

∣∣∣∂Fi∂zj

∣∣∣ ≤ 2
λ + λ

3
2G(Xλ)2 for all i, j ∈

{1, 2, 3} and Xλ(∂B) ⊂ Tµ we have∣∣∣∣∣
(
∂F

∂z

)−1

ij

∣∣∣∣∣ =
1

det ∂F∂z

∣∣∣∣∣
(

Adj
∂F

∂z

)
ij

∣∣∣∣∣ ≤
(

2

λ

)−3

2

(
2

λ
+ λ

3
2G(Xλ)2

)2

≤ C.

Now all conditions of Theorem 13 are fulfilled and we infer that for almost all
a ∈ R there is a neighbourhood Bε(a) and a mapping ga ∈ C0(Bε(a)) with
|g|C0,α(Bε(a)) < ∞ and ga(a) = (Xλ)ϕ(1, a) such that F (ϕ, ga(ϕ)) = 0. These
local solutions are unique only in a small neighbourhood of (Xλ)ϕ(a), so it re-
mains to show that they coincide with (Xλ)ϕ.

Assume that F (ϕ, z) = 0 and F (ϕ, z̃) = 0, then we get

f(ϕ) =
2

λ
z +

λG(Xλ(ϕ))2z√
|z|2 + 1

λ

and f(ϕ) =
2

λ
z̃ +

λG(Xλ(ϕ))2z̃√
|z̃|2 + 1

λ

,

which yields  2

λ
+
λG(Xλ(ϕ))2√
|z|2 + 1

λ

 z =

 2

λ
+
λG(Xλ(ϕ))2√
|z̃|2 + 1

λ

 z̃.

As the terms in brackets are positiv, we have z̃ = tz with t > 0. If z = 0, it
follows that z̃ = 0. If z 6= 0, we consider the function

h(s) :=

 2

λ
+
λG(Xλ(ϕ))2√
s2|z|2 + 1

λ

 s.

Its derivative fulfills

h′(s) =
G(Xλ(ϕ))2√
s2|z|2 + 1

λ

3 +
2

λ
> 0

and therefore h(s) is injective. From 2

λ
+
λG(Xλ(ϕ))2√
|z|2 + 1

λ

 z =

 2

λ
+
λG(Xλ(ϕ))2√
|tz|2 + 1

λ

 tz

and z 6= 0 we infer h(1) = h(t). We obtain t = 1 and therefore z = tz = z̃.
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That is, for every ϕ ∈ R there is at most one solution z of the equation
F (ϕ, z) = 0. Therefore the functions ga ∈ C0, 12 (Bε(a)) have to coincide with
(Xλ)ϕ almost everywhere. As ε can be chosen independently of a, the open
sets Bε(a) cover the interval [0, 2π], and since [0, 2π] is compact, only a finite

number of the Bε(a) are needed. We infer that (Xλ)ϕ ∈ C0, 12 (∂B,R3).

Lemma 12 even yields f(ϕ) ∈ C1, 12 (∂B) and therefore F (ϕ, z) is continuously
differentiable. We can now apply the standard version of the Implicit Function
Theorem and obtain (Xλ)ϕ ∈ C1(∂B) or Xλ ∈ C2(∂B) respectively. �

6 The One-Dimensional Functional

We now reformulate the variational problem (3) into a one-dimensional problem.

Theorem 15 We define the class of functions

C∗ :=
{
γ ∈ H1

2 (∂B,R3)
∣∣ γ(∂B) ⊂ Tµ, L(γ,Π) 6= 0

}
(18)

and for γ ∈ C∗ we define the functional

Eλ(γ) := D(Φ(γ)) + λ

∫
∂B

G(γ)2

√
|γ′|2 +

1

λ
+

1

λ

∫
∂B

(
|γ′|2 + %|γ − P |2

)
, (19)

where Φ(γ) is the harmonic extension of γ. Then Pλ is equivalent to the varia-
tional problem

P∗λ : Eλ(γ)→ min in C∗. (20)

Proof: As solutions of Pλ are harmonic due to Theorem 5, they are exactly
the minimizers of Fλ in the class {X ∈ C | ∆X = 0}. Because of uniqueness,
the boundary values of these solutions are exactly the minimizers of Eλ in the
class {γ ∈ C∗| Φ(γ) ∈ H1

2 (B,R3)}. But by (14) Φ(γ) ∈ H1
2 (B,R3) holds for all

γ ∈ C∗, which yields the assertion. �

Notice, that solutions of P∗λ are of class C2 by Theorem 14. One can show
Eλ(γ) ∈ C1(C∗,R), but it is not true that Eλ(γ) ∈ C2(C∗,R). However, the
second variation exists for all γ ∈ C∗. Fixing γ ∈ C∗ and ξ, η ∈ H1

2 (∂B,R3),
and using the linearity of Φ, we derive:

δEλ(γ)(ξ) =
d

dε
Eλ(γ + εξ)

∣∣∣∣
ε=0

=

∫
B

〈∇Φ(γ),∇Φ(ξ)〉

+ λ

∫
∂B

2G(γ)〈∇G(γ), ξ〉
√
|γ′|2 +

1

λ
+G(γ)2 〈γ′, ξ′〉√

|γ′|2 + 1
λ


+

2

λ

∫
∂B

(
〈γ′, ξ′〉+ 〈%(γ − P ), ξ〉

)
(21)

and

δ2Eλ(γ)(ξ, η) =
d

dε

d

dτ
Eλ(γ + εξ + τη)

∣∣∣∣
ε=0

∣∣∣∣
τ=0

=

∫
B

〈∇Φ(ξ),∇Φ(η)〉

+ λ

∫
∂B

(
2〈∇G(γ), ξ〉〈∇G(γ), η〉

√
|γ′|2 +

1

λ
+ 2G(γ)〈ξ,∇2G(γ)η〉

√
|γ′|2 +

1

λ
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+ 2G(γ)〈∇G(γ), ξ〉 〈γ
′, η′〉√
|γ′|2 + 1

λ

+ 2G(γ)〈∇G(γ), η〉 〈γ
′, ξ′〉√
|γ′|2 + 1

λ

+G(γ)2 〈ξ
′, η′〉

(
|γ′|2 + 1

λ

)
− 〈γ′, ξ′〉〈γ′, η′〉(

|γ′|2 + 1
λ

) 3
2

)
+

2

λ

∫
∂B

(
〈ξ′, η′〉+ %〈ξ, η〉

)
. (22)

7 Implementation and Numerical Results

It is beyond the scope of this article to show in detail how the one-dimensional
version (20) of the penalty functional can be treated numerically and we refer
the reader to the subsequent paper (see [9]) for a comprehensive presentation.
There we will show how the algorithm given in this section can be transformed
to matrix vector form, prove an error estimate for solutions of the discrete prob-
lem and discuss various aspects of the numerical results in some detail. Here
we only sketch the approach.

The main ideas of the discretization are taken from the papers of Dziuk and
Hutchinson ([4] and [5]), and we use their notation as far as possible. Let Gh be
a triangulation of B with the following properties: Every triangle G ∈ Gh has
diameter at most h and at least σh for some σ > 0 independent of h and has
angles bounded away from zero independently of h.

We define

Bh =
⋃
{G | G ∈ Gh}, ∂Bh =

⋃
{Ej | 1 ≤ j ≤M},

where the Ej are the boundary edges. We denote the boundary nodes by eiϕj ,
1 ≤ j ≤ M or just ϕj if convenient. Furthermore we define the projection
π : ∂B → ∂Bh by

π
(
ei((1−t)ϕj−1+tϕj)

)
= (1− t)eiϕj−1 + teiϕj

for all 0 ≤ t ≤ 1 and all j ∈ {1, . . . ,M}. (Of course we will always identify ϕ0

with ϕM .) We work in the following discrete function space:

Ch =
{
γh ∈ C0(∂B,R3)

∣∣ γh ∈ P1(π−1[Ej ]) ∀j, γh(∂B) ⊂ Tµ, L(γh,Π) 6= 0
}
,

(23)
where P1(π−1[Ej ]) is the set of polynomials of degree one over the arc π−1[Ej ].
Thus we have Ch ⊂ C∗. The space of discrete variations is defined by

Hh =
{
ξh ∈ C0(∂B,R3)

∣∣ ξh ∈ P1(π−1[Ej ]) ∀j
}

(24)

and
Hh =

{
ξh ∈ C0(∂B,R)

∣∣ ξh ∈ P1(π−1[Ej ]) ∀j
}
.

Then Hh is an M -dimensional vector space and Ch is an open subset of the
3M -dimensional vector space Hh. Consider f ∈ C0(∂B,Rn), n ∈ {1, 3}. Then
we define the piecewise linear interpolant Ihf ∈ Hh or Ihf ∈ Hh respectively
by

Ihf ((1− t)ϕj−1 + tϕj) = (1− t)f(ϕj−1) + tf(ϕj)
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for all 0 ≤ t ≤ 1 and all j, where we identified the function f defined on ∂B
with a 2π-periodic function defined on R. (Notice, that this differs from the
definition in [4] and [5], where this operator is defined on ∂Bh rather than on
∂B.)

Clearly the class Ch is not empty, if h is small enough and C∗ is not empty.
Note that Theorem 5 yields the existence of a solution γλ of P∗λ, which belongs
to Tµ0

by Corollary 7. Thus for h small enough we have Ihγλ ∈ Ch.

Definition 16 For γh ∈ Ch the discrete functional is defined by

Eλh(γh) := Dh

(
Φh(γh(π−1))

)
+ λ

∫
∂B

Ih
2

(
G(γh)2

)√
|γ′h|2 +

1

λ

+
1

λ

∫
∂B

(
|γ′h|2 + (Ih%)|γh − P |2

)
. (25)

Here Dh(Φh(fh)) = 1
2

∫
Bh
|∇Φh(fh)|2 is the Dirichlet integral of the discrete

harmonic extension Φh of a suitable discrete function fh.

Remark The discrete harmonic extension is defined in the usual way (see for
instance [4, § 4.1]). In order to obtain a more stable algorithm, we have chosen
a more refined interpolation Ih

2
instead of Ih for the function G2 (see [8] or [9]

for details). For numerical analysis this does not make any difference.

Notice that Eλh is not the restriction of Eλ to Ch. In contrast to the functional
(19) we have Eλh(γh) ∈ C2(Ch,R). For γh ∈ Ch, ξh, ηh ∈ Hh we derive the first
and second variation:

δEλh(γh)(ξh) =

∫
Bh

〈
∇Φh(γh(π−1)),∇Φh(ξh(π−1))

〉
+ λ

∫
∂B

2Ih
2

(
G(γh)〈∇G(γh), ξh〉

)√
|γ′h|2 +

1

λ
+ Ih

2

(
G(γh)2

) 〈γ′h, ξ′h〉√
|γ′h|2 + 1

λ


+

2

λ

∫
∂B

(
〈γ′h, ξ′h〉+ (Ih%)〈γh − P, ξh〉

)
, (26)

δ2Eλh(γh)(ξh, ηh) =

∫
Bh

〈
∇Φh(ξh(π−1)),∇Φh(ηh(π−1))

〉
+ λ

∫
∂B

(
2Ih

2

(
〈∇G(γh), ξh〉〈∇G(γh), ηh〉

)√
|γ′h|2 +

1

λ

+ 2Ih
2

(
G(γh)〈ξh,∇2G(γh)ηh〉

)√
|γ′h|2 +

1

λ

+ 2Ih
2

(
G(γh)〈∇G(γh), ξh〉

) 〈γ′h, η′h〉√
|γ′h|2 + 1

λ

+ 2Ih
2

(
G(γh)〈∇G(γh), ηh〉

) 〈γ′h, ξ′h〉√
|γ′h|2 + 1

λ

+ Ih
2

(
G(γh)2

) 〈ξ′h, η′h〉 (|γ′h|2 + 1
λ

)
− 〈γ′h, ξ′h〉〈γ′h, η′h〉(

|γ′h|2 + 1
λ

) 3
2

)

+
2

λ

∫
∂B

(
〈ξ′h, η′h〉+ (Ih%)〈ξh, ηh〉

)
. (27)
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Definition 17 A function γh ∈ Ch is called a “Solution of the Discrete Prob-
lem”, if δEλh(γh)(ξh) = 0 for all ξh ∈ Hh.

To compute solutions of the discrete problem we use a damped Newton Algo-
rithm:

Algorithm
0. Choose an initial parametrization γh and a tolerance ε.
1. Compute δEλh(γh).
2. If ‖δEλh(γh)‖H′h ≤ ε, then go to step 7.

3. Compute δ2Eλh(γh).
4. Solve the linear problem δ2Eλh(γh)(ηh, ξh)=-δEλh(γh)(ξh) ∀ξh ∈ Hh.
5. If ‖δEλh(γh)‖H′h ≤ ‖δE

λ
h(γh + ηh)‖H′h , set ηh := ηh

2 and do step 5 again.
6. Update the solution: γh := γh + ηh and go to step 1.
7. Compute the discrete surface Φh(γh(π−1)) and the value Eλh(γh) and stop.

For the implementation we have used Mathematica (Version 10.2). In particular
the meshes were produced with the Mathematica function “DiscretizeRegion”.
It is convenient to use the functional

Fλ,η(X) = D(X) + λ

∫
∂B

G(X)2

√
|Xϕ|2 +

1

η
+

1

η

∫
∂B

(
|Xϕ|2 + %|X − P |2

)
instead of (1) as well as a discrete version Eλ,ηh instead of (25). By setting
η = Cλ with a fixed constant C > 0, η directly depends on λ. As before we
again write Fλ, Xλ etc. In the following examples we have set P = (1, 0, 0) and

%(ϕ) =

{
1− ϕ

π in [0, π]
ϕ
π − 1 in [π, 2π]

.

Example 1: We consider the function

G(x, y, z) =
(
x2 + y2 + z2 + 2

)2 − 9
(
x2 + y2

)
whose zero level set defines a torus in R3, and are interested in the order of
convergence which can be observed numerically (see Theorem 10). The solution
of the free boundary problem (see Theorem 1) is X̃(x, y, z) = (x, y, 0) and
therefore D(X̃) = π. For λ1, λ2 and discrete solutions γλ1

h of Eλ1

h and γλ2

h of

Eλ2

h respectively we define the experimental order of convergence eoc by

eoc(Eλh) = ln

(∣∣Eλ1

h

(
γλ1

h

)
−D(X̃)

∣∣∣∣Eλ2

h

(
γλ2

h

)
−D(X̃)

∣∣
)/

ln

(
λ2

λ1

)
and

eoc(Dh) = ln


∣∣∣Dh

(
Φh
(
γλ1

h (π−1)
))
−D(X̃)

∣∣∣∣∣∣Dh

(
Φh
(
γλ2

h (π−1)
))
−D(X̃)

∣∣∣
/ ln

(
λ2

λ1

)
.

Note that since we deal here with the discrete functionals Dh and Eλh we cannot
expect convergence for fixed h as λ → ∞. We take a fine grid (h = 0.07), the
tolerance ε = 0.001 and C = 100 (i.e. η = 100λ).
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λ Eλh(γh) eoc(Eλh) Dh(γh) eoc(Dh)
1 3.18966 - 3.05301 -
2 3.16601 0.97715 3.09751 1.00681
4 3.15383 0.99662 3.11951 0.99730
8 3.14768 1.00741 3.13045 0.98682
16 3.14464 0.99826 3.13592 0.97400

Table 1: EOCs for the test problem described in Example 1.

The results are shown in Table 1 and one can observe that the experimental
order of convergence lies about 1. This is notably better than the order 1

9 , which
we can prove for a polynomial of degree four (see Remark after Theorem 10).
Some heuristic calculations indicate that the order of convergence in λ derived
in Theorem 10 can indeed be improved when the supporting surface S is a torus:
however, whether this can be done for different S is still not clear.

Figure 4: Discrete solutions for Example 1 for λ = 1 and λ = 16

Comparing the two graphics in Figure 4, we can observe convergence: for λ = 1
there is still a visible gap between the boundary of the solution and the surface
S, whereas the gap seems to disappear for λ = 16.
Both pictures show also the effect of the fourth term in the functional Eλh : the
solution is pulled to the right side (in direction of the point P ) where the trian-
gles are smaller than at the left side.

Example 2: By

G(x, y, z) =
(
x2 + y2 − z2 − 10

) (
x2 + z2 − 1

)
− 10

a non-torus-type support surface is given. We choose λ = 0.1, C = 10000,
h = 0.13443 and ε = 0.001 and get Dh = 42.9789 and Eλh = 43.2267 (see
Figure 5).
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Figure 5 A discrete solution for Example 2

Example 3: One can also simulate the classical Plateau Problem or the par-
tially free boundary problem by using a thin torus-type surface or a part of this.
By

G(x, y, z) =
(

(x2 + y2 + z2 + 4)2− 16(x2 + y2)
)(

(x2 + y2 + z2− 1)x+
1

10

)
− 1

10

a surface is given, which “almost defines” a partially free boundary problem.
Choosing ε = 0.001, C = 100, h = 0.13443 and λ = 16 we get Dh = 7.45652
and Eλh = 7.51755 (see Figure 6).

Figure 6 A discrete solution for Example 3
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