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HYPERBOLIC MAXWELL VARIATIONAL INEQUALITIES

OF THE SECOND KIND∗

Irwin Yousept∗∗

Abstract. We analyze a class of hyperbolic Maxwell variational inequalities of the second kind.
By means of a local boundedness assumption on the subdifferential of the underlying nonlinearity,
we prove a well-posedness result, where the main tools for the proof are the semigroup theory for
Maxwell’s equations, the Yosida regularization and the subdifferential calculus. The second part of the
paper focuses on a more general case omitting the local boundedness assumption. In this case, taking
into account more regular initial data and test functions, we are able to prove a weaker existence
result through the use of the minimal section operator associated with the Nemytskii operator of
the governing subdifferential. Eventually, we transfer the developed well-posedness results to the case
involving Faraday’s law, which in particular allows us to improve the regularity property of the electric
field in the weak existence result.
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1. Introduction

Physical phenomena in electromagnetism can lead to hyperbolic variational inequalities with a Maxwell
structure. They include electromagnetic processes arising in polarizable media, nonlinear Ohm’s law, and
high-temperature superconductivity (HTS). The very first study of hyperbolic variational inequalities in elec-
tromagnetism goes back to Duvaut and Lions ([11], Chap. 7, Sect. 8). By means of parabolic regularization and
penalization techniques, they proved a well-posedness result for an obstacle-type hyperbolic Maxwell variational
inequality stemming from the modelling of polarizable media. Some years later, Milani [21, 22] extended their
result to the case of time-dependent obstacle set. We also refer to Miranda and Santos [23] for the mathematical
analysis of the non-Hilbertian counterpart to the antenna problem in Chapter 7 of [11]. The Bean critical-
state model [7] for HTS governed by the eddy current equations [1, 9] leads to parabolic Maxwell variational
and quasi-variational inequalities. See Prigozhin [26, 27] and Barrett and Prigozhin [4–6] for the corresponding
mathematical analysis (cf. as well [17, 29]). More recently, the author [34] found out that the Bean critical-state
model governed by the full Maxwell equations gives rise to a hyperbolic Maxwell variational inequality of the
second kind involving an L1-type nonlinearity. Last but not least, we mention the contributions by Rodrigues
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and Santos et al. [2, 24, 30] regarding parabolic and elliptic p-curl systems and their related variational and
quasi-variational inequalities.

This paper is devoted to the well-posedness analysis for a general class of hyperbolic Maxwell variational
inequalities of the second kind with a proper, convex and lower semicontinuous nonlinearity ϕ : X → R; see
Section 2 for the definition of the pivot Hilbert space X. Based on a local boundedness assumption on the subd-
ifferential ∂ϕ (Assump. 3.1), we establish a well-posedness result (Thm. 3.3), where the main tools for the proof
are the semigroup theory for Maxwell’s equations, the Yosida regularization and the subdifferential calculus.
While Assumption 3.1 is satisfied for various functionals ϕ, including L1-type nonlinearities as encountered in
Bean’s critical state-model for HTS [34], it could fail to hold for some instances such as for indicator functionals
(see Exam. 3.6). This motivates us to study a more general case without the local boundedness assumption on
the subdifferential ∂ϕ. In this case, taking into account more regular initial data and test functions, we are able
to prove a weaker existence result (Thm. 3.11) by employing the minimal section operator associated with the
Nemytskii operator of ∂ϕ acting in the Bochner space L2((0, T ),X) (Defs. 3.7 and 3.9). In the final part of the
paper, we focus on variational inequalities involving Faraday’s law and transfer our well-posedness results to
this particular case. Since the nonlinearity ϕ for Faraday’s law is independent of the magnetic field, we are able
to improve the weak existence result by achieving the H0(curl)-regularity in the electric field (Cor. 4.2).

The mathematical analysis of variational inequalities has a long history and goes back to Fichera [13, 14],
Brézis and Stampacchia [10], and Lions and Stampacchia [19, 20]. See [8, 11, 16, 18, 28] for various applications
in variational inequalities. To the best of the author’s knowledge, the mathematical contributions in this paper
are original, which we believe may help enrich the works on variational inequalities in electromagnetism. In
particular, the developed results would open a way to study the optimal control governed by hyperbolic Maxwell
variational inequalities (see [32, 33, 35] concerning the optimal control of Maxwell’s equations). The paper
is organized as follows. In the upcoming section, we introduce all the function spaces used in our analysis,
including the definition of the Maxwell operator. Some well-known properties of the Maxwell operator are also
mentioned in this section. In Section 3, we establish a well-posedness result for a class of hyperbolic Maxwell
variational inequalities of the second kind under Assumption 3.1. In Section 3.1, we examine the case without
Assumption 3.1, and the final section is devoted to the case of Faraday’s law.

2. Preliminaries

Let Ω ⊂ R3 be an open set. We introduce

H(curl) :=
{
q ∈ L2(Ω)

∣∣ curl q ∈ L2(Ω)
}
,

where the operator curl is understood in the sense of distributions. For a given Hilbert space V , we use the
notation ‖ · ‖V and (·, ·)V for a standard norm and a standard scalar product in V. A bold typeface is used to
indicate a three-dimensional vector function or a Hilbert space of three-dimensional vector functions. As usual,
C∞0 (Ω) stands for the space of all infinitely differentiable three-dimensional vector functions with compact
support contained in Ω. We denote the closure of C∞0 (Ω) with respect to the H(curl)-topology by

H0(curl) := C∞0 (Ω)
‖·‖H(curl)

.

It is well known that the Hilbert space H0(curl) admits the following characterization:

H0(curl) =
{
q ∈H(curl) | (q, curlv)L2(Ω) = (curl q,v)L2(Ω) ∀v ∈H(curl)

}
. (2.1)

For the convenience of the reader, a proof for (2.1) is given in Appendix A. Let ε, µ : Ω → R3×3 denote the
electric permittivity and the magnetic permeability in the medium Ω. They are assumed to be of class L∞(Ω)3×3,
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symmetric and uniformly positive-definite in the sense that there exist constants ε, µ > 0 such that

ξT ε(x)ξ ≥ ε|ξ|2 and ξTµ(x)ξ ≥ µ|ξ|2 for a.e. x ∈ Ω and all ξ ∈ R3. (2.2)

Note that, differently from Chapter 7, Section 8 of [11], we do not make the simplifying piecewise constant
assumption on ε and µ. Given a symmetric and uniformly positive definite matrix-valued function α ∈ L∞(Ω)3×3,
let L2

α(Ω) denote the weighted L2(Ω)-space endowed with the weighted scalar product (α·, ·)L2(Ω). Based on
this notation, let us introduce the pivot Hilbert space used in our analysis:

X := L2
ε(Ω)×L2

µ(Ω),

equipped with the scalar product

((e,h), (v,w))X = (εe,v)L2(Ω) + (µh,w)L2(Ω) ∀(e,h), (v,w) ∈X. (2.3)

Now, we introduce the (unbounded) Maxwell operator

A : D(A) ⊂X →X, A := −
(
ε 0
0 µ

)−1(
0 −curl

curl 0

)
, (2.4)

with

D(A) := H0(curl)×H(curl).

The choice of the domain D(A) is motivated by the perfectly conducting electric boundary condition, which
specifies that the tangential component of the electric field vanishes on the boundary. Obviously, A : D(A) ⊂
X →X is a densely defined and closed operator. Furthermore, due to the choice of the weighted Hilbert space
X and (2.1), A : D(A) ⊂ X → X is skew-adjoint, i.e., D(A∗) = D(A) and A∗ = −A. Therefore, by virtue of
Stone’s theorem ([25], Thm. 10.8, p. 41), A generates a strongly continuous group {Tt}t∈R of unitary operators
on X. We close this section by recalling the energy balance equality result.

Lemma 2.1. Let {St}t∈R be a strongly continuous group of unitary operators on X. Furthermore, suppose that
(e,h) ∈ C([0, T ],X), (e0,h0) ∈X and (w, w̃) ∈ L1((0, T ),X) satisfy the variation of constants formula

(e,h)(t) = St(e0,h0) +

∫ t

0

St−s(w, w̃)(s) ds ∀t ∈ [0, T ].

Then, the following energy balance equality

∥∥(e,h)(t)
∥∥2

X
=
∥∥(e0,h0)

∥∥2

X
+ 2

∫ t

0

((w, w̃)(s), (e,h)(s))X ds

holds true for all t ∈ [0, T ].

Proof. For the convenience of the reader, we include the proof in Appendix B.
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3. Well-posedness

In this section, we present well-posedness results for a general class of hyperbolic Maxwell variational
inequalities of the second kind. In all what follows, let Ω ⊂ R3 be an open set and T ∈ R+. Further, let

ϕ : X → R := R ∪ {+∞}

be a proper, convex and lower semicontinuous (l.s.c.) function. We recall that the subdifferential ∂ϕ : X → 2X

is a set-valued operator, where, for every (v,w) ∈X, ∂ϕ(v,w) contains all subgradients of ϕ at (v,w), i.e.,

∂ϕ(v,w) =
{

(y, z) ∈X | ((y, z), (p, q)− (v,w))X + ϕ(v,w) ≤ ϕ(p, q) ∀(p, q) ∈X
}
. (3.1)

For every λ > 0, let Jλ : X →X and Φλ : X →X denote, respectively, the resolvent operator and the Yosida
approximation of the subdifferential ∂ϕ, i.e.,

Jλ = (Id + λ∂ϕ)−1 and Φλ = λ−1
(
Id − Jλ

)
, (3.2)

where Id : X → X denotes the identity operator. Since ϕ is proper, convex, and l.s.c., the subdifferential
∂ϕ : X → 2X is m-accretive. See, e.g., Proposition 1.5, page 157 of [31] for this well-known result. As a
consequence, the resolvent operator Jλ : X →X is non-expansive, and the Yosida approximation Φλ : X →X
is m-accretive and Lipschitz-continuous with the Lipschitz constant Lλ = λ−1 (see [31], Thm. 1.1, p. 161). Note
that, since our pivot space X is a Hilbert space, the notions of maximal montonicity and m-accretivity coincide
([15], Thm. 3.2.29, p. 317). Next, we define the domain of the subdifferential ∂ϕ by

D(∂ϕ) := {(v,w) ∈X | ∂ϕ(v,w) 6= ∅} (3.3)

and denote by ∂ϕ0 : D(∂ϕ)→X the minimal section operator of ∂ϕ (cf. [31], p. 161), defined as

‖∂ϕ0(v,w)‖X = min
(y,z)∈∂ϕ(v,w)

‖(y, z)‖X . (3.4)

For every (v,w) ∈ D(∂ϕ), the set ∂ϕ(v,w) ⊂X is nonempty, closed, and convex (see [15], Prop. 3.2.7, p. 305).
Therefore, by standard arguments, the minimization problem in (3.4) admits a unique solution, and so the
minimal section operator ∂ϕ0 : D(∂ϕ) → X is indeed well-defined. We summarize its well-known properties
([15], Thm. 3.2.38, p. 323) as follows:

‖Φλ(v,w)‖X ≤ ‖∂ϕ0(v,w)‖X ∀λ > 0, ∀(v,w) ∈ D(∂ϕ),

lim
λ→0

Φλ(v,w) = ∂ϕ0(v,w) in X ∀(v,w) ∈ D(∂ϕ).
(3.5)

Assumption 3.1. For every M > 0, there exists a constant C(M) > 0 such that

‖(y, z)‖X ≤ C(M) ∀(y, z) ∈ ∂ϕ(v,w),

for all (v,w) ∈X satisfying ‖(v,w)‖X ≤M .

Lemma 3.2. Let ϕ : X → R be a convex and l.s.c. function satisfying ∂ϕ(0, 0) 6= ∅ and Assumption 3.1.
Furthermore, let (f ,g) ∈ L1((0, T ),X) and (E0,H0) ∈X. Then, there exist unique (E,H) ∈ C([0, T ],X) and
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(Ẽ, H̃) ∈ L∞((0, T ),X) satisfying

d

dt

∫
Ω

εE(t) · v + µH(t) ·w dx+

∫
Ω

E(t) · curlw −H(t) · curlv dx+

∫
Ω

εẼ(t) · v + µH̃(t) ·w dx

=

∫
Ω

f(t) · v + g(t) ·w dx for a.e. t ∈ (0, T ) and all (v,w) ∈H0(curl)×H(curl),

(Ẽ, H̃)(t) ∈ ∂ϕ((E,H)(t)) for a.e. t ∈ (0, T ),

(E,H)(0) = (E0,H0),

(3.6)

and, for every fixed (v,w) ∈ H0(curl) × H(curl), the mapping t 7→ ((E,H)(t), (v,w))X is absolutely
continuous from [0, T ] to R.

Proof. Let {λn}∞n=1 be a sequence of positive real numbers converging to zero, and we consider the following
integral equation: For every n ∈ N, find (En,Hn) ∈ C([0, T ],X) such that

(En,Hn)(t) = Tt(E0,H0) +

∫ t

0

Tt−s
(
(ε−1f , µ−1g)(s)− Φλn((En,Hn)(s))

)
ds ∀t ∈ [0, T ]. (3.7)

Since for every λ > 0, the Yosida approximation Φλ : X → X is Lipschitz-continous, a classical contraction
argument ([25], Thm. 1.2, p. 184) implies that, for every n ∈ N, the integral equation (3.7) admits a unique
solution (En,Hn) ∈ C([0, T ],X). Thanks to the Lipschitz continuity of Jλn : X → X and Φλn : X → X, we
have that

Jλn(En,Hn),Φλn(En,Hn) ∈ C([0, T ],X) ∀n ∈ N.

Let us show that the sequences {(En,Hn)}∞n=1, {Jλn(En,Hn)}∞n=1, {Φλn(En,Hn)}∞n=1 are bounded in
C([0, T ],X).

Since {Tt}t∈R is a strongly continuous group of unitary operators on X, we may apply the energy balance
equality (Lem. 2.1) to (3.7) and obtain for all t ∈ [0, T ] and all n ∈ N that

∥∥(En,Hn)(t)
∥∥2

X
(3.8)

=
∥∥(E0,H0)

∥∥2

X
+ 2

∫ t

0

(
(ε−1f , µ−1g)(s), (En,Hn)(s)

)
X
− (Φλn((En,Hn)(s)), (En,Hn)(s))X ds

=
∥∥(E0,H0)

∥∥2

X
+ 2

∫ t

0

(
(ε−1f , µ−1g)(s)− Φλn(0, 0), (En,Hn)(s)

)
X

− (Φλn((En,Hn)(s))− Φλn(0, 0), (En,Hn)(s))X ds

≤
∥∥(E0,H0)

∥∥2

X
+ 2

∫ t

0

‖(ε−1f , µ−1g)(s)− Φλn(0, 0)‖X‖(En,Hn)(s)‖X ds

≤
∥∥(E0,H0)

∥∥2

X
+ 2‖(ε−1f , µ−1g)− Φλn(0, 0)‖2L1((0,T ),X) +

1

2
‖(En,Hn)‖2C([0,T ],X),

where we have also used the monotonicity of the Yosida approximation Φλn : X →X. As (3.8) is satisfied for
all t ∈ [0, T ], it follows that

∥∥(En,Hn)
∥∥2

C([0,T ],X)
≤ 2
∥∥(E0,H0)

∥∥2

X
+ 4‖(ε−1f , µ−1g)− Φλn(0, 0)‖2L1((0,T ),X) ∀n ∈ N. (3.9)



6 I. YOUSEPT

Due to (0, 0) ∈ D(∂ϕ), (3.5) implies that {Φλn(0, 0)}∞n=1 ⊂X is bounded, and so (3.9) yields the boundedness
of {(En,Hn)}∞n=1 in C([0, T ],X). Next, since Jλ : X →X is non-expansive,

‖Jλn((En,Hn)(t))‖X ≤ ‖(En,Hn)(t)‖X + ‖Jλn(0, 0)‖X ∀t ∈ [0, T ] ∀n ∈ N.

Thus, as limn→∞ ‖Jλn(0, 0)‖X = 0 (due to ∂ϕ(0, 0) 6= ∅), the above inequality together with the bounded-
ness of {(En,Hn)}∞n=1 ⊂ C([0, T ],X) implies that the sequence {Jλn(En,Hn)}∞n=1 ⊂ C([0, T ],X) is bounded.
Moreover, by the definition of the resolvent operator and the Yosida approximation (3.2), it holds that

Φλn((En,Hn)(t)) ∈ ∂ϕ (Jλn(En,Hn)(t)) ∀t ∈ [0, T ] ∀n ∈ N. (3.10)

Thus, in view of Assumption 3.1 and the boundedness of {Jλn(En,Hn)}∞n=1 ⊂ C([0, T ],X), (3.10) implies that
{Φλn(En,Hn)}∞n=1 ⊂ C([0, T ],X) is bounded. In conclusion, the sequences {(En,Hn)}∞n=1, {Jλn(En,Hn)}∞n=1

and {Φλn(En,Hn)}∞n=1 are bounded in C([0, T ],X). Therefore, we can select a subsequence of {λn}∞n=1, which
we denote again by {λn}∞n=1, such that

(En,Hn) ⇀ (E,H) weakly star in L∞((0, T ),X) as n→∞, (3.11)

Φλn(En,Hn) ⇀ (Ẽ, H̃) weakly star in L∞((0, T ),X) as n→∞, (3.12)

(Jλn − Id)(En,Hn)→ 0 strongly in C([0, T ],X) as n→∞, (3.13)

Jλn(En,Hn) ⇀ (E,H) weakly star in L∞((0, T ),X) as n→∞, (3.14)

for some (E,H), (Ẽ, H̃) ∈ L∞((0, T ),X). Note that (3.13) follows from the boundedness of
{Φλn(En,Hn)}∞n=1 ⊂ C([0, T ],X) and the definition of the Yosida approximation Φλ = λ−1

(
Id − Jλ

)
. More-

over, (3.14) follows from (3.13) and (3.11). Passing to the limit n → ∞ in (3.7), we obtain from (3.11) and
(3.12) that

(E,H)(t) = Tt(E0,H0) +

∫ t

0

Tt−s
(

(ε−1f , µ−1g)(s)− (Ẽ, H̃)(s)
)

ds ∀t ∈ [0, T ]. (3.15)

and

(En,Hn)(t) ⇀ (E,H)(t) weakly in X as n→∞ ∀t ∈ [0, T ]. (3.16)

Now, employing the classical result by Ball [3], the solution of (3.15) satisfies


d

dt
((E,H)(t), (v,w))X − ((E,H)(t),A∗(v,w))X = ((ε−1f , µ−1g)(t)− (Ẽ, H̃)(t), (v,w))X

for a.e. t ∈ (0, T ) and all (v,w) ∈ D(A∗),
(E,H)(0) = (E0,H0),

(3.17)

and, for every (v,w) ∈ D(A∗), the mapping t 7→ ((E,H)(t), (v,w))X is absolutely continuous from [0, T ] to R.
Since the Maxwell operator A is skew adjoint, i.e., D(A∗) = D(A) = H0(curl) ×H(curl) and A∗ = −A

(see (2.4) for its definition), we see that (3.17) is nothing but the variational equality in (3.6). Thus, if we can
prove that

(Ẽ, H̃)(t) ∈ ∂ϕ((E,H)(t)) for a.e. t ∈ (0, T ), (3.18)
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then (E,H) ∈ C([0, T ],X) is a solution to (3.6). To this aim, we introduce the set B ⊂ L2((0, T ),X) ×
L2((0, T ),X) defined as follows:

((e,h), (y, z)) ∈ B ⇔ (y, z)(t) ∈ ∂ϕ((e,h)(t)) for a.e. t ∈ (0, T ). (3.19)

By definition, we see that (3.18) is nothing but

((E,H), (Ẽ, H̃)) ∈ B. (3.20)

Therefore, we have to show that (3.20) is satisfied.
Since ∂ϕ : X → 2X is monotone, the set B is monotone, i.e.,

((y, z)− (ṽ, w̃), (e,h)− (v,w))L2((0,T ),X) ≥ 0 ∀((e,h), (y, z)), ((v,w), (ṽ, w̃)) ∈ B.

Let us now show that B is m-accretive, i.e., we have to show that, for every λ > 0, it holds that

Range(Id + λB) := {(e,h) + λ(y, z) | ((e,h), (y, z)) ∈ B} = L2((0, T ),X). (3.21)

Let λ > 0. To show (3.21), we take an arbitrarily fixed function (v,w) ∈ L2((0, T ),X) and define

(e,h)(t) := Jλ((v,w)(t)) = (Id + λ∂ϕ)−1(v,w)(t) for a.e. t ∈ (0, T ).

According to the definition (3.19), we see that (3.21) is valid, if (e,h) ∈ L2((0, T ),X). Indeed, as Jλ : X →X
is non-expansive, we obtain that (e,h) = Jλ(v,w) is measurable and

‖(e,h)(t)‖X ≤ ‖Jλ((v,w)(t))− Jλ(0, 0)‖X + ‖Jλ(0, 0)‖X ≤ ‖(v,w)(t)‖X + ‖Jλ(0, 0)‖X for a.e. t ∈ (0, T ).

Since (v,w) ∈ L2((0, T ),X), it follows therefore that (e,h) ∈ L2((0, T ),X). In conclusion, B is m-accretive.
Now, making use of the energy balance equality (Lem. 2.1) in (3.15) and (3.7), we get

‖(E,H)(T )‖2X = ‖(E0,H0)‖2X + 2

∫ T

0

((ε−1f , µ−1g)(t)− (Ẽ, H̃)(t), (E,H)(t))X dt,

‖(En,Hn)(T )‖2X = ‖(E0,H0)‖2X + 2

∫ T

0

((ε−1f , µ−1g)(t)− Φλn((En,Hn)(t)), (En,Hn)(t))X dt ∀n ∈ N.

Combining these two identities results in

2

∫ T

0

(Φλn((En,Hn)(t)), (En,Hn)(t))X dt = −‖(En,Hn)(T )‖2X + ‖(E0,H0)‖2X

+2

∫ T

0

((ε−1f , µ−1g)(t), (En,Hn)(t))L2(Ω) dt

= −‖(En,Hn)(T )‖2X + ‖(E,H)(T )‖2X + 2

∫ T

0

((Ẽ, H̃)(t), (E,H)(t))X dt

+2

∫ T

0

((ε−1f , µ−1g)(t), (En,Hn)(t)− (E,H)(t))L2(Ω) dt.
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Then, applying (3.13) to the above identity, we infer that

2 lim inf
n→∞

∫ T

0

(Φλn((En,Hn)(t)), Jλn((En,Hn)(t)))X dt

≤ 2 lim sup
n→∞

∫ T

0

(Φλn((En,Hn)(t)), (En,Hn)(t))X dt

≤ − lim inf
n→∞

‖(En,Hn)(T )‖2X + ‖(E,H)(T )‖2X + 2

∫ T

0

((Ẽ, H̃)(t), (E,H)(t))X dt

+ 2 lim sup
n→∞

∫ T

0

((ε−1f , µ−1g)(t), (En,Hn)(t)− (E,H)(t))L2(Ω) dt.

It follows therefore from (3.11) and (3.16) with t = T that

lim inf
n→∞

(Φλn(En,Hn), Jλn(En,Hn))L2((0,T ),X) ≤ ((Ẽ, H̃), (E,H))L2((0,T ),X). (3.22)

On the other hand, according to (3.10) and by the definition (3.19), it holds that

(Jλn(En,Hn),Φλn(En,Hn)) ∈ B ∀n ∈ N. (3.23)

Concluding from (3.22)–(3.23) along with the weak convergence properties (3.12) and (3.14), the m-accretivity
of B implies that (3.20) is satisfied ([31], Prop. 1.6(b), p. 159). Thus, (E,H) ∈ C([0, T ],X) satisfies (3.18), and
so it is a solution of (3.6).

Uniqueness: Suppose that (E(1),H(1)), (E(2),H(2)) ∈ C([0, T ],X) satisfy (3.6) and, for every (v,w) ∈
H0(curl) ×H(curl), the mappings t 7→ ((E(j),H(j))(t), (v,w))X , j = 1, 2 are absolutely continuous from

[0, T ] to R. By definition, the difference (e,h) := (E(1) −E(2),H(1) −H(2)) satisfies (e,h)(0) = 0 and

d

dt

∫
Ω

εe(t) · v + µh(t) ·w dx+

∫
Ω

e(t) · curlw − h(t) · curlv dx =

∫
Ω

ε

(
Ẽ

(2)
(t)− Ẽ

(1)
(t)

)
· v

+µ

(
H̃

(2)
(t)− H̃

(1)
(t)

)
·w dx for a.e. in (0, T ) and all (v,w) ∈H0(curl)×H(curl),

(3.24)

for some (Ẽ
(j)
, H̃

(j)
) ∈ L∞((0, T ),X), j = 1, 2, satisfying

(Ẽ
(j)
, H̃

(j)
)(t) ∈ ∂ϕ((E(j),H(j))(t)) for a.e. t ∈ (0, T ). (3.25)

In view of (3.24), the classical result by Ball [3] implies that (e,h) ∈ C([0, T ],X) satisfies the variation by
constants formula

(e,h)(t) =

∫ t

0

Tt−s((Ẽ
(2)
− Ẽ

(1)
, H̃

(2)
− H̃

(1)
)(s)) ds ∀t ∈ [0, T ].

Therefore, we obtain from the energy balance equality (Lem. 2.1) together with (e,h)(0) = 0 that

‖(e,h)(t)‖2X = 2

∫ t

0

((Ẽ
(2)
− Ẽ

(1)
, H̃

(2)
− H̃

(1)
)(s), (e,h)(s))Xds

= −2

∫ t

0

((Ẽ
(2)
− Ẽ

(1)
, H̃

(2)
− H̃

(1)
)(s), (E(2) −E(1),H(2) −H(1))(s))Xds ≤ 0 ∀t ∈ [0, T ],
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where we have used the monotonicity property of the subdifferential ∂ϕ to get the above inequality. In con-

clusion, (E(1),H(1)) = (E(2),H(2)). Finally, since (e,h) = 0, (3.24) immediately implies that (Ẽ
(1)
, H̃

(1)
) =

(Ẽ
(2)
, H̃

(2)
).

Theorem 3.3. Let ϕ : X → R be a convex and l.s.c. function fulfilling ∂ϕ(0, 0) 6= ∅ and Assumption 3.1.
Furthermore, let (f ,g) ∈W 1,∞((0, T ),X) and (E0,H0) ∈ D(A). Then, the variational inequality

∫
Ω

ε
d

dt
E(t) · (v −E(t)) + µ

d

dt
H(t) · (w −H(t)) dx+

∫
Ω

curlE(t) ·w − curlH(t) · v dx

+ ϕ(v,w)− ϕ((E,H)(t)) ≥
∫

Ω

f(t) · (v −E(t)) + g(t) · (w −H(t)) dx

for a.e. t ∈ (0, T ) and all (v,w) ∈X,

(E,H)(0) = (E0,H0)

(VI)

admits a unique solution (E,H) ∈ L∞((0, T ), D(A)) ∩W 1,∞((0, T ),X).

Remark 3.4. According to (2.3)–(2.4) and (3.1), (VI) is nothing but−
(

d

dt
−A

)
(E,H)(t) + (ε−1f , µ−1g)(t) ∈ ∂ϕ((E,H)(t)) for a.e. t ∈ (0, T ),

(E,H)(0) = (E0,H0).

(3.26)

Proof.
Step 1: Uniqueness. Suppose that (E(j),H(j)) ∈ L∞((0, T ),H0(curl)×H(curl))∩W 1,∞((0, T ),X), j = 1, 2,

are solutions to (VI). Setting the test function (v,w) = (E(2),H(2))(t) in the variational inequality for

(E(1),H(1)) and the test function (v,w) = (E(1),H(1))(t) in the variational inequality for (E(2),H(2)), and

then adding the resulting inequalities, we obtain for the difference (e,h) := (E(1) −E(2),H(1) −H(2)) that

−
∫

Ω

ε
d

dt
e(t) · e(t) + µ

d

dt
h(t) · h(t) dx−

∫
Ω

curlH(1)(t) ·E(2)(t) dx+

∫
Ω

curlE(1)(t) ·H(2)(t) dx

−
∫

Ω

curlH(2)(t) ·E(1)(t) dx+

∫
Ω

curlE(2)(t) ·H(1)(t) dx ≥ 0 for a.e. t ∈ (0, T ).

On the other hand, we know that E(j) ∈H0(curl) and H(j) ∈H(curl) for j = 1, 2 such that (2.1) implies

−
∫

Ω

curlH(1)(t) ·E(2)(t) dx+

∫
Ω

curlE(1)(t) ·H(2)(t) dx

−
∫

Ω

curlH(2)(t) ·E(1)(t) dx+

∫
Ω

curlE(2)(t) ·H(1)(t) dx = 0.

It follows therefore that

0 ≥
∫

Ω

ε
d

dt
e(t) · e(t) + µ

d

dt
h(t) · h(t) dx =

1

2

d

dt
‖(e,h)(t)‖2X for a.e. t ∈ (0, T ),

and so 0 ≥ ‖(e,h)(t)‖2X − ‖(e,h)(0)‖2X = ‖(e,h)(t)‖2X for all t ∈ [0, T ].

Step 2: Existence. Let {λn}∞n=1 be a sequence of positive real numbers converging to zero, and we consider again
the integral equation (3.7). The regularity properties (f ,g) ∈ W 1,∞((0, T ),X) and (E0,H0) ∈ D(A) imply
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(En,Hn) ∈ C0,1([0, T ],X) (Appendix C). Thus, since the Yosida approximation Φλ : X → X is Lipschitz-
continuous, we have that Φλn(En,Hn) ∈ C0,1([0, T ],X) such that a classical result from the semigroup theory
([12], Cor. 7.6, p. 440) implies that the solution of (3.7) satisfies (En,Hn) ∈ C([0, T ], D(A))∩ C1([0, T ],X) and

d

dt
(En,Hn)(t)−A(En,Hn)(t) = (ε−1f , µ−1g)(t)− Φλn((En,Hn)(t)) ∀t ∈ [0, T ]. (3.27)

Moreover, the sequence {(En,Hn)}∞n=1 is bounded in C([0, T ], D(A)) ∩ C1([0, T ],X), which we shall show
in Step 3. Therefore, as readily proven in Lemma 3.2 and due to the boundedness of {(En,Hn)}∞n=1 ⊂
C([0, T ], D(A)) ∩ C1([0, T ],X), we can select a subsequence of {λn}∞n=1 in (3.7), denoted again by the sequence
itself, such that

(En,Hn) ⇀ (E,H) weakly star in L∞((0, T ),X) as n→∞,

Φλn(En,Hn) ⇀ (Ẽ, H̃) weakly star in L∞((0, T ),X) as n→∞,

where (E,H) ∈ L∞((0, T ), D(A))∩W 1,∞((0, T ),X) and (Ẽ, H̃) ∈ L∞((0, T ),X) satisfy (3.6). Then, applying
the regularity property (E,H) ∈ L∞((0, T ), D(A)) ∩W 1,∞((0, T ),X) to (3.6), it follows that

∫
Ω

ε
d

dt
E(t) · v + µ

d

dt
H(t) ·w dx+

∫
Ω

curlE(t) ·w − curlH(t) · v dx

+

∫
Ω

εẼ(t) · v + µH̃(t) ·w dx =

∫
Ω

f(t) · v + g(t) ·w dx for a.e. t ∈ (0, T ) and all (v,w) ∈ D(A).

(3.28)

Thus, since D(A) is dense in X, (3.28) implies that

−
(

d

dt
−A

)
(E,H)(t) + (ε−1f , µ−1g)(t) = (Ẽ, H̃)(t) ∈ ∂ϕ((E,H)(t)) for a.e. t ∈ (0, T ).

In conclusion, (E,H) is a solution to (VI).

Step 3: Boundedness result for {(En,Hn)}∞n=1. As readily shown in (3.9), (3.5) implies the boundedness of
{(En,Hn)}∞n=1 ⊂ C([0, T ],X). Now, according to (3.27), we have that

d

ds
((En,Hn)(s+ h)− (En,Hn)(s))−A ((En,Hn)(s+ h)− (En,Hn)(s))

= (ε−1f , µ−1g)(s+ h)− (ε−1f , µ−1g)(s)− Φλn((En,Hn)(s+ h)) + Φλn((En,Hn)(s)).

Taking into account that A is skew-adjoint and Φλn is monotone, it follows that

1

2

d

ds
‖(En,Hn)(s+ h)− (En,Hn)(s)‖2X

=
(
(ε−1f , µ−1g)(s+ h)− (ε−1f , µ−1g)(s), (En,Hn)(s+ h)− (En,Hn)(s)

)
X

− (Φλn((En,Hn)(s+ h))− Φλn((En,Hn)(s)), (En,Hn)(s+ h)− (En,Hn)(s))X

≤
(
(ε−1f , µ−1g)(s+ h)− (ε−1f , µ−1g)(s), (En,Hn)(s+ h)− (En,Hn)(s)

)
X
.
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Consequently, it holds for all t ∈ [0, T ) and h ∈ (0, T − t] that∥∥∥∥ (En,Hn)(t+ h)− (En,Hn)(t)

h

∥∥∥∥2

X

−
∥∥∥∥ (En,Hn)(h)− (E0,H0)

h

∥∥∥∥2

X

≤ 2

∫ t

0

(
(ε−1f , µ−1g)(s+ h)− (ε−1f , µ−1g)(s)

h
,

(En,Hn)(s+ h)− (En,Hn)(s)

h

)
X

ds

≤ 2T

∥∥∥∥ d

dt
(ε−1f , µ−1g)

∥∥∥∥
L∞((0,T ),X)

∥∥∥∥ d

dt
(En,Hn)

∥∥∥∥
C([0,T ],X)

,

and passing to the limit h ↓ 0 leads to∥∥∥∥ d

dt
(En,Hn)(t)

∥∥∥∥2

X

≤
∥∥∥∥ d

dt
(En,Hn)(0)

∥∥∥∥2

X

+ 2T

∥∥∥∥ d

dt
(ε−1f , µ−1g)

∥∥∥∥
L∞((0,T ),X)

∥∥∥∥ d

dt
(En,Hn)

∥∥∥∥
C([0,T ],X)

,

from which it follows that

1

2

∥∥∥∥ d

dt
(En,Hn)

∥∥∥∥2

C([0,T ],X)

≤
∥∥∥∥ d

dt
(En,Hn)(0)

∥∥∥∥2

X

+ 2T 2

∥∥∥∥ d

dt
(ε−1f , µ−1g)

∥∥∥∥2

L∞((0,T ),X)

∀n ∈ N. (3.29)

In view of (3.27), we also have∥∥∥∥ d

dt
(En,Hn)(0)

∥∥∥∥
X

=

∥∥∥∥(ε−1f , µ−1g)(0)− Φλn(E0,H0) +A(E0,H0)

∥∥∥∥
X

∀n ∈ N. (3.30)

On the other hand, we have shown in the proof of Lemma 3.2 that the sequence {Φλn(En,Hn)}∞n=1 ⊂
C([0, T ],X) is bounded. For this reason, (3.29)–(3.30) implies that the sequence { d

dt (En,Hn)}∞n=1 ⊂ C([0, T ],X)
is bounded. Next, (3.27) yields that

‖A(En,Hn)‖C([0,T ],X) =

∥∥∥∥ d

dt
(En,Hn)− (ε−1f , µ−1g) + Φλn(En,Hn)

∥∥∥∥
C([0,T ],X)

∀n ∈ N.

Therefore, it follows from the boundedness of { d
dt (En,Hn)}∞n=1, {Φλn(En,Hn)}∞n=1 ⊂ C([0, T ],X) that the

sequence {A(En,Hn)}∞n=1 ⊂ C([0, T ],X) is bounded. In conclusion, the sequence {(En,Hn)}∞n=1 is bounded
in C([0, T ], D(A)) ∩ C1([0, T ],X).

Example 3.5. Suppose that Ωs ⊂ Ω is a bounded open subset and jc ∈ L∞(Ωs) is a nonnegative function.
Then, the functional

ϕ : X → R, (v,w) 7→
∫

Ωs

jc|v|dx

satisfies all assumptions of Theorem 3.3. In this case, the variational inequality (VI) describes the Bean critical-
state model with Ωs representing a high-temperature superconductor (see [34]).

Example 3.6. Let K ⊂X be a nonempty, closed and convex set and

ϕ(v,w) = IK(v,w) :=

{
0 if (v,w) ∈K,

∞ if (v,w) /∈K.
(3.31)
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By the definition (3.1), for every (v,w) ∈ D(∂ϕ) = K, the subdifferential ∂ϕ(v,w) is given by the normal cone
of K at (v,w):

NK(v,w) := {(y, z) ∈X | ((y, z), (p, q)− (v,w))X ≤ 0 ∀(p, q) ∈K}. (3.32)

Thus, ϕ does not necessarily satisfy Assumption 3.1 so that Theorem 3.3 is in general not applicable to this
case.

3.1. Existence analysis without Assumption 3.1

Motivated from Example 3.6, we study now the case where ϕ does not satisfy the local boundedness condition
in Assumption 3.1. For this case, we shall establish a weaker existence result by making use of the minimal
section operator associated with the Nemytskii operator of ∂ϕ acting in the Bochner space L2((0, T ),X).

Definition 3.7 (Nemytskii operator of ∂ϕ). Let ϕ : X → R be a proper, convex and l.s.c. function. We define

the Nemytskii operator ∂̂ϕ : L2((0, T ),X)→ 2L
2((0,T ),X) of the subdifferential ∂ϕ : X → 2X as follows:

∂̂ϕ(v,w) :=
{

(y, z) ∈ L2((0, T ),X) | (y, z)(t) ∈ ∂ϕ((v,w)(t)) for a.e. t ∈ (0, T )
}
,

with the domain

D(∂̂ϕ) := {(v,w) ∈ L2((0, T ),X) | ∂̂ϕ(v,w) 6= ∅}.

Lemma 3.8. Let ϕ : X → R be a convex and l.s.c. function satisfying (0, 0) ∈ ∂ϕ(0, 0). Then, ∂̂ϕ :

L2((0, T ),X) → 2L
2((0,T ),X) is m-accretive and, for every λ > 0, the corresponding resolvent operator Ĵλ :

L2((0, T ),X)→ L2((0, T ),X) and Yosida approximation Φ̂λ : L2((0, T ),X)→ L2((0, T ),X), defined by

Ĵλ := (Id + λ∂̂ϕ)−1 and Φ̂λ := λ−1
(
Id − Ĵλ

)
,

fulfill

(Ĵλ(v,w))(t) = Jλ((v,w)(t)) and (Φ̂λ(v,w))(t) = Φλ((v,w)(t)), (3.33)

for all (v,w) ∈ L2((0, T ),X) and a.e. t ∈ (0, T ). Here, we recall that Jλ : X → X and Φλ : X → X denote,
respectively, the resolvent operator and the Yosida approximation associated with ∂ϕ.

Proof. Since ϕ : X → R is a convex and l.s.c. function satisfying (0, 0) ∈ ∂ϕ(0, 0) and X is a separable

Hilbert space, a well-known result ([15], Prop. 3.2.57, p. 339) implies that ∂̂ϕ : L2((0, T ),X) → 2L
2((0,T ),X)

is m-accretive, from which it follows that Ĵλ : L2((0, T ),X) → L2((0, T ),X) is non-expansive and Φ̂λ :
L2((0, T ),X) → L2((0, T ),X) is m-accretive and Lipschitz continuous ([31], Thm. 1.1, p. 161). Let (v,w) ∈
L2((0, T ),X), λ > 0, and we set (y, z) := Ĵλ(v,w) ∈ L2((0, T ),X). By definition, it holds that

1

λ
((v,w)− (y, z)) ∈ ∂̂ϕ(y, z)⇒ 1

λ
((v,w)(t)− (y, z)(t)) ∈ ∂ϕ((y, z)(t)) for a.e. t ∈ (0, T )

⇒ (y, z)(t) = Jλ((v,w)(t)) for a.e. t ∈ (0, T ).

This implies (3.33).
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Definition 3.9 (Minimal section operator of ∂̂ϕ). Let ϕ : X → R be a convex and l.s.c. function satisfying

(0, 0) ∈ ∂ϕ(0, 0). Then, we denote by ∂̂ϕ
0

: D(∂̂ϕ)→ L2((0, T ),X) the minimal section operator of ∂̂ϕ, defined
by ∥∥∥∂̂ϕ0

(v,w)
∥∥∥
L2((0,T ),X)

= min
(y,z)∈∂̂ϕ(v,w)

‖(y, z)‖L2((0,T ),X) . (3.34)

In the case of a convex and l.s.c. function ϕ : X → R satisfying (0, 0) ∈ ∂ϕ(0, 0), we already know that

∂̂ϕ is m-accretive on the Hilbert space H := L2((0, T ),X). Thus, Proposition 3.2.7, p. 305 of [15] implies

that for every (v,w) ∈ D(∂̂ϕ) the set ∂̂ϕ(v,w) ⊂ H is nonempty, closed, and convex. Therefore, by standard

arguments, the minimization problem (3.34) admits a unique solution. For this reason, ∂̂ϕ
0

: D(∂̂ϕ) → H is
indeed a well-defined operator.

Lemma 3.10. Let ϕ : X → R be a convex and l.s.c. function satisfying (0, 0) ∈ ∂ϕ(0, 0). Then, for every

(v,w) ∈ D(∂̂ϕ), it holds that

Φ̂λ(v,w)→ ∂̂ϕ
0
(v,w) strongly in L2((0, T ),X) as λ→ 0, (3.35)

(∂̂ϕ
0
(v,w))(t) = ∂ϕ0((v,w)(t)) for a.e. t ∈ (0, T ), (3.36)

where ∂ϕ0 : D(∂ϕ)→X denotes the minimal section operator of ∂ϕ given by (3.4).

Proof. Let (v,w) ∈ D(∂̂ϕ). In view of Lemma 3.8, Theorem 1.1, p. 161 of [31] implies (3.35). This strong
convergence yields the existence of a null sequence {λn}∞n=1 of positive real numbers such that

lim
n→∞

(Φ̂λn(v,w))(t) = (∂̂ϕ
0
(v,w))(t) for a.e. t ∈ (0, T ). (3.37)

On the other hand, (3.33) implies

lim
n→∞

(Φ̂λn(v,w))(t) = lim
n→∞

Φλn((v,w)(t)) =︸︷︷︸
(3.5)

∂ϕ0((v,w)(t)) for a.e. t ∈ (0, T ), (3.38)

since (v,w) ∈ D(∂̂ϕ) implies that (v,w)(t) ∈ D(∂ϕ) for a.e. t ∈ (0, T ). Combining (3.37) and (3.38) together
gives (3.36).

Theorem 3.11. Let ϕ : X → R be a convex and l.s.c. function satisfying (0, 0) ∈ ∂ϕ(0, 0). Furthermore, let
(f ,g) ∈W 1,∞((0, T ),X) and (E0,H0) ∈ D(A) ∩D(∂ϕ). Then, the variational inequality

∫ T

0

(
d

dt
(E,H)(t), (v,w)(t)− (E,H)(t)

)
X

+ ((E,H)(t),A(v,w)(t))X dt

+

∫ T

0

(∂ϕ0((v,w)(t)), (v,w)(t)− (E,H)(t))X dt ≥
∫ T

0

((ε−1f , µ−1g)(t), (v,w)(t)− (E,H)(t))X dt,

for all (v,w) ∈ L2((0, T ), D(A)) ∩D(∂̂ϕ),

(E,H)(0) = (E0,H0)

(V̂I)

admits a solution (E,H) ∈W 1,∞((0, T ),X).
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Proof. Let {λn}∞n=1 be a sequence of positive real numbers converging to zero, and we consider the integral
equation (3.7). For every n ∈ N, we readily know that the solution of (3.7) satisfies (En,Hn) ∈ C([0, T ], D(A))∩
C1([0, T ],X) and solves


d

dt
(En,Hn)(t)−A(En,Hn)(t) = (ε−1f , µ−1g)(t)− Φλn((En,Hn)(t)) ∀t ∈ [0, T ]

(En,Hn)(0) = (E0,H0).
(3.39)

Also, as already shown in Lemma 3.2 (cf. (3.9) and (3.5)), the sequence {(En,Hn)}∞n=1 ⊂ C([0, T ],X)
is bounded, due to ∂ϕ(0, 0) 6= ∅. Now, since (E0,H0) ∈ D(ϕ), (3.5) yields the boundedness of
{Φλn(E0,H0)}∞n=1 ⊂ X, which together with (3.29)–(3.30) implies that { d

dt (En,Hn)}∞n=1 ⊂ C([0, T ],X) is
bounded. In conclusion, {(En,Hn)}∞n=1 is bounded in C1([0, T ],X), and so there exists a subsequence of
{λn}∞n=1, denoted again by {λn}∞n=1, such that

(En,Hn) ⇀ (E,H) weakly star in L∞((0, T ),X) as n→∞, (3.40)

d

dt
(En,Hn) ⇀

d

dt
(E,H) weakly star in L∞((0, T ),X) as n→∞, (3.41)

for some (E,H) ∈W 1,∞((0, T ),X). After a modification on a subset of [0, T ] with measure zero, it holds that
(E,H) ∈ C([0, T ],X). Now, we show

(En,Hn)(t) ⇀ (E,H)(t) weakly in X as n→∞ ∀t ∈ [0, T ], (3.42)

(E,H)(0) = (E0,H0). (3.43)

To this aim, let t ∈ (0, T ], (v,w) ∈X, and φ ∈ C1[0, t]. Then, integration by parts yields

∫ t d

ds
((En,Hn)(s), (v,w))X φ(s)ds = −

∫ t

0

((En,Hn)(s), (v,w))Xφ
′(s)ds

+((En,Hn)(t), (v,w))Xφ(t)− ((E0,H0), (v,w))Xφ(0).

(3.44)

On the other hand, (3.41) implies

lim
n→∞

∫ t

0

d

ds
((En,Hn)(s), (v,w))X φ(s)ds =

∫ t

0

d

ds
((E,H)(s), (v,w))X φ(s)ds (3.45)

= −
∫ t

0

((E,H)(s), (v,w))Xφ
′(s)ds+ ((E,H)(t), (v,w))Xφ(t)− ((E,H)(0), (v,w))Xφ(0).

From (3.40) and (3.44)–(3.45), we conclude that

lim
n→∞

((En,Hn)(t), (v,w))Xφ(t)− ((E0,H0), (v,w))Xφ(0)

= ((E,H)(t), (v,w))Xφ(t)− ((E,H)(0), (v,w))Xφ(0).
(3.46)

Choosing φ(0) 6= 0 and φ(t) = 0 in (3.46) leads to (3.43). Then, choosing φ(t) 6= 0 implies (3.42).
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Now, our goal is to prove that (E,H) ∈ W 1,∞(0, T,X) is a solution to (V̂I). To this aim, let (v,w) ∈
L2((0, T ), D(A)) ∩D(∂̂ϕ). Using the monotonicity of Φλn , we obtain for a.e. t ∈ (0, T ) that

(Φλn((En,Hn)(t)), (v,w)(t))X = (Φλn((En,Hn)(t))− Φλn((v,w)(t)), (v,w)(t)− (En,Hn)(t))X (3.47)

+(Φλn((v,w)(t)), (v,w)(t)− (En,Hn)(t))X + (Φλn((En,Hn)(t)), (En,Hn)(t))X

≤ (Φλn((v,w)(t)), (v,w)(t)− (En,Hn)(t))X + (Φλn((En,Hn)(t)), (En,Hn)(t))X

= (Φλn((v,w)(t)), (v,w)(t)− (En,Hn)(t))X −
1

2

d

dt
‖(En,Hn)(t)‖2X + ((ε−1f , µ−1g)(t), (En,Hn)(t))X ,

where we have used (3.39) and the fact that A is skew-adjoint for the last identity. Applying the above inequality
to (3.39), we obtain again by using the skew-adjoint property of A that

∫ T

0

(
d

dt
(En,Hn)(t), (v,w)(t)

)
X

+ ((En,Hn)(t),A(v,w)(t))X dt (3.48)

=

∫ T

0

((ε−1f , µ−1g)(t), (v,w)(t))X − (Φλn((En,Hn)(t)), (v,w)(t))X dt

≥
∫ T

0

((ε−1f , µ−1g)(t), (v,w)(t)− (En,Hn)(t))X − (Φλn((v,w)(t)), (v,w)(t)− (En,Hn)(t))X dt

+
1

2
‖(En,Hn)(T )‖2X −

1

2
‖(E0,H0)‖2X ,

and consequently

∫ T

0

(
d

dt
(E,H)(t), (v,w)(t)

)
X

+ ((E,H)(t),A(v,w)(t))Xdt

=︸︷︷︸
(3.40)−(3.41)

lim
n→∞

∫ T

0

(
d

dt
(En,Hn)(t), (v,w)(t)

)
X

+ ((En,Hn)(t),A(v,w)(t))X dt

≥ lim inf
n→∞

∫ T

0

((ε−1f , µ−1g)(t), (v,w)(t)− (En,Hn)(t))X − (Φλn((v,w)(t)), (v,w)(t)− (En,Hn)(t))Xdt

+ lim inf
n→∞

1

2
‖(En,Hn)(T )‖2X −

1

2
‖(E0,H0)‖2X

≥
∫ T

0

((ε−1f , µ−1g)(t), (v,w)(t)− (E,H)(t))X − (∂ϕ0((v,w)(t)), (v,w)(t)− (E,H)(t))X dt

+
1

2
‖(E,H)(T )‖2X −

1

2
‖(E0,H0)‖2X︸ ︷︷ ︸

=
∫ T
0

( d
dt (E,H)(t),(E,H)(t))X dt

,

where we have used Lemma 3.10, (3.40) and (3.42) with t = T to achieve the last inequality. Thus, (E,H)
satisfies ∫ T

0

(
d

dt
(E,H)(t), (v,w)(t)− (E,H)(t)

)
X

+ ((E,H)(t),A(v,w)(t))X dt

+

∫ T

0

(∂ϕ0((v,w)(t)), (v,w)(t)− (E,H)(t))X dt ≥
∫ T

0

((ε−1f , µ−1g)(t), (v,w)(t)− (E,H)(t))X dt,
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which concludes together with (3.43) that (E,H) ∈W 1,∞((0, T ),X) is a solution to (V̂I).

Remark 3.12. We point out that the variational inequality (V̂I) can be seen as a generalization of (VI) in the

sense that, if additionally Assumption 3.1 is satisfied, then the unique solution to (VI) satisfies (V̂I).

Corollary 3.13. Suppose that all assumptions of Theorem 3.11 and Assumption 3.1 are satisfied. Then, the
solution (E,H) ∈ L∞((0, T ), D(A)) ∩W 1,∞((0, T ),X) to (VI) is a solution to (V̂I).

Proof. As readily proven in Theorem 3.11, there exists a sequence {(En,Hn)}∞n=1 of solutions to (3.27) con-

verging weakly star in L∞((0, T ),X) towards a solution to (V̂I). But, in Theorem 3.3, it was shown that
{(En,Hn)}∞n=1 converges weakly star in L∞((0, T ),X) towards the unique solution to (VI).

Corollary 3.13 can also be also verified using the monotonicity property of the subdifferential: If (E,H) ∈
L∞((0, T ), D(A)) ∩ W 1,∞((0, T ),X) is the solution to (VI), then it holds for all (v,w) ∈ D(∂ϕ) and all
(y, z)(t) ∈ ∂ϕ((E,H)(t)) that

(∂ϕ0(v,w), (v,w)− (E,H)(t))X ≥ ((y, z)(t), (v,w)− (E,H)(t))X for a.e. t ∈ (0, T ),

and so by (3.26) it follows that

((
d

dt
−A

)
(E,H)(t), (v,w)− (E,H)(t)

)
X

+ (∂ϕ0(v,w), (v,w)− (E,H)(t))X

≥ ((ε−1f , µ−1g)(t), (v,w)− (E,H)(t))X for a.e. t ∈ (0, T ) and all (v,w) ∈ D(∂ϕ).

In conclusion, the unique solution of (VI) is a solution to (V̂I).

Remark 3.14. Let K ⊂X be a closed and convex subset satisfying (0, 0) ∈K. Then, the indicator functional
ϕ = IK satisfies all the assumptions of Theorem 3.11. Also, in view of (3.32), we notice that

(0, 0) ∈ ∂ϕ(v,w) ∀(v,w) ∈ D(∂ϕ) = K, (3.49)

from which and together with (3.4) it follows that ∂ϕ0(v,w) = (0, 0) for all (v,w) ∈ K. On the other hand,
(3.49) along with Definition 3.7 yields that

D(∂̂ϕ) =
{

(v,w) ∈ L2((0, T ),X) | (v,w)(t) ∈K for a.e. t ∈ (0, T )
}
.

In conclusion, in the case of the indicator functional ϕ = IK , (V̂I) admits the following obstacle-type form



∫ T

0

(
d

dt
(E,H)(t), (v,w)(t)− (E,H)(t)

)
X

+ ((E,H)(t),A(v,w)(t))X dt

≥
∫ T

0

((ε−1f , µ−1g)(t), (v,w)(t)− (E,H)(t))X dt,

for all (v,w) ∈ L2((0, T ), D(A)) with (v,w)(t) ∈K a.e. in (0, T ),

(E,H)(0) = (E0,H0).
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4. Faraday’s law

This section is devoted to the case of variational inequalities with Faraday’s law µ∂tH + curlE = 0, which
is obtained by specifying the nonlinearity ϕ to be independent of the second variable, i.e.,

ϕ(v,w) = j(v) ∀(v,w) ∈X, j : L2
ε(Ω)→ R. (4.1)

Corollary 4.1. Let all assumptions of Theorem 3.3 be satisfied with g = 0 and (4.1). Then,

∫
Ω

ε
d

dt
E(t) · (v −E(t))− curlH(t) · (v −E(t)) dx+ j(v)− j(E(t))

≥
∫

Ω

f(t) · (v −E(t)) dx for a.e. t ∈ (0, T ) and all v ∈ L2
ε(Ω),

µ
d

dt
H(t) + curlE(t) = 0 for a.e. t ∈ (0, T ),

(E,H)(0) = (E0,H0)

(VIF)

admits a unique solution (E,H) ∈ L∞((0, T ),H0(curl)×H(curl)) ∩W 1,∞((0, T ),X).

Proof. As pointed out in Remark 3.4 and since g = 0, (VI) is equivalent to−
d

dt
(E,H)(t) +A(E,H)(t) + (ε−1f(t), 0) ∈ ∂ϕ((E,H)(t)) for a.e. t ∈ (0, T ),

(E,H)(0) = (E0,H0).
(4.2)

Furthermore, in view of (4.1), the definition of the subdifferential (3.1) yields for all (v,w) ∈X that

(y, z) ∈ ∂ϕ(v,w) ⇔ z = 0 and (y,p− v)L2
ε(Ω) + j(v) ≤ j(p) ∀p ∈ L2

ε(Ω). (4.3)

Applying (4.3) to (4.2), we come to the conclusion that (4.2) is equivalent to (VIF), and so the assertion is valid.

Analogously to Definition 3.7, we introduce the Nemytskii operator of ∂j : L2
ε(Ω) → 2L

2
ε(Ω) by ∂̂j :

L2((0, T ),L2
ε(Ω))→ 2L

2((0,T ),L2
ε(Ω)), defined as follows:

∂̂j(v) :=
{
y ∈ L2((0, T ),L2

ε(Ω)) |y(t) ∈ ∂j(v(t)) for a.e. t ∈ (0, T )
}

D(∂̂j) := {v ∈ L2((0, T ),L2
ε(Ω)) | ∂̂j(v) 6= ∅}.

(4.4)

Analogously, ∂̂j
0

: D(∂̂j)→ L2((0, T ),L2
ε(Ω)) denotes the minimal section operator of ∂̂j, defined by∥∥∥∂̂j0

(v)
∥∥∥
L2((0,T ),L2

ε(Ω))
= min

y∈∂̂j(v)

‖y‖L2((0,T ),L2
ε(Ω)) . (4.5)

Considering Faraday’s law as in (VIF) allows us to make a regularity improvement in Theorem 3.11, which
leads to the following result:

Corollary 4.2. Let j : L2
ε(Ω) → R be a convex and l.s.c. function satisfying 0 ∈ ∂j(0). Furthermore, let

f ∈W 1,∞((0, T ),L2
ε(Ω)), E0 ∈H0(curl) ∩D(∂j), and H0 ∈H(curl). Then,
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T∫∫
0 Ω

ε
d

dt
E(t) · (v(t)−E(t))−H(t) · curl (v(t)−E(t)) + ε∂j0(v(t)) · (v(t)−E(t)) dxdt

≥
T∫∫

0 Ω

f(t) · (v(t)−E(t)) dx dt ∀v ∈ L2((0, T ),H0(curl)) ∩D(∂̂j),

µ
d

dt
H(t) + curlE(t) = 0 for a.e. t ∈ (0, T ),

(E,H)(0) = (E0,H0)

(V̂IF)

admits a solution (E,H) ∈ L∞((0, T ),H0(curl)×L2
µ(Ω))) ∩W 1,∞((0, T ),X).

Proof. We set g = 0 and ϕ : X → R as in (4.1). Then, according to (4.3), we have that

D(∂̂ϕ) = {(v,w) ∈ L2((0, T ),X) | ∂̂ϕ(v,w) 6= ∅} = {(v,w) ∈ L2((0, T ),X) |v ∈ D(∂̂j)}. (4.6)

For every (v,w) ∈ X and λ > 0, we set Jλ(v,w) = (J1
λ(v,w), J2

λ(v,w)). Then, due to (4.1), the definition of
the resolvent operator (3.2) yields for all (v,w) ∈X and λ > 0 that

1

λ
((v,w)− Jλ(v,w)) ∈ ∂ϕ(Jλ(v,w)) ⇒︸︷︷︸

(4.3)

w = J2
λ(v,w),

from which it follows that

Φλ(v,w) =
1

λ
(Id − Jλ)(v,w) =

1

λ
(v − J1

λ(v,w), 0) ∀(v,w) ∈X, ∀λ > 0. (4.7)

In the proof of Theorem 3.11, we have shown that there exists a null sequence {λn}∞n=1 ⊂ R+ such that the
corresponding sequence {(En,Hn)}∞n=1 of solutions to (3.7) is bounded in C1([0, T ],X) and

(En,Hn) ⇀ (E,H) weakly star in L∞((0, T ),X) as n→∞, (4.8)

d

dt
(En,Hn) ⇀

d

dt
(E,H) weakly star in L∞((0, T ),X) as n→∞, (4.9)

where (E,H) ∈W 1,∞((0, T ),X) is a solution to (V̂I). On the other hand, since (En,Hn) ∈ C([0, T ], D(A)) ∩
C1([0, T ],X) is the solution to the Cauchy problem (3.39), we obtain from (4.7) that

µ
d

dt
Hn(t) + curlEn(t) = 0 for all t ∈ [0, T ] and all n ∈ N. (4.10)

Therefore, thanks to the boundedness of {(En,Hn)}∞n=1 ⊂ C1([0, T ],X), it follows that {En}∞n=1 is bounded
in C([0, T ],H0(curl)). For this reason, there exists a subsequence of {λn}∞n=1, denoted again by {λn}∞n=1, such
that

En ⇀ Ẽ weakly star in L∞((0, T ),H0(curl)) as n→∞. (4.11)
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for some Ẽ ∈ L∞((0, T ),H0(curl)). Combining (4.8)–(4.11) together, we obtain

E = Ẽ ∈ L∞((0, T ),H0(curl)) and
d

dt
H(t) + curlE(t) = 0 for a.e. t ∈ (0, T ). (4.12)

In particular, (4.12) implies for all w ∈H(curl) and a.e. t ∈ (0, T ) that∫
Ω

µ
d

dt
H(t) · (w −H(t)) dx = −

∫
Ω

curlE(t) ·w − curlE(t) ·H(t) dx

= −
∫

Ω

E(t) · curlw − curlE(t) ·H(t) dx.

(4.13)

Finally, applying (4.1), (4.6) and (4.13) to (V̂I) along with (4.12), we come to the conclusion that (E,H) ∈
L∞((0, T ),H0(curl)×L2

µ(Ω))) ∩W 1,∞((0, T ),X) is a solution to (V̂IF).

Remark 4.3. As in Remark 3.14, in the case of the indicator functional j = IC : L2
ε(Ω) → R with a closed

and convex subset C ⊂ L2
ε(Ω) satisfying 0 ∈ C, (V̂IF) admits the following obstacle-type form:

T∫∫
0 Ω

ε
d

dt
E(t) · (v(t)−E(t))−H(t) · curl (v(t)−E(t)) dxdt ≥

T∫∫
0 Ω

f(t) · (v(t)−E(t)) dxdt

for all v ∈ L2((0, T ),H0(curl)) with v(t) ∈ C a.e. in (0, T ),

µ
d

dt
H(t) + curlE(t) = 0 for a.e. t ∈ (0, T ),

(E,H)(0) = (E0,H0).

(V̂IF)

Appendix A

Proof of (2.1). We set

Z :=
{
q ∈H(curl) | (q, curlv)L2(Ω) = (curl q,v)L2(Ω) ∀v ∈H(curl)

}
.

By definition, C∞0 (Ω) ⊂ Z, and Z ⊂H(curl) is a closed subspace. Therefore, the closure of C∞0 (Ω) w.r.t. the
H(curl)-topology is contained in Z, i.e., H0(curl) ⊂ Z. As a consequence, the Hilbert projection theorem
yields that

Z = H0(curl)⊕H0(curl)⊥

with H0(curl)⊥ = {q ∈ Z | (q,v)H(curl) = 0 ∀v ∈ H0(curl)}. We show that H0(curl)⊥ = {0}, which

implies (2.1). To this aim, let q ∈H0(curl)⊥ be arbitrarily fixed. By definition, it follows that

(curl q, curlv)L2(Ω) = −(q,v)L2(Ω) ∀v ∈ C∞0 (Ω),

and so curl q ∈H(curl) with curl curl q = −q. This together with q ∈ Z implies

(curl q, curl q)L2(Ω) = (q, curl curl q)L2(Ω) = −(q, q)L2(Ω) ⇒ ‖q‖H(curl) = 0.
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Appendix B

Proof of Lemma 2.1. By B : D(B) ⊂ X → X, we denote the infinitesimal generator of {St}t∈R. Since {St}t∈R
is a strongly continuous group of unitary operators, Stone’s theorem ([25], Thm. 10.8, p. 41) implies that
B : D(B) ⊂X →X is skew-adjoint. Now, since D(B) ⊂X and C∞0 ((0, T ),X) ⊂ L1((0, T ),X) are dense, there
exist {(en,0,hn,0)}∞n=1 ⊂ D(B) and {(wn, w̃n)}∞n=1 ⊂ C∞0 ((0, T ),X) such that

lim
n→∞

‖(en,0 − e0,hn,0 − h0)‖X = 0 and lim
n→∞

‖(wn −w, w̃n − w̃)‖L1((0,T ),X) = 0. (B.1)

For every n ∈ N, we define

(en,hn)(t) := St(en,0,hn,0) +

∫ t

0

St−s(wn, w̃n)(s) ds ∀t ∈ [0, T ].

By definition and since {St}t∈R is unitary, we infer that

‖(en − e,hn − h)(t)‖X =

∥∥∥∥St(en,0 − e0,hn,0 − h0) +

∫ t

0

St−s(wn −w, w̃n − w̃)(s) ds

∥∥∥∥
X

≤ ‖(en,0 − e0,hn,0 − h0)‖X + ‖(wn −w, w̃n − w̃)‖L1((0,t),X) ∀t ∈ [0, T ], ∀n ∈ N.

It follows therefore for every n ∈ N that

‖(en − e,hn − h)‖C([0,T ],X) ≤ ‖(en,0 − e0,hn,0 − h0)‖X + ‖(wn −w, w̃n − w̃)‖L1((0,T ),X),

and so (B.1) implies

lim
n→∞

‖(en − e,hn − h)‖C([0,T ],X) = 0. (B.2)

On the other hand, since (en,0,hn,0) ∈ D(B) and (wn, w̃n) ∈ C∞0 ((0, T ),X), it holds for every n ∈ N that
(en,hn) ∈ C([0, T ], D(B)) ∩ C1([0, T ],X), and it is exactly the solution of


d

dt
(en,hn)(t) = B(en,hn)(t) + (wn, w̃n)(t) ∀t ∈ [0, T ],

(en,hn)(0) = (en,0,hn,0).

See ([25], Cor. 2.5, p. 107) for this classical result. Thus, for every t ∈ [0, T ] and n ∈ N, it follows that

∫ t

0

(
d

dt
(en,hn)(s), (en,hn)(s)

)
X

ds =

∫ t

0

(B(en,hn)(s), (en,hn)(s))X ds

+

∫ t

0

((wn, w̃n)(s), (en,hn)(s))X ds =

∫ t

0

((wn, w̃n)(s), (en,hn)(s))X ds,
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since B is skew-adjoint. In conclusion, we obtain for every t ∈ [0, T ] and n ∈ N that

1

2
‖(en,hn)(t)‖2X −

1

2
‖(en,0,hn,0)‖2X =

∫ t

0

((wn, w̃n)(s), (en,hn)(s))X ds.

Passing to the limit n→∞, (B.1) and (B.2) yield the energy balance equality:

1

2

∥∥(e,h)(t)
∥∥2

X
=

1

2

∥∥(e0,h0)
∥∥2

X
+

∫ t

0

((w, w̃)(s), (e,h)(s))X ds ∀t ∈ [0, T ].

Appendix C

Let n ∈ N and let (En,Hn) ∈ C([0, T ],X) denote the unique solution of (3.7). Furthermore, let t ∈ [0, T )
and h ∈ (0, T − t]. By definition,

(En,Hn)(t+ h) = Tt+h(E0,H0) +

∫ h

0

Tt+h−s
(
(ε−1f , µ−1g)(s)− Φλn((En,Hn)(s))

)
ds

+

∫ t+h

h

Tt+h−s
(
(ε−1f , µ−1g)(s)− Φλn((En,Hn)(s))

)
ds,

= Tt
(
Th(E0,H0) +

∫ h

0

Th−s
(
(ε−1f , µ−1g)(s)− Φλn((En,Hn)(s))

)
ds

)
+

∫ t

0

Tt−s
(
(ε−1f , µ−1g)(s+ h)− Φλn((En,Hn)(s+ h))

)
ds.

Subtracting (3.7) from the above expression, it follows that

(En,Hn)(t+ h)− (En,Hn)(t)

= hTt
(
Th(E0,H0)− (E0,H0)

h
+

1

h

∫ h

0

Th−s((ε−1f , µ−1g)(s)− Φλn((En,Hn)(s))) ds

)
+

∫ t

0

Tt−s
(

(ε−1f , µ−1g)(s+ h)− (ε−1f , µ−1g)(s)− Φλn((En,Hn)(s+ h)) + Φλn((En,Hn)(s))

)
ds.

Making use of the Lipschitz continuity of Φλn : X →X and the regularity properties (f ,g) ∈W 1,∞((0, T ),X)
and (E0,H0) ∈ D(A), we obtain that

‖(En,Hn)(t+ h)− (En,Hn)(t)‖X

≤ h
(∥∥∥∥Th(E0,H0)− (E0,H0)

h

∥∥∥∥
X

+ ‖(ε−1f , µ−1g)‖C([0,T ],X) + ‖Φλn(En,Hn)‖C([0,T ],X)

)
+

∫ t

0

h

∥∥∥∥ (ε−1f , µ−1g)(s+ h)− (ε−1f , µ−1g)(s)

h

∥∥∥∥
X

λ−1
n ‖(En,Hn)(s+ h)− (En,Hn)(s)‖X ds

≤ hc+ hλ−1
n

∥∥∥∥ d

dt
(ε−1f , µ−1g)

∥∥∥∥
L∞((0,T ),X)

∫ t

0

‖(En,Hn)(s+ h)− (En,Hn)(s)‖X ds

with a constant c > 0, independent of t, h and n. In conclusion, the Gronwall lemma yields that (En,Hn) ∈
C0,1([0, T ],X).
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