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SHAPE OPTIMIZATION FOR SUPERCONDUCTORS GOVERNED
BY H(CURL)-ELLIPTIC VARIATIONAL INEQUALITIES\ast 

ANTOINE LAURAIN\dagger , MALTE WINCKLER\ddagger , AND IRWIN YOUSEPT\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . This paper is devoted to the theoretical and numerical study of an optimal design
problem in high-temperature superconductivity (HTS). The shape optimization problem is to find
an optimal superconductor shape minimizes a certain cost functional under a given target on the
electric field over a specific domain of interest. For the governing PDE-model, we consider an
elliptic curl-curl variational inequality (VI) of the second kind with an L1-type nonlinearity. In
particular, the nonsmooth VI character and the involved H(curl)-structure make the corresponding
shape sensitivity analysis challenging. To tackle the nonsmoothness, a penalized dual VI formulation
is proposed, leading to the Gateaux differentiability of the corresponding dual variable mapping.
This property allows us to derive the distributed shape derivative of the cost functional through
rigorous shape calculus on the basis of the averaged adjoint method. The developed shape derivative
turns out to be uniformly stable with respect to the penalization parameter, and strong convergence
of the penalized problem is guaranteed. Based on the achieved theoretical findings, we propose three-
dimensional numerical solutions, realized using a level set algorithm and a Newton method with the
N\'ed\'elec edge element discretization. Numerical results indicate a favorable and efficient performance
of the proposed approach for a specific HTS application in superconducting shielding.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . shape optimization, high-temperature superconductivity, Maxwell variational in-
equality, Bean's critical-state model, superconducting shielding, level set method

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 35J86, 35Q93, 35Q60

\bfD \bfO \bfI . 10.1137/19M1294150

1. Introduction. The physical phenomenon of superconductivity is character-
ized by the zero electrical resistance and the expulsion of magnetic fields (Meissner
effect) occurring up to a certain level of the operating temperature and magnetic
field strength. Nowadays, numerous key technologies can be realized through high-
temperature superconductivity (HTS), including magnetic resonance imaging, mag-
netic levitation, powerful superconducting wires, particle accelerators, magnetic en-
ergy storage, and many more. In particular, to improve and optimize their efficiency
and reliability, advanced shape optimization (design) methods are highly desirable.

For instance, efficiently designed superconducting shields are a practical way to
protect certain areas from magnetic fields. Basically, there are only two possible ways
for a magnetic field to penetrate an area shielded by a superconductor---through the
material itself and through opened parts such as holes or gaps. The former depends
solely on the properties of the material, the operating temperature, and the magnetic
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field strength, whereas the latter is also highly affected by the geometry. In the case
of an HTS coil, for instance, physical experiments [22] show that the enclosed area is
still shielded even if the opened ends are directly facing the field lines. On the other
hand, if the diameter gets too large, field lines start penetrating the inside. Thus, the
following question arises: how should we design superconducting shields in order to
save material and still keep the electromagnetic field penetration to a minimum?

In the recent past, the Bean critical-state model for HTS has been extensively
studied by several authors. In the eddy current case, it leads to a parabolic Maxwell
variational inequality (VI) of the first kind (see [4, 38]), while in the full Maxwell case it
gives rise to a hyperbolic Maxwell VI of the second kind [51, 53] (see also [54] regarding
hyperbolic Maxwell obstacle problems). For both parabolic and hyperbolic Maxwell
VIs, efficient finite element methods have been proposed and analyzed in [3, 10, 47, 48].

This paper focuses on the sensitivity analysis and numerical investigation for a
shape optimization problem in HTS. Our task is to find an admissible superconductor
shape which minimizes a tracking-type objective functional under a given target on
the electric field over a specific domain of interest. For the governing PDE-model,
we consider the elliptic (time-discrete) counterpart to the Bean critical-state model
governed by Maxwell's equations [47, 51, 53], given by an elliptic curl-curl VI of the
second kind. To be more precise, let \Omega \subset \BbbR 3 be a bounded Lipschitz domain, L > 0
be a fixed constant, and

\scrO := \{ \omega \subset B : \omega is open, Lipschitz, with uniform Lipschitz constant L\} 

for some measurable subsetB \subset \Omega . For every admissible superconductor shape \omega \in \scrO ,
let \bfitE = \bfitE (\omega ) \in \bfitH 0(curl) denote the associated electric field given as the solution of

a(\bfitE ,\bfitv  - \bfitE ) + \varphi \omega (\bfitv ) - \varphi \omega (\bfitE ) \geq 
\int 
\Omega 

\bfitf \cdot (\bfitv  - \bfitE ) dx \forall \bfitv \in \bfitH 0(curl),(VI\omega )

with the elliptic curl-curl bilinear form a : \bfitH 0(curl)\times \bfitH 0(curl) \rightarrow \BbbR defined by

a(\bfitv ,\bfitw ) :=

\int 
\Omega 

\nu curl\bfitv \cdot curl\bfitw dx+

\int 
\Omega 

\varepsilon \bfitv \cdot \bfitw dx(1.1)

and the nonsmooth L1-type functional

\varphi \omega : \bfitL 
1(\Omega ) \rightarrow \BbbR , \bfitv \mapsto \rightarrow jc

\int 
\omega 

| \bfitv (x)| dx.(1.2)

Here, jc > 0 denotes the critical current density of the superconductor \omega , and
\epsilon , \nu : \Omega \rightarrow \BbbR 3\times 3 are the electric permittivity and the magnetic reluctivity, respectively.
The right-hand side \bfitf : \Omega \rightarrow \BbbR 3 stands for the applied current source. Altogether,
the optimal HTS design problem we focus on reads as follows:

min
\omega \in \scrO 

J(\omega ) :=
1

2

\int 
B

\kappa | \bfitE (\omega ) - \bfitE d| 2 dx+

\int 
\omega 

dx(P)

for some given target \bfitE d : B \rightarrow \BbbR 3 and weight coefficient \kappa : B \rightarrow (0,\infty ). The precise
mathematical assumptions for all data involved in (P) are specified in Assumption 2.1.

To the best of the authors' knowledge, this paper is the first theoretical and nu-
merical study of the shape optimization subject to \bfitH (curl)-elliptic VI of the second
kind. Both the involved \bfitH (curl)-structure and the nonsmooth VI character make
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SHAPE OPTIMIZATION FOR SUPERCONDUCTORS 2249

the corresponding analysis truly challenging. We refer to [46, 49, 50] for the optimal
control of static Maxwell equations. Quite recently, the optimal control of hyperbolic
Maxwell variational inequalities arising in HTS was investigated in [52]. While (P)
admits an optimal solution (Theorem 2.4), the differentiability of the dual variable
mapping associated with (VI\omega ) cannot be guaranteed. This property is, however, in-
dispensable for our shape sensitivity analysis. Therefore, we propose to approximate
(P) by replacing (VI\omega ) through its penalized dual formulation (3.1), for which the
corresponding dual variable mapping is Gateaux-differentiable (Lemma 3.1). This
allows us to prove our main theoretical result (Theorem 4.6) on the distributed shape
derivative of the cost functional through rigorous shape calculus on the basis of the
averaged adjoint method. Importantly, the established shape derivative is uniformly
stable with respect to the penalization parameter (Theorem 5.1), and strong conver-
gence of the penalized approach can be guaranteed (Theorem 5.3). In addition, the
Newton method is applicable to the penalized dual formulation (3.1). Thus, efficient
numerical optimal shapes can be realized by means of a level set algorithm along with
the developed shape derivative and a symmetrization strategy. All these theoretical
and numerical evidences indicate the favorable performance of our approach to deal
with shape optimization problems subject to a VI of the second kind.

Theoretical results on optimal design problems were obtained in [2, 8, 9, 11, 14,
28, 34, 43], but there are few early references for VI-constrained numerical shape
optimization (see [13, 21, 32, 42]). Recent publications include [16] regarding a so-
lution algorithm in the infinite dimensional setting for shape optimization problems
governed by VIs of the first kind and [12, 30] concerning a shape optimization method
based on a regularized variant of VI of the first kind.

The concept of shape derivative [7, 15, 43] is the basis for the sensitivity analy-
sis of shape functionals. We use the averaged adjoint method introduced in [44],
a Lagrangian-type method for the efficient computation of shape derivatives. La-
grangian methods are commonly used in shape optimization and have the advantage
of providing the shape derivative without the need to compute the material derivative
of the state (see [1, 5, 7, 17, 18, 20, 37]). Compared to these approaches, the averaged
adjoint method is fairly general due to minimal required conditions.

2. Preliminaries. For a given Banach space V , we denote its norm by \| \cdot \| V .
If V is a Hilbert space, then (\cdot , \cdot )V stands for its scalar product and \| \cdot \| V for the
induced norm. In the case of V = \BbbR n, we renounce the subscript in the (Euclidean)
norm and write | \cdot | . The Euclidean scalar product is denoted by a dot, and \otimes is
the standard outer product for vectors in \BbbR 3. Hereinafter, a bold typeset indicates
vector-valued functions and their respective spaces. The Banach space \scrC 1(\Omega ,\BbbR 3\times 3) is
equipped with the standard norm, and for \bfscrC 0,1(\Omega ) := \scrC 0,1(\Omega ,\BbbR 3) we use

\| \bfittheta \| \bfscrC 0,1(\Omega ) = sup
x\in \Omega 

| \bfittheta (x)| + sup
x \not =y\in \Omega 

| \bfittheta (x) - \bfittheta (y)| 
| x - y| 

.

Now, we introduce the central Hilbert space used throughout this paper:

\bfitH (curl) := \{ \bfitv \in \bfitL 2(\Omega ) : curl\bfitv \in \bfitL 2(\Omega )\} ,

where curl is understood in the distributional sense. It is equipped with the corre-
sponding graph norm

\| \bfitv \| \bfitH (\bfc \bfu \bfr \bfl ) :=
\bigl( 
\| \bfitv \| 2\bfitL 2(\Omega ) + \| curl\bfitv \| 2\bfitL 2(\Omega )

\bigr) 1
2 \forall \bfitv \in \bfitH (curl).
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2250 ANTOINE LAURAIN, MALTE WINCKLER, AND IRWIN YOUSEPT

As usual, \bfscrC \infty 
0 (\Omega ) denotes the space of all infinitely differentiable functions with com-

pact support in \Omega . The space \bfitH 0(curl) stands for the closure of \bfscrC \infty 
0 (\Omega ) with respect

to the \bfitH (curl)-norm.
Next, we present all the necessary assumptions for the material parameters and

the given data in (P) and (VI\omega ).

Assumption 2.1 (material parameters and given data).
(A1) The subset B \subset \Omega is a Lipschitz domain, \bfitE d \in \bfscrC 1(B), and \kappa \in \scrC 1(B).
(A2) We assume jc \in \BbbR +, and the material parameters \epsilon , \nu : \Omega \rightarrow \BbbR 3\times 3 are assumed

to be L\infty (\Omega ,\BbbR 3\times 3)\cap \scrC 1(B,\BbbR 3\times 3), symmetric, and uniformly positive definite,
i.e., there exist \nu , \epsilon > 0 such that

(2.1) \xi \sansT \nu (x)\xi \geq \nu | \xi | 2 and \xi \sansT \epsilon (x)\xi \geq \epsilon | \xi | 2 for a.e. x \in \Omega and all \xi \in \BbbR 3.

(A3) The right-hand side satisfies \bfitf \in \bfitL 2(\Omega ) \cap \bfscrC 1(B).

Remark 2.2.
(i) As pointed out earlier, in the context of superconducting shields, one looks for

an optimal superconductor shape \omega that minimizes both the electromagnetic
field penetration and the volume of material. This can be realized by solving
(P) with \bfitE d = 0, which obviously satisfies (A1).

(ii) The material assumption (A2) holds true, for instance, in the case of homo-
geneous HTS material. In this case, \epsilon , \mu are constant in B.

(iii) A choice for the \bfitf satisfying (A3) is given by an induction coil away from the
superconducting region B. In this case, \bfitf \equiv 0 in B.

For every fixed \omega \subset \scrO the existence of a unique solution \bfitE \in \bfitH 0(curl) of (VI\omega ) is
covered by the fundamental well-posedness result by Lions and Stampacchia. Accord-
ing to [27, Theorem 2.2] we have to verify that the bilinear form a is coercive and
continuous. Indeed, in view of (1.1), (A2) yields

(2.2)
a(\bfitv ,\bfitv ) \geq min\{ \epsilon , \nu \} \| \bfitv \| 2\bfitH (\bfc \bfu \bfr \bfl ),

| a(\bfitv ,\bfitw )| \leq (\| \nu \| L\infty (\Omega ,\BbbR 3\times 3) + \| \epsilon \| L\infty (\Omega ,\BbbR 3\times 3))\| \bfitv \| \bfitH (\bfc \bfu \bfr \bfl )\| \bfitw \| \bfitH (\bfc \bfu \bfr \bfl )

for all \bfitv ,\bfitw \in \bfitH 0(curl). Moreover, according to (1.2), the nonlinearity \varphi \omega is convex,
proper, and lower semicontinuous. Therefore, concluding from [27, Theorem 2.2],
(VI\omega ) admits for every \omega \subset \scrO a unique solution \bfitE \in \bfitH 0(curl). Additionally, it is
well-known (cf. [45]) that there exists a unique \bfitlambda \in \bfitL \infty (\omega ) such that

(2.3)

\left\{   a(\bfitE ,\bfitv ) +

\int 
\omega 

\bfitlambda \cdot \bfitv dx =

\int 
\Omega 

\bfitf \cdot \bfitv dx \forall \bfitv \in \bfitH 0(curl),

| \bfitlambda (x)| \leq jc, \bfitlambda (x) \cdot \bfitE (x) = jc| \bfitE (x)| for a.e. x \in \omega .

On the other hand, if there exists a pair (\bfitE ,\bfitlambda ) \in \bfitH 0(curl)\times \bfitL \infty (\Omega ) satisfying (2.3),
we readily obtain that \bfitE is the unique solution of (VI\omega ) since it holds that\int 

\Omega 

\bfitf \cdot (\bfitv  - \bfitE ) dx = a(\bfitE ,\bfitv  - \bfitE ) +

\int 
\omega 

\bfitlambda \cdot \bfitv dx - 
\int 
\omega 

\bfitlambda \cdot \bfitE dx

(2.3)\underbrace{}  \underbrace{}  
\leq a(\bfitE ,\bfitv  - \bfitE ) +

\int 
\omega 

jc| \bfitv | dx - 
\int 
\omega 

jc| \bfitE | dx \forall \bfitv \in \bfitH 0(curl).

As a conclusion, the dual formulation (2.3) admits for every \omega \subset \scrO a unique solution
(\bfitE ,\bfitlambda ) \in \bfitH 0(curl) \times \bfitL \infty (\Omega ), and its primal solution \bfitE \in \bfitH 0(curl) coincides with

D
ow

nl
oa

de
d 

06
/2

2/
21

 to
 1

32
.2

52
.2

07
.5

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SHAPE OPTIMIZATION FOR SUPERCONDUCTORS 2251

the solution to (VI\omega ). Throughout this paper the following compactness result for the
set of domains \scrO is pivotal to our analysis [15, Theorem 2.4.10].

Theorem 2.3. Let Assumption 2.1 hold and \{ \omega n\} n\in \BbbN \subset \scrO . Then, there exist
\omega \in \scrO and a subsequence \{ \omega nk

\} k\in \BbbN which converges to \omega in the sense of Hausdorff,
and in the sense of characteristic functions. Moreover, \omega nk

and \partial \omega nk
converge in the

sense of Hausdorff toward \omega and \partial \omega , respectively.

With Theorem 2.3 at hand, it is possible to prove the existence of an optimal
shape for (P) directly. However, as the same result is obtained as a byproduct of
Theorem 5.3, we do not give a proof at this point.

Theorem 2.4. Under Assumption 2.1 the shape optimization problem (P) has an
optimal solution \omega  \star \in \scrO .

3. Penalized shape optimization approach. As pointed out earlier, our
shape sensitivity analysis requires the differentiability of the dual variable mapping
\bfitE \mapsto \rightarrow \bfitlambda in \bfitL 2(\Omega ), which cannot be guaranteed in general. To cope with this regularity
issue, we approximate (P) by

(P\gamma ) min
\omega \in \scrO 

J\gamma (\omega ) :=
1

2

\int 
B

\kappa | \bfitE \gamma (\omega ) - \bfitE d| 2 +
\int 
\omega 

dx,

where \bfitE \gamma := \bfitE \gamma (\omega )\in \bfitH 0(curl) is specified by the penalized dual formulation of (2.3):

(3.1)

\left\{       
a(\bfitE \gamma ,\bfitv ) +

\int 
\omega 

\bfitlambda \gamma \cdot \bfitv dx =

\int 
\Omega 

\bfitf \cdot \bfitv dx \forall \bfitv \in \bfitH 0(curl)

\bfitlambda \gamma (x) =
jc\gamma \bfitE 

\gamma (x)

max\gamma \{ 1, \gamma | \bfitE \gamma (x)| \} 
for a.e. x \in \omega .

In this context, max\gamma : \BbbR 3 \rightarrow \BbbR denotes the Moreau--Yosida-type regularization (cf.
[6]) of the max-function given by

(3.2) max\gamma \{ 1, x\} :=

\left\{                 

x if x  - 1 \geq 
1

2\gamma 
,

1 +
\gamma 

2

\biggl( 
x  - 1 +

1

2\gamma 

\biggr) 2

if | x  - 1| \leq 
1

2\gamma 
,

1 if x  - 1 \leq  - 
1

2\gamma 
.

The following lemma summarizes the Gateaux-differentiability result for the dual
variable mapping associated with (3.1). For the convenience of the reader, we provide
a brief sketch of the proof following [6].

Lemma 3.1. Let \gamma > 0 and Assumption 2.1 hold. Then,

(3.3) \Lambda \gamma : \bfitL 
2(\Omega ) \rightarrow \bfitL 2(\Omega ), \Lambda \gamma (\bfite ) :=

jc\gamma \bfite 

max\gamma \{ 1, \gamma | \bfite | \} 

is Gateaux-differentiable with the Gateaux-derivative

(3.4) \Lambda \prime 
\gamma (\bfite )\bfitw =

jc\gamma \bfitw 

max\gamma \{ 1, \gamma | \bfite | \} 

 - \gamma 

\biggl( 
1\scrA \gamma (\bfite ) + \gamma 

\biggl( 
\gamma | \bfite |  - 1 +

1

2\gamma 

\biggr) 
1\scrS \gamma (\bfite )

\biggr) 
(\bfite \cdot \bfitw )\Lambda \gamma (\bfite )

max\gamma \{ 1, \gamma | \bfite | \} | \bfite | 
\forall \bfite ,\bfitw \in \bfitL 2(\Omega ),
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2252 ANTOINE LAURAIN, MALTE WINCKLER, AND IRWIN YOUSEPT

where 1\scrA \gamma (\bfite ) and 1\scrS \gamma (\bfite ) stand for the characteristic functions of the disjoint sets
\scrA \gamma (\bfite ) = \{ x \in \Omega : \gamma | \bfite (x)| \geq 1 + 1/2\gamma \} and \scrS \gamma (\bfite ) = \{ x \in \Omega : | \gamma | \bfite (x)|  - 1| < 1/2\gamma \} ,
respectively. Furthermore, \Lambda \gamma is Lipschitz-continuous and monotone, i.e.,

(3.5) (\Lambda \gamma (\bfitw 1) - \Lambda \gamma (\bfitw 2),\bfitw 1  - \bfitw 2)\bfitL 2(\Omega ) \geq 0 \forall \bfitw 1,\bfitw 2 \in \bfitL 2(\Omega ).

Proof. At first, let us note that the function \bfitxi \gamma : \BbbR 3 \rightarrow \BbbR 3, defined by

\bfitxi \gamma (x) :=
jc\gamma x

max\gamma \{ 1, \gamma | x| \} 
,

is continuously differentiable by the construction of max\gamma : \BbbR 3 \rightarrow \BbbR (see (3.2)). More-
over, by using the mean value theorem as in [6, Lemma 4.1], \bfitxi \gamma is also globally
Lipschitz continuous and monotone in the following sense:\bigl( 

\bfitxi \gamma (x) - \bfitxi \gamma (y)
\bigr) 
\cdot 
\bigl( 
x - y

\bigr) 
\geq 0 \forall x, y \in \BbbR 3.

This readily implies that the same properties hold for \Lambda \gamma . Now, applying the differen-
tiability of \bfitxi \gamma : \BbbR 3 \rightarrow \BbbR 3 along with Lebesgue's dominated convergence theorem leads
to the directional differentiability of \Lambda \gamma : \bfitL 

2(\Omega ) \rightarrow \bfitL 2(\Omega ) with the directional deriva-
tive given by (3.4). In view of (3.4), for every \bfite \in \bfitL 2(\Omega ), the mapping \bfitw \mapsto \rightarrow \Lambda \prime 

\gamma (\bfite )\bfitw 
is linear and bounded in \bfitL 2(\Omega ), and so the Gateaux-differentiability follows.

In addition to Lemma 3.1, it is easy to see that the following estimate holds by
definition of \scrS \gamma (\bfite ) for every \bfite \in \bfitL 2(\Omega ):

(3.6) \gamma 

\biggl( 
\gamma | \bfite |  - 1 +

1

2\gamma 

\biggr) 
\leq 1 a.e. in \scrS \gamma (\bfite ).

For convenience we define the matrix-valued function \bfitpsi \gamma : \bfitL 2(\Omega ) \rightarrow L2(\Omega ,\BbbR 3\times 3) by

\bfitpsi \gamma (\bfite ) :=
jc\gamma \bfitI 3

max\gamma \{ 1, \gamma | \bfite | \} 
 - \gamma 

\biggl( 
1\scrA \gamma (\bfite ) + \gamma 

\biggl( 
\gamma | \bfite |  - 1 +

1

2\gamma 

\biggr) 
1\scrS \gamma (\bfite )

\biggr) 
\bfite \otimes \Lambda \gamma (\bfite )

max\gamma \{ 1, \gamma | \bfite | \} | \bfite | 
,

(3.7)

where \bfitI 3 denotes the identity matrix in \BbbR 3\times 3. By multiplying (3.4) with \bfitv \in \bfitL 2(\Omega )
and using (\bfite \cdot \bfitw )(\Lambda \gamma (\bfite ) \cdot \bfitv ) =

\bigl[ \bigl( 
\bfite \otimes \Lambda \gamma (\bfite )

\bigr) 
\bfitv 
\bigr] 
\cdot \bfitw , for all \bfite ,\bfitv ,\bfitw \in \BbbR 3, we obtain

(3.8) \Lambda \prime 
\gamma (\bfite )\bfitw \cdot \bfitv = \bfitpsi \gamma (\bfite )\bfitv \cdot \bfitw \forall \bfite ,\bfitw ,\bfitv \in \bfitL 2(\Omega ).

Thanks to the Lipschitz continuity and monotonicity of \Lambda \gamma (Lemma 3.1) along with
(2.2), the operator \bfitA : \bfitH 0(curl) \rightarrow \bfitH 0(curl)

\ast defined by

\langle \bfitA (\bfitv ),\bfitw \rangle := a(\bfitv ,\bfitw ) + (\Lambda \gamma (\bfitv ),\bfitw )\bfitL 2(\Omega ) \forall \bfitv ,\bfitw \in \bfitH 0(curl)

is strictly monotone, coercive, and (radially) continuous. Thus, the well-posedness of
(3.1) follows by the theorem of Minty--Browder [41, Theorem 2.18]. Moreover, (3.2)
implies for every \bfite \in \bfitL 2(\Omega ) that

(3.9) max\gamma \{ 1, \gamma | \bfite | \} \geq \gamma | \bfite | a.e. in \Omega .

Applying this estimate to (3.3) yields that

(3.10) \| \Lambda \gamma (\bfite )\| \bfitL \infty (\Omega ) \leq jc \forall \bfite \in \bfitL 2(\Omega ).
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Obviously, (3.2) yields for every \bfite \in \bfitL 2(\Omega ) that max\gamma \{ 1, \gamma | \bfite | \} \geq 1 almost everywhere
in \Omega . Hence, we obtain the following estimate for all \bfite ,\bfitv ,\bfitw \in \bfitL 2(\Omega ):

\int 
\Omega 

| \bfitpsi \gamma (\bfite )\bfitv \cdot \bfitw | dx
(3.6)\underbrace{}  \underbrace{}  
\leq 

\int 
\Omega 

jc\gamma | \bfitv \cdot \bfitw | 
max\gamma \{ 1, \gamma | \bfite | \} 

dx+ \gamma 

\int 
\Omega 

\bigm| \bigm| \bigl( \bfite \otimes \Lambda \gamma (\bfite )
\bigr) 
\bfitv \cdot \bfitw 

\bigm| \bigm| 
max\gamma \{ 1, \gamma | \bfite | \} | \bfite | 

dx(3.11)

(3.10)\underbrace{}  \underbrace{}  
\leq 2jc\gamma \| \bfitv \| \bfitL 2(\Omega )\| \bfitw \| \bfitL 2(\Omega ).

The next result states the existence of an optimal solution to (P\gamma ).

Theorem 3.2. Let Assumption 2.1 hold and \gamma > 0 be fixed. Then, (P\gamma ) admits
an optimal shape \omega \gamma 

 \star \in \scrO .

Proof. Let \{ \omega \gamma 
n\} n\in \BbbN \subset \scrO be a minimizing sequence for (P\gamma ) with the correspond-

ing states \bfitE \gamma 
n \in \bfitH 0(curl) solving (3.1) for \omega = \omega \gamma 

n and \bfitlambda \gamma 
n := \Lambda (\bfitE \gamma 

n). Thanks to
Theorem 2.3, there exists a subsequence of \{ \omega \gamma 

n\} n\in \BbbN (with a slight abuse of notation
we use the same index for the subsequence) and \omega \gamma 

 \star \subset \scrO such that \omega \gamma 
n \rightarrow \omega \gamma 

 \star as n \rightarrow \infty 
in the sense of characteristic functions.

We denote the solution to (3.1) for \omega = \omega \gamma 
 \star by \bfitE \gamma 

 \star \in \bfitH 0(curl) and \bfitlambda 
\gamma 
 \star := \Lambda \gamma (\bfitE 

\gamma 
 \star ).

Now, substracting (3.1) for \bfitE \gamma 
n from (3.1) for \bfitE \gamma 

 \star and testing the resulting equation
with \bfitv = \bfitE \gamma 

 \star  - \bfitE \gamma 
n yields

a(\bfitE \gamma 
 \star  - \bfitE \gamma 

n,\bfitE 
\gamma 
 \star  - \bfitE \gamma 

n) =

\int 
\Omega 

(\chi \omega \gamma 
 \star 
\bfitlambda \gamma 
 \star  - \chi \omega \gamma 

n
\bfitlambda \gamma 
n) \cdot (\bfitE \gamma 

n  - \bfitE \gamma 
 \star ) dx(3.12)

=

\int 
\Omega 

(\chi \omega \gamma 
 \star 
 - \chi \omega \gamma 

n
)\bfitlambda \gamma 

n \cdot (\bfitE \gamma 
n  - \bfitE \gamma 

 \star ) dx - 
\int 
\Omega 

\chi \omega \gamma 
 \star 
(\bfitlambda \gamma 

 \star  - \bfitlambda \gamma 
n) \cdot (\bfitE \gamma 

 \star  - \bfitE \gamma 
n) dx\underbrace{}  \underbrace{}  

=(\bfLambda \gamma (\chi \omega 
\gamma 
 \star 
\bfitE \gamma 

n) - \bfLambda \gamma (\chi \omega 
\gamma 
 \star 
\bfitE \gamma 

 \star ),\chi \omega 
\gamma 
 \star 
\bfitE \gamma 

n - \chi \omega 
\gamma 
 \star 
\bfitE \gamma 

 \star )\bfitL 2(\Omega )

\leq \underbrace{}  \underbrace{}  
(3.5)

\int 
\Omega 

(\chi \omega \gamma 
 \star 
 - \chi \omega \gamma 

n
)\bfitlambda \gamma 

n \cdot (\bfitE \gamma 
n  - \bfitE \gamma 

 \star ) dx.

Thus, (3.12) and (A2) of Assumption 2.1 yield

min\{ \nu , \epsilon \} \| \bfitE \gamma 
 \star  - \bfitE \gamma 

n\| 2\bfitH (\bfc \bfu \bfr \bfl ) \leq \| \chi \omega \gamma 
 \star 
 - \chi \omega \gamma 

n
\| L2(\Omega )\| \bfitlambda \gamma 

n\| \bfitL \infty (\Omega )\| \bfitE \gamma 
 \star  - \bfitE \gamma 

n\| \bfitH (\bfc \bfu \bfr \bfl )

(3.9)\underbrace{}  \underbrace{}  \Rightarrow \| \bfitE \gamma 
 \star  - \bfitE \gamma 

n\| \bfitH (\bfc \bfu \bfr \bfl ) \leq 
jc

min\{ \nu , \epsilon \} 
\| \chi \omega \gamma 

 \star 
 - \chi \omega \gamma 

n
\| L2(\Omega ).(3.13)

This implies \bfitE \gamma 
n \rightarrow \bfitE \gamma 

 \star in \bfitH 0(curl) since \omega \gamma 
n converges to \omega \gamma 

 \star in the sense of charac-
teristic functions as n \rightarrow \infty . Hence, we obtain

J\gamma (\omega 
\gamma 
n) =

1

2

\int 
B

\kappa | \bfitE \gamma 
n  - \bfitE d| 2 dx+

\int 
\omega \gamma 

n

dx \rightarrow 1

2

\int 
B

\kappa | \bfitE \gamma 
 \star  - \bfitE d| 2 dx+

\int 
\omega \gamma 

 \star 

dx = J\gamma (\omega 
\gamma 
 \star ).

Finally, the assertion follows since \omega \gamma 
n is a minimizing sequence for (P\gamma ).

4. Shape sensitivity analysis. This section is devoted to the sensitivity analy-
sis of the shape functional J\gamma (\omega ) in (P\gamma ) for \gamma > 0 fixed. We compute the shape de-
rivative using the averaged adjoint method (see [25, 44]). Let \bfitT t : \Omega \rightarrow \Omega be the flow
of a vector field \bfittheta \in \bfscrC 0,1

c (\Omega ,\BbbR 3) with compact support in B, i.e., \bfitT t(\bfittheta )(X) = x(t,X)
is the solution to the ordinary differential equation

(4.1)
d

dt
x(t,X) = \bfittheta (x(t,X)) for t \in [0, \tau ], x(0, X) = X \in \Omega ,
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2254 ANTOINE LAURAIN, MALTE WINCKLER, AND IRWIN YOUSEPT

for some given \tau > 0. It is well-known (see [43, p. 50]) that (4.1) admits a unique
solution for a sufficiently small \tau > 0. In order to keep the notation short, we write
\bfitT t := \bfitT t(\bfittheta ). Note that \bfitT t(B) = B and \bfitT t(X) = X for every X \in \Omega \setminus B since \bfittheta has
compact support in B. For \omega \in \scrO , we introduce the parameterized family of domains
\omega t := \bfitT t(\omega ) for all t \in [0, \tau ]. Let us now recall the definition of shape derivative used
in this paper.

Definition 4.1 (shape derivative). Let K : \scrO \rightarrow \BbbR be a shape functional. The
Eulerian semiderivative of K at \omega \in \scrO in direction \bfittheta \in \bfscrC 0,1

c (\Omega ,\BbbR 3) is defined as the
limit, if it exists,

dK(\omega )(\bfittheta ) := lim
t\searrow 0

K(\omega t) - K(\omega )

t
,

where \omega t = \bfitT t(\omega ). Moreover, K is said to be shape differentiable at \omega if it has a
Eulerian semiderivative at \omega for all \bfittheta \in \bfscrC 0,1

c (\Omega ,\BbbR 3) and the mapping

dK(\omega ) : \bfscrC 0,1
c (\Omega ,\BbbR 3) \rightarrow \BbbR , \bfittheta \mapsto \rightarrow dK(\omega )(\bfittheta )

is linear and continuous. In this case dK(\omega )(\bfittheta ) is called the shape derivative at \omega .

In the remainder of this section, we consider the perturbed domain \omega t and denote
the corresponding solution of (3.1) for \omega = \omega t by \bfitE 

\gamma 
t \in \bfitH 0(curl).

4.1. Averaged adjoint method. We begin by introducing the Lagrangian \scrL :
\scrO \times \bfitH 0(curl)\times \bfitH 0(curl) \rightarrow \BbbR associated with (P\gamma ) as follows:

(4.2) \scrL (\omega , \bfite ,\bfitv ) := 1

2

\int 
B

\kappa | \bfite  - \bfitE d| 2 dx+
\int 
\omega 

dx+a(\bfite ,\bfitv )+

\int 
\omega 

\Lambda \gamma (\bfite ) \cdot \bfitv dx - 
\int 
\Omega 

\bfitf \cdot \bfitv dx,

where \Lambda \gamma is given as in (3.3). In view of (4.2), we have for \omega \in \scrO and t \in [0, \tau ] that

(4.3) J\gamma (\omega t) = \scrL (\omega t,\bfitE 
\gamma 
t ,\bfitv ) \forall \bfitv \in \bfitH 0(curl).

Moreover, as \scrL is linear in \bfitv , the problem of finding \bfite \in \bfitH 0(curl) such that

\partial \bfitv \scrL (\omega t, \bfite ,\bfitv ; \^\bfitv ) = a(\bfite , \^\bfitv ) +

\int 
\omega t

\Lambda \gamma (\bfite ) \cdot \^\bfitv dx - 
\int 
\Omega 

\bfitf \cdot \^\bfitv dx = 0 \forall \^\bfitv \in \bfitH 0(curl)

is equivalent to (3.1) with \omega = \omega t and admits the same unique solution \bfitE \gamma 
t \in 

\bfitH 0(curl). In order to pull back the integrals over \omega t to the reference domain \omega ,
one uses the change of variables x \mapsto \rightarrow \bfitT t(x). Furthermore, to avoid the appearance of
the composed functions \bfite \circ \bfitT t and \bfitv \circ \bfitT t due to this change of variables, we reparam-
eterize the Lagrangian using the following covariant transformation, which is known
to be a bijection for \bfitH 0(curl) (cf. [31, p. 77]):

(4.4) \Psi t : \bfitH 0(curl) \rightarrow \bfitH 0(curl), \Psi t(\bfite ) := (D\bfitT  - \sansT 
t \bfite ) \circ \bfitT  - 1

t .

Here D\bfitT t : \BbbR 3 \rightarrow \BbbR 3\times 3 stands for the Jacobian matrix function of \bfitT t and we denote

D\bfitT  - \sansT 
t :=

\bigl( 
D\bfitT  - 1

t

\bigr) \sansT 
. It satisfies the important identity (see [19, Lemma 11])

(4.5)
\bigl( 
curl\Psi t(\bfite )

\bigr) 
\circ \bfitT t = \xi (t) - 1D\bfitT t curl \bfite 

with \xi (t) := detD\bfitT t. In this paper we always assume \tau > 0 small enough such that
\xi (t) > 0 for every t \in [0, \tau ]. That is, the transformation \bfitT t preserves orientation. In
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SHAPE OPTIMIZATION FOR SUPERCONDUCTORS 2255

view of the above discussion, we introduce the shape-LagrangianG : [0, \tau ]\times \bfitH 0(curl)\times 
\bfitH 0(curl) \rightarrow \BbbR as

(4.6) G(t, \bfite ,\bfitv ) := \scrL (\omega t,\Psi t(\bfite ),\Psi t(\bfitv )) =
1

2

\int 
B

\kappa | \Psi t(\bfite ) - \bfitE d| 2 dx+

\int 
\omega t

dx

+ a(\Psi t(\bfite ),\Psi t(\bfitv )) +

\int 
\omega t

\Lambda \gamma (\Psi t(\bfite )) \cdot \Psi t(\bfitv ) dx - 
\int 
\Omega 

\bfitf \cdot \Psi t(\bfitv ) dx.

The change of variables x \mapsto \rightarrow \bfitT t(x) inside the integrals (4.4) and (4.5) yields

G(t, \bfite ,\bfitv ) =
1

2

\int 
B

\kappa \circ \bfitT t| D\bfitT  - \sansT 
t \bfite  - \bfitE d \circ \bfitT t| 2\xi (t) dx+

\int 
\omega 

\xi (t) dx+

\int 
\Omega 

\BbbM 1(t) \bfc \bfu \bfr \bfl \bfite \cdot \bfc \bfu \bfr \bfl \bfitv dx

+

\int 
\Omega 

\BbbM 2(t)\bfite \cdot \bfitv dx+

\int 
\omega 

\BbbM 3(t, \bfite ) \cdot \bfitv dx - 
\int 
\Omega 

(\bfitf \circ \bfitT t) \cdot (D\bfitT  - \sansT 
t \bfitv )\xi (t) dx(4.7)

with the notation \BbbM 1(t) := \xi (t) - 1D\bfitT \sansT 
t (\nu \circ \bfitT t)D\bfitT t, \BbbM 2(t) := \xi (t)D\bfitT  - 1

t (\varepsilon \circ \bfitT t)D\bfitT 
 - \sansT 
t

and \BbbM 3(t, \bfite ) := \xi (t)D\bfitT  - 1
t \Lambda \gamma (D\bfitT 

 - \sansT 
t \bfite ). Note that the problem of finding \bfite t \in 

\bfitH 0(curl) such that \partial \bfitv G(t, \bfite t, 0; \^\bfitv ) = 0 for all \^\bfitv \in \bfitH 0(curl) is equivalent to (3.1)
with \omega = \omega t after applying the change of variables x \mapsto \rightarrow \bfitT t(x). Hence, it has the same
unique solution \bfitE \gamma 

t \in \bfitH 0(curl).
Next, the shape derivative of J\gamma is obtained as the partial derivative with respect

to t of the shape-Lagrangian G given by (4.7). For the convenience of the reader, we
recall the main result of the averaged adjoint method, adapted to our case.

Theorem 4.2 (averaged adjoint method). Let \gamma > 0. Moreover, we assume that
there exists \tau \in (0, 1] such that for every (t,\bfitv ) \in [0, \tau ]\times \bfitH 0(curl)

(H1) the mapping [0, 1] \ni s \mapsto \rightarrow G(t, s\bfitE \gamma 
t + (1 - s)\bfitE \gamma 

0 ,\bfitv ) is absolutely continuous;
(H2) the mapping [0, 1] \ni s \mapsto \rightarrow \partial \bfite G(t, s\bfitE \gamma 

t + (1 - s)\bfitE \gamma 
0 ,\bfitv ; \^\bfite ) belongs to L1(0, 1) for

every \^\bfite \in \bfitH 0(curl);
(H3) there exists a unique \bfitP \gamma 

t \in \bfitH 0(curl) that solves the averaged adjoint equation

(4.8)

\int 1

0

\partial \bfite G(t, s\bfitE \gamma 
t + (1 - s)\bfitE \gamma 

0 ,\bfitP 
\gamma 
t ; \^\bfite ) ds = 0 \forall \^\bfite \in \bfitH 0(curl);

(H4) the family \{ \bfitP \gamma 
t \} t\in [0,\tau ] satisfies

(4.9) lim
t\searrow 0

G(t,\bfitE \gamma 
0 ,\bfitP 

\gamma 
t ) - G(0,\bfitE \gamma 

0 ,\bfitP 
\gamma 
t )

t
= \partial tG(0,\bfitE \gamma 

0 ,\bfitP 
\gamma 
0 ).

Then, J\gamma is shape-differentiable in the sense of Definition 4.1 and it holds that

(4.10) dJ\gamma (\omega )(\bfittheta ) =
d

dt
J\gamma (\omega t)| t=0 = \partial tG(0,\bfitE \gamma 

0 ,\bfitP 
\gamma 
0 ),

where \bfitP \gamma 
0 is the so-called adjoint state solution of (4.8) with t = 0.

Remark 4.3. The main idea of the proof of Theorem 4.2 can be formally under-
stood in the following way. For t = 0, the averaged adjoint equation (4.8) coincides
with the adjoint equation (see (4.38) for its explicit expression):

(4.11) \partial \bfite G(0,\bfitE \gamma 
0 ,\bfitP 

\gamma 
0 ; \^\bfite ) = 0 \forall \^\bfite \in \bfitH 0(curl).

Then, assuming that the material derivative \partial t\bfitE 
\gamma 
t | t=0 exists, we have in view of (4.3)

and (4.6)

dJ\gamma (\omega )(\bfittheta ) =
d

dt
J\gamma (\omega t)| t=0 =

d

dt
G(t,\bfitE \gamma 

t ,\bfitv )| t=0

= \partial tG(0,\bfitE \gamma 
0 ,\bfitv ) + \partial \bfite G(0,\bfitE \gamma 

0 ,\bfitv ; \partial t\bfitE 
\gamma 
t | t=0) for any \bfitv \in \bfitH 0(curl).
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2256 ANTOINE LAURAIN, MALTE WINCKLER, AND IRWIN YOUSEPT

Using (4.11) and choosing \bfitv = \bfitP \gamma 
0 we obtain \partial \bfite G(0,\bfitE \gamma 

0 ,\bfitv ; \partial t\bfitE 
\gamma 
t | t=0) = 0, and the

above equation yields (4.10). The proof of Theorem 4.2 proceeds in a similar way,
except that the averaged adjoint \bfitP \gamma 

t allows us to obtain the same result without having
to introduce the material derivative \partial t\bfitE 

\gamma 
t | t=0. We refer to [44] or [25, Theorem 2.1]

for a detailed proof.

We verify that (H1)--(H4) are satisfied so that we may apply Theorem 4.2.

Lemma 4.4. Let Assumption 2.1 be satisfied. Then, (H1) and (H2) hold for every
(t,\bfitv ) \in [0, 1]\times \bfitH 0(curl).

Proof. First, (H1) is a direct consequence of (4.7) and Lemma 3.1. Before we
proceed to prove (H2), let us introduce the notation \scrE (s) := s\bfitE \gamma 

t + (1 - s)\bfitE \gamma 
0 . Now,

fix \tau \in (0, 1] and (t,\bfitv ) \in [0, \tau ] \times \bfitH 0(curl). Thanks to the Gateaux-differentiability
of \Lambda \gamma (Lemma 3.1), and using (4.7), we may compute

\partial \bfite G(t, \scrE (s),\bfitv ; \^\bfite ) =
\int 
B

\kappa \circ \bfitT t

\bigl( 
D\bfitT  - \sansT 

t \^\bfite \cdot (D\bfitT  - \sansT 
t \scrE (s) - \bfitE d \circ \bfitT t)

\bigr) 
\xi (t) dx(4.12)

+

\int 
\Omega 

\BbbM 1(t) curl \^\bfite \cdot curl\bfitv +\BbbM 2(t)\^\bfite \cdot \bfitv dx+

\int 
\omega 

\partial \bfite \BbbM 3

\bigl( 
t, \scrE (s)

\bigr) 
\^\bfite \cdot \bfitv dx

for every \^\bfite \in \bfitH 0(curl), where\int 
\omega 

\partial \bfite \BbbM 3

\bigl( 
t, \scrE (s)

\bigr) 
\^\bfite \cdot \bfitv dx =

\int 
\omega 

\xi (t)D\bfitT  - 1
t \Lambda \prime 

\gamma 

\bigl( 
D\bfitT  - \sansT 

t \scrE (s)
\bigr) 
(D\bfitT  - \sansT 

t \^\bfite ) \cdot \bfitv dx(4.13)

(3.7)\& (3.8)\underbrace{}  \underbrace{}  
=

\int 
\omega 

\xi (t)D\bfitT  - 2
t \bfitpsi \gamma 

\bigl( 
D\bfitT  - \sansT 

t \scrE (s)
\bigr) 
\bfitv \cdot \^\bfite dx.

Moreover, the following asymptotic expansions hold (see [43, Lemma 2.31]):

(4.14) \xi (t) = 1 + tdiv(\bfittheta ) + o(t), D\bfitT t = \bfitI 3 + tD\bfittheta + o(t), D\bfitT  - 1
t = \bfitI 3  - tD\bfittheta + o(t)

such that o(t)/t \rightarrow 0 as t \rightarrow 0 with respect to \| \cdot \| \scrC (\Omega ) and \| \cdot \| \scrC (\Omega ,\BbbR 3\times 3), respectively.
Hence, (4.14) implies that there exists a constant C > 0 only dependent on \bfittheta such
that

(4.15) \| \xi (t)\| L\infty (\Omega ) + \| D\bfitT t\| L\infty (\Omega ,\BbbR 3\times 3) + \| D\bfitT  - 1
t \| L\infty (\Omega ,\BbbR 3\times 3) \leq 1 + C\tau .

Applying (4.15) in (4.13) leads to\bigm| \bigm| \bigm| \bigm| \int 
\omega 

\partial \bfite \BbbM 3(t, \scrE (s))\^\bfite \cdot \bfitv dx
\bigm| \bigm| \bigm| \bigm| \leq (1 + C\tau )3

\int 
\omega 

\bigm| \bigm| \bfitpsi \gamma 
\bigl( 
D\bfitT  - \sansT 

t \scrE (s)
\bigr) 
\bfitv \cdot \^\bfite 

\bigm| \bigm| dx(4.16)

(3.11)\underbrace{}  \underbrace{}  
\leq 2jc\gamma (1 + C\tau )3\| \^\bfite \| \bfitL 2(\Omega )\| \bfitv \| \bfitL 2(\Omega ) \forall s \in (0, 1).

Thus, the mapping s \mapsto \rightarrow 
\int 
\omega 
\partial \bfite \BbbM 3(t, \scrE (s))\^\bfite \cdot \bfitv dx belongs to L\infty (0, 1) \subset L1(0, 1). In a

similar way, since t \in [0, \tau ] and \gamma > 0 are fixed, (4.15) and (A1) of Assumption 2.1
yield \int 

B

\bigm| \bigm| \kappa \circ \bfitT t

\bigl( 
D\bfitT  - \sansT 

t \^\bfite \cdot D\bfitT  - \sansT 
t \scrE (s)

\bigr) 
\xi (t)

\bigm| \bigm| dx(4.17)

\leq (1 + C\tau )3\| \kappa \| \scrC (\Omega )\| \^\bfite \| \bfitL 2(\Omega )\| \scrE (s)\| \bfitL 2(\Omega )

\leq (1 + C\tau )3\| \kappa \| \scrC (\Omega )\| \^\bfite \| \bfitL 2(\Omega )

\bigl( 
\| \bfitE \gamma 

0 \| \bfitL 2(\Omega ) + s\| \bfitE \gamma 
t  - \bfitE \gamma 

0 \| \bfitL 2(\Omega )

\bigr) 
\leq (1 + s)(1 + C\tau )3\| \kappa \| \scrC (\Omega )\| \^\bfite \| \bfitL 2(\Omega )

\bigl( 
\| \bfitE \gamma 

t  - \bfitE \gamma 
0 \| \bfitL 2(\Omega ) + \| \bfitE \gamma 

0 \| \bfitL 2(\Omega )

\bigr) 
.
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As the remaining terms in (4.12) are independent of s, (4.16) and (4.17) imply that
the mapping s \mapsto \rightarrow \partial \bfite G(t, \scrE (s),\bfitv ; \^\bfite ) belongs to L1(0, 1) for all \^\bfite \in \bfitH 0(curl) and
(t,\bfitv ) \in [0, \tau ]\times \bfitH 0(curl). Thus, the proof is complete.

Lemma 4.5. Let Assumption 2.1 hold. Then, there exists \tau \in (0, 1] such that
(H3) is satisfied for every t \in [0, \tau ]. Moreover, (H4) holds as well.

Proof. Fix some arbitrary \tau > 0 and denote \scrE (s) := s\bfitE \gamma 
t +(1 - s)\bfitE \gamma 

0 for s \in (0, 1).
Let \tau \in (0, 1] be arbitrarily fixed. In the following, if necessary, we shall reduce
\tau \in (0, 1] step by step to prove our result. Let t \in [0, \tau ] and \^\bfite \in \bfitH 0(curl). Thanks
to Lemma 4.4, the left-hand side of (4.8) is well-defined, and our goal is to prove the
existence of a unique \bfitP \gamma 

t \in \bfitH 0(curl) satisfying (4.8). In view of (4.12), we note that
(4.8) can be written as

(4.18) Bt(\bfitP 
\gamma 
t , \^\bfite ) = Ft(\^\bfite ) \forall \^\bfite \in \bfitH 0(curl)

with Bt : \bfitH 0(curl)\times \bfitH 0(curl) \rightarrow \BbbR and Ft : \bfitH 0(curl) \rightarrow \BbbR defined by

Bt(\bfitv , \^\bfite ) :=

\int 
\Omega 

\BbbM 1(t)curl \^\bfite \cdot curl\bfitv +\BbbM 2(t)\^\bfite \cdot \bfitv dx+

\int 1

0

\int 
\omega 

\partial \bfite \BbbM 3(t, \scrE (s))\^\bfite \cdot \bfitv dx ds,

Ft(\^\bfite ) :=  - 
\int 1

0

\int 
B

\kappa \circ \bfitT t

\bigl( 
D\bfitT  - \sansT 

t \^\bfite \cdot 
\bigl( 
D\bfitT  - \sansT 

t \scrE (s) - \bfitE d \circ \bfitT t

\bigr) \bigr) 
\xi (t) dx ds.

Thanks to (A2) and (4.15) and (4.16), Bt is a bounded bilinear form. In order to
apply the Lax--Milgram lemma, we have to prove the coercivity of Bt. The asymptotic
expansions (4.14) show that \BbbM 1(t) and \BbbM 2(t) are small perturbations of \nu and \epsilon ,
respectively. Thus, if necessary, we may reduce the number \tau \in (0, 1] such that, in
view of (2.1), \BbbM 1(t) and \BbbM 2(t) are uniformly positive definite for all t \in [0, \tau ] with\int 

\Omega 

\BbbM 1(t) curl\bfitv \cdot curl\bfitv +\BbbM 2(t)\bfitv \cdot \bfitv dx \geq C1\| \bfitv \| 2\bfitH (\bfc \bfu \bfr \bfl ) \forall \bfitv \in \bfitH 0(curl)(4.19)

for some constant C1 > 0 depending only on \bfittheta , \epsilon , and \nu . In order to keep the
notation short, let us define \scrK (s) := D\bfitT  - \sansT 

t \scrE (s) \in \bfitH 0(curl) as well as the sets
\scrA \gamma (s) := \scrA \gamma (\scrK (s)) \subset \Omega and \scrS \gamma (s) := \scrS \gamma (\scrK (s)) \subset \Omega for s \in (0, 1) (cf. Lemma 3.1).
We estimate the third term in Bt which, in view of (3.7) and (4.13), corresponds to

(4.20)

\int 1

0

\int 
\omega 

\partial e\BbbM 3(t, \scrE (s))\bfitv \cdot \bfitv dx ds =
\int 1

0

\int 
\omega 

\xi (t)D\bfitT  - 2
t

\biggl[ 
jc\gamma \bfitI 3

max\gamma \{ 1, \gamma | \scrK (s)| \} 

 - \gamma 

\biggl( 
1\scrA \gamma (s) + \gamma 

\biggl( 
\gamma | \scrK (s)|  - 1 +

1

2\gamma 

\biggr) 
1\scrS \gamma (s)

\biggr) 
\scrK (s)\otimes \Lambda \gamma (\scrK (s))

max\gamma \{ 1, \gamma | \scrK (s)| \} | \scrK (s)| 

\biggr] 
\bfitv \cdot \bfitv dx ds.

Therefore, we fix s \in (0, 1) and estimate the three summands in (4.20) separately. We
begin with the first term and note that (4.14) implies, possibly after reducing \tau > 0,
that there exists a constant C > 0, depending only on \bfittheta , such that \xi (t) \geq 1 - C\tau > 0,
and D\bfitT  - 2

t \bfiteta \cdot \bfiteta \geq (1 - C\tau )2| \bfiteta | 2 for all \bfiteta \in \BbbR 3 and almost everywhere in \Omega . Hence,

(4.21)

\int 
\omega 

jc\gamma \xi (t)
D\bfitT  - 2

t \bfitv \cdot \bfitv 
max\gamma \{ 1, \gamma | \scrK (s)| \} 

dx \geq (1 - C\tau )3
\int 
\omega 

jc\gamma | \bfitv | 2

max\gamma \{ 1, \gamma | \scrK (s)| \} 
dx.

Now, we proceed to estimate the integrals over the disjoint sets \omega \cap \scrA \gamma (s) and \omega \cap \scrS \gamma (s)
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2258 ANTOINE LAURAIN, MALTE WINCKLER, AND IRWIN YOUSEPT

appearing in the last two summands in (4.20). We obtain\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\omega \cap \scrA \gamma (s)

\gamma \xi (t)D\bfitT  - 2
t

\scrK (s)\otimes \Lambda \gamma (\scrK (s))\bfitv \cdot \bfitv 
max\gamma \{ 1, \gamma | \scrK (s)| \} | \scrK (s)| 

dx

\bigm| \bigm| \bigm| \bigm| \bigm| (4.22)

(3.3)\& (3.10)\underbrace{}  \underbrace{}  
\leq \| \xi (t)\| L\infty (\Omega )\| D\bfitT  - 1

t \| 2L\infty (\Omega ,\BbbR 3\times 3)

\int 
\omega \cap \scrA \gamma (s)

jc\gamma | \bfitv | 2

max\gamma \{ 1, \gamma | \scrK (s)| \} 
dx

(4.15)\underbrace{}  \underbrace{}  
\leq (1 + C\tau )3

\int 
\omega \cap \scrA \gamma (s)

jc\gamma | \bfitv | 2

max\gamma \{ 1, \gamma | \scrK (s)| \} 
dx.

For the last summand, we use the same arguments and also (3.6) to deduce

(4.23)

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\omega \cap \scrS \gamma (s)

\gamma 2

\biggl( 
\gamma | \scrK (s)|  - 1 +

1

2\gamma 

\biggr) 
\xi (t)D\bfitT  - 2

t

\scrK (s)\otimes \Lambda \gamma (\scrK (s))\bfitv \cdot \bfitv 
max\gamma \{ 1, \gamma | \scrK (s)| \} | \scrK (s)| 

dx

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq (1 + C\tau )3

\int 
\omega \cap \scrS \gamma (s)

jc\gamma | \bfitv | 2

max\gamma \{ 1, \gamma | \scrK (s)| \} 
dx.

Note that the constant C > 0 in (4.21)--(4.23) is the same in the three inequalities.
Thus, we sum up (4.22) and (4.23) and substract the result from (4.21) to obtain\int 

\omega 

\partial e\BbbM 3(t, \scrE (s))\bfitv \cdot \bfitv dx \geq 
\bigl( 
1 + 3(C\tau )2

\bigr) \int 
\omega \setminus (\scrA \gamma (s)\cup \scrS \gamma (s))

jc\gamma | \bfitv | 2

max\gamma \{ 1, \gamma | \scrK (s)| \} 
dx

 - (6C\tau + 2(C\tau )3)

\int 
\omega 

jc\gamma | \bfitv | 2

max\gamma \{ 1, \gamma | \scrK (s)| \} 
dx.

As the first term is nonnegative and max\gamma \{ 1, \gamma | \scrK (s)| \} \geq 1, we conclude for (4.20)
that \int 1

0

\int 
\omega 

\partial e\BbbM 3(t, \scrE (s))\bfitv \cdot \bfitv dx ds \geq  - (6C\tau + 2(C\tau )3)jc\gamma \| \bfitv \| 2\bfitL 2(\omega ).(4.24)

The coercivity of Bt follows, as (4.19) in combination with (4.24) implies that

Bt(\bfitv ,\bfitv ) \geq (C1  - 6C\tau  - 2(C\tau )3)\underbrace{}  \underbrace{}  
=:C2

\| \bfitv \| 2\bfitH (\bfc \bfu \bfr \bfl ) \forall \bfitv \in \bfitH 0(curl).(4.25)

If necessary, we further reduce \tau \in (0, 1] such that C2 > 0 holds true. In turn,
for all t \in [0, \tau ], Bt is coercive with the coercivity constant C2 > 0, independent
of t. Ultimately, the Lax--Milgram lemma yields the existence of a unique solution
\bfitP \gamma 

t \in \bfitH 0(curl) of the averaged adjoint equation (4.8). Thus, (H3) holds.
We finish this proof by verifying (H4). To this aim, let \{ tk\} k\in \BbbN \subset (0, \tau ] be a null

sequence. First, the sequence \{ \bfitE \gamma 
tk
\} k\in \BbbN \subset \bfitH 0(curl) of solutions to the perturbed

state equations (3.1) with \omega = \omega tk is bounded. This follows readily by inserting
\bfitv = \bfitE \gamma 

tk
into (3.1), which yields

(4.26) min(\nu , \epsilon )\| \bfitE \gamma 
tk
\| 2\bfitH (\bfc \bfu \bfr \bfl ) \leq a(\bfitE \gamma 

tk
,\bfitE \gamma 

tk
) \leq (\| \bfitf \| \bfitL 2(\Omega ) + jc)\| \bfitE \gamma 

tk
\| \bfitH (\bfc \bfu \bfr \bfl )

\Rightarrow \| \bfitE \gamma 
tk
\| \bfitH (\bfc \bfu \bfr \bfl ) \leq min(\nu , \epsilon ) - 1(\| \bfitf \| \bfitL 2(\Omega ) + jc) \forall k \in \BbbN .
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Hereafter, we deduce a similar estimate for \{ \bfitP \gamma 
tk
\} k\in \BbbN by testing (4.18) with \^\bfite = \bfitP \gamma 

tk
and using (4.25) along with (4.15):

(4.27) C2\| \bfitP \gamma 
tk
\| 2\bfitH 0(\bfc \bfu \bfr \bfl )

\leq Bt(\bfitP 
\gamma 
tk
,\bfitP \gamma 

tk
) = Ft(\bfitP 

\gamma 
tk
)

\leq \| \kappa \| \scrC (\Omega )(1 + C\tau )3(\| \bfitE \gamma 
tk
\| \bfitL 2(\Omega ) + \| \bfitE \gamma 

0 \| \bfitL 2(\Omega ) + \| \bfitE d\| \bfitL 2(\Omega ))\| \bfitP \gamma 
tk
\| \bfitL 2(\Omega ) \forall k \in \BbbN .

Since the constant C2 and C are independent of k \in \BbbN , the above estimate implies the
boundedness of \{ \bfitP \gamma 

tk
\} k\in \BbbN \subset \bfitH 0(curl). Hence, there exists a subsequence \{ tkj

\} j\in \BbbN \subset 
\{ tk\} k\in \BbbN converging weakly in \bfitH 0(curl) to some \bfitP  \star \in \bfitH 0(curl). By (4.14) and as
the solution of (4.18) is unique, passing to the limit t = tkj \rightarrow 0 in (4.18) yields
\bfitP  \star = \bfitP \gamma 

0 . Since \bfitP \gamma 
0 is independent of the choice of the subsequence \{ tkj\} j\in \BbbN , a

standard argument implies the weak convergence of the whole sequence:

(4.28) \bfitP \gamma 
tk

\rightharpoonup \bfitP  \star weakly in \bfitH 0(curl) as k \rightarrow \infty .

Let us now consider the differential quotient

G(tk,\bfitE 
\gamma 
0 ,\bfitP 

\gamma 
tk
) - G(0,\bfitE \gamma 

0 ,\bfitP 
\gamma 
tk
)

tk
=

\int 
B

\BbbM 0(tk) - \BbbM 0(0)

tk
dx+

\int 
\omega 

\xi (tk) - \xi (0)

tk
dx

+

\int 
\Omega 

\BbbM 1(tk) - \BbbM 1(0)

tk
curl\bfitE \gamma 

0 \cdot curl\bfitP \gamma 
tk

+
\BbbM 2(tk) - \BbbM 2(0)

tk
\bfitE \gamma 

0 \cdot \bfitP \gamma 
tk
dx

+

\int 
\omega 

\BbbM 3(tk,\bfitE 
\gamma 
0 ) - \BbbM 3(0,\bfitE 

\gamma 
0 )

tk
\cdot \bfitP \gamma 

tk
dx - 

\int 
\Omega 

\BbbM 4(tk) - \BbbM 4(0)

tk
\cdot \bfitP \gamma 

tk
dx(4.29)

with \BbbM 0(tk) :=
1
2\kappa \circ \bfitT tk | D\bfitT 

 - \sansT 
tk
\bfitE \gamma 

0  - \bfitE d\circ \bfitT tk | 2\xi (tk) and \BbbM 4(tk) := \xi (tk)D\bfitT 
 - 1
tk

(\bfitf \circ \bfitT tk).
First, (4.14) yields the strong convergence

(4.30) lim
k\rightarrow \infty 

\xi (tk) - \xi (0)

tk
= div \bfittheta in \scrC (\Omega ).

Moreover, thanks to Assumption 2.1, (4.14), and supp\bfittheta \subset \subset B, we obtain the strong
convergence of

\bigl( 
\BbbM i(tk) - \BbbM i(0)

\bigr) 
/tk, i = 0, 1, 2, 4, as k \rightarrow \infty in L\infty (\Omega ):

lim
k\rightarrow \infty 

\BbbM 0(tk) - \BbbM 0(0)

tk
=

1

2
(\widetilde \nabla \kappa \cdot \bfittheta + \kappa div \bfittheta )| \bfitE \gamma 

0  - \bfitE d| 2(4.31)

 - \kappa (\bfitE \gamma 
0  - \bfitE d) \cdot (D\bfittheta \sansT \bfitE \gamma 

0  - \widetilde D\bfitE d\bfittheta )

lim
k\rightarrow \infty 

\BbbM 1(tk) - \BbbM 1(0)

tk
=  - (div \bfittheta )\nu +D\bfittheta \sansT \nu + \nu D\bfittheta + \widetilde D\nu \bfittheta ,(4.32)

lim
k\rightarrow \infty 

\BbbM 2(tk) - \BbbM 2(0)

tk
= (div \bfittheta )\varepsilon  - D\bfittheta \varepsilon  - \varepsilon D\bfittheta \sansT + \widetilde D\varepsilon \bfittheta ,(4.33)

lim
k\rightarrow \infty 

\BbbM 4(tk) - \BbbM 4(0)

tk
= (div \bfittheta )\bfitf  - D\bfittheta \bfitf + \widetilde D\bfitf \bfittheta .(4.34)

Note that \widetilde \nabla \kappa denotes the zero extension of \nabla \kappa | B \in \bfscrC (B) to \Omega . The same notation

is used for \widetilde D\bfitE d, \widetilde D\varepsilon , \widetilde D\nu ,\widetilde D\bfitf . Similarly, by the Gateaux-differentiability of \Lambda \gamma (see
Lemma 3.1), (3.8), and (4.28), we deduce that

(4.35) lim
k\rightarrow \infty 

\BbbM 3(tk) - \BbbM 3(0)

tk
\cdot \bfitP \gamma 

tk
=

\bigl( 
(div \bfittheta )\Lambda \gamma (\bfitE 

\gamma 
0 ) - D\bfittheta \Lambda \gamma (\bfitE 

\gamma 
0 )
\bigr) 
\cdot \bfitP \gamma 

0

 - \bfitpsi \gamma (\bfitE \gamma 
0 )\bfitP 

\gamma 
0 \cdot (D\bfittheta \sansT \bfitE \gamma 

0 ).
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From (4.30)--(4.35) along with the weak convergence (4.28) and supp\bfittheta \subset \subset B, it
follows that

lim
k\rightarrow \infty 

G(tk,\bfitE 
\gamma 
0 ,\bfitP 

\gamma 
tk
) - G(0,\bfitE \gamma 

0 ,\bfitP 
\gamma 
tk
)

tk
(4.36)

=

\int 
B

1

2
(\nabla \kappa \cdot \bfittheta + \kappa div \bfittheta )| \bfitE \gamma 

0  - \bfitE d| 2  - \kappa (\bfitE \gamma 
0  - \bfitE d) \cdot (D\bfittheta \sansT \bfitE \gamma 

0 +D\bfitE d\bfittheta ) dx

+

\int 
\omega 

div \bfittheta dx+

\int 
B

\bigl( 
 - (div \bfittheta )\nu +D\bfittheta \sansT \nu + \nu D\bfittheta +D\nu \bfittheta 

\bigr) 
curl\bfitE \gamma 

0 \cdot curl\bfitP \gamma 
0 dx

+

\int 
B

\bigl( 
(div \bfittheta )\varepsilon  - D\bfittheta \varepsilon  - \varepsilon D\bfittheta \sansT +D\varepsilon \bfittheta 

\bigr) 
\bfitE \gamma 

0 \cdot \bfitP \gamma 
0 dx

+

\int 
\omega 

(div \bfittheta )\Lambda \gamma (\bfitE 
\gamma 
0 ) \cdot \bfitP 

\gamma 
0  - D\bfittheta \Lambda \gamma (\bfitE 

\gamma 
0 ) \cdot \bfitP 

\gamma 
0  - \bfitpsi \gamma (\bfitE \gamma 

0 )\bfitP 
\gamma 
0 \cdot (D\bfittheta \sansT \bfitE \gamma 

0 ) dx

 - 
\int 
B

(D\bfitf \bfittheta + (div \bfittheta )\bfitf ) \cdot \bfitP \gamma 
0  - \bfitf \cdot D\bfittheta \sansT \bfitP \gamma 

0 dx

= lim
k\rightarrow \infty 

G(tk,\bfitE 
\gamma 
0 ,\bfitP 

\gamma 
0 ) - G(0,\bfitE \gamma 

0 ,\bfitP 
\gamma 
0 )

tk
= \partial tG(0,\bfitE \gamma 

0 ,\bfitP 
\gamma 
0 ).

Thus, (H4) is valid.

In the case t = 0, the solution \bfitP \gamma 
0 \in \bfitH 0(curl) of (4.8) also satisfies the equation

\partial \bfite \scrL (\omega ,\bfitE \gamma 
0 ,\bfitP 

\gamma 
0 ; \^\bfite ) = 0 \forall \^\bfite \in \bfitH 0(curl).(4.37)

By definition (4.2) and by (4.13) we conclude that (4.37) is equivalent to

(4.38) a(\^\bfite ,\bfitP \gamma 
0 ) +

\int 
\omega 

\bfitpsi \gamma (\bfitE \gamma 
0 )\bfitP 

\gamma 
0 \cdot \^\bfite dx =  - 

\int 
B

\kappa (\bfitE \gamma 
0  - \bfitE d) \cdot \^\bfite dx \forall \^\bfite \in \bfitH 0(curl).

We refer to (4.38) as the adjoint equation and we write for simplicity (\bfitE \gamma ,\bfitP \gamma ) =
(\bfitE \gamma 

0 ,\bfitP 
\gamma 
0 ). We now have all the elements at hand to prove the shape differentiability

of J\gamma and write the distributed expression of the shape derivative of J\gamma .

Theorem 4.6. Let Assumption 2.1 be satisfied, \gamma > 0, \omega \in \scrO , and \bfittheta \in \bfscrC 0,1
c (\Omega )

with a compact support in B. Furthermore, \bfitE \gamma \in \bfitH 0(curl) and \bfitP \gamma \in \bfitH 0(curl)
denote the solutions to (3.1) and (4.38), respectively. Then, the functional J\gamma in (P\gamma )
is shape differentiable with

(4.39) dJ\gamma (\omega )(\bfittheta ) = \partial tG(0,\bfitE \gamma ,\bfitP \gamma ) =

\int 
B

S\gamma 
1 : D\bfittheta + \bfitS \gamma 

0 \cdot \bfittheta dx,

where S\gamma 
1 \in L1(B,\BbbR 3\times 3) and \bfitS \gamma 

0 \in \bfitL 1(B) are given by

S\gamma 
1 =

\Bigl[ \kappa 
2
| \bfitE \gamma  - \bfitE d| 2 + \chi \omega  - \nu curl\bfitE \gamma \cdot curl\bfitP \gamma + \varepsilon \bfitE \gamma \cdot \bfitP \gamma + \chi \omega \Lambda \gamma (\bfitE 

\gamma ) \cdot \bfitP \gamma 

 - \bfitf \cdot \bfitP \gamma 
\Bigr] 
\bfitI 3  - \kappa \bfitE \gamma \otimes (\bfitE \gamma  - \bfitE d) + \nu curl\bfitE \gamma \otimes curl\bfitP \gamma 

+ \nu \sansT curl\bfitP \gamma \otimes curl\bfitE \gamma  - \bfitP \gamma \otimes \varepsilon \bfitE \gamma  - \bfitE \gamma \otimes \varepsilon \sansT \bfitP \gamma + \bfitP \gamma \otimes \bfitf 
 - \chi \omega \Lambda \gamma (\bfitE 

\gamma )\otimes \bfitP \gamma  - \bfitE \gamma \otimes \bfitpsi \gamma (\bfitE \gamma )\bfitP \gamma ,

\bfitS \gamma 
0 =

\nabla \kappa 

2
| \bfitE \gamma  - \bfitE d| 2  - \kappa D\bfitE \sansT 

d (\bfitE 
\gamma  - \bfitE d) + (D\nu \sansT curl\bfitE \gamma ) curl\bfitP \gamma 

+ (D\epsilon \sansT \bfitE \gamma )\bfitP \gamma  - D\bfitf \sansT \bfitP \gamma .
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Proof. Thanks to Lemmas 4.4 and 4.5, we may apply the averaged adjoint method
(see Theorem 4.2). This yields that J\gamma is shape-differentiable in the sense of Def-
inition 4.1 and the shape derivative satisfies (4.10) with \partial tG(0,\bfitE \gamma ,\bfitP \gamma ) given by
(4.36). Since D\epsilon is a third-order tensor, its transpose D\epsilon \sansT satisfies D\epsilon \bfittheta \bfitE \gamma \cdot \bfitP \gamma =
(D\epsilon \sansT \bfitE \gamma )\bfitP \gamma \cdot \bfittheta , andD\nu \sansT satisfies a similar property; see [40, Proposition 3.1]. Further-
more, for vectors \bfitx ,\bfity \in \BbbR 3 we have the relations D\bfittheta : (\bfitx \otimes \bfity ) = \bfitx \cdot D\bfittheta \bfity = D\bfittheta \sansT \bfitx \cdot \bfity .
Applying these to (4.36) and combining it with (4.10), the tensor expression (4.39)
for the shape derivative follows. The fact that S\gamma 

1 \in L1(B,\BbbR 3\times 3) and \bfitS \gamma 
0 \in \bfitL 1(B)

is a straightforward consequence of the regularity of \bfitE \gamma ,\bfitP \gamma and of the other terms
involved in \bfitS \gamma 

0 and S\gamma 
1 . This completes the proof.

5. Stability and convergence analysis. In this section we analyze the stabil-
ity of the shape derivative (4.39) with respect to the penalization parameter \gamma > 0.
Furthermore, the strong convergence of (P\gamma ) toward (P) as \gamma \rightarrow \infty is studied. The
latter also implies the existence of an optimal shape for (P) (see Theorem 2.4).

5.1. Stability analysis of the shape derivative.

Theorem 5.1. Let \omega \in \scrO and Assumption 2.1 hold. Then, the following stability
estimate holds:

(5.1) | dJ\gamma (\omega )(\bfittheta )| \leq C\| \bfittheta \| \bfscrC 0,1(B) \forall \bfittheta \in \bfscrC 0,1
c (\Omega ), supp\bfittheta \subset \subset B

with a constant C = C(jc, \kappa , \epsilon , \nu ,\bfitf ,\bfitE d, B, \omega ) independent of \gamma .

Proof. First, the distributed shape derivative from (4.39) yields the estimate

(5.2) | dJ\gamma (\omega )(\bfittheta )| \leq 
\bigl( 
\| S\gamma 

1 \| L1(B,\BbbR 3\times 3) + \| \bfitS \gamma 
0 \| \bfitL 1(B)

\bigr) 
\| \bfittheta \| \bfscrC 0,1(B).

In order to derive upper bounds for \| S\gamma 
1 \| L1(B,\BbbR 3\times 3) and \| \bfitS \gamma 

0 \| \bfitL 1(B), we begin by
proving that the families \{ \bfitE \gamma \} \gamma >0 and \{ \bfitP \gamma \} \gamma >0 are uniformly bounded in\bfitH 0(curl).
In view of (4.26), we have

(5.3) \| \bfitE \gamma \| \bfitH (\bfc \bfu \bfr \bfl ) \leq min(\nu , \epsilon ) - 1(\| \bfitf \| \bfitL 2(\Omega ) + jc) =: C\bfitE .

Moreover, we set t, s = 0 in (4.13), which yields

(5.4)

\int 
\omega 

\partial \bfite \BbbM 3(0, \scrE (0))(\bfitP \gamma ) \cdot \bfitP \gamma dx =

\int 
\omega 

\bfitpsi \gamma (\bfitE \gamma )\bfitP \gamma \cdot \bfitP \gamma dx \geq 0.

In fact, the nonnegativity of (5.4) follows by similar calculations as (4.20)--(4.24) in
the special case t, s, \tau = 0. As \bfitP \gamma is the unique solution to (4.38), inserting \^\bfite = \bfitP \gamma 

implies with (A2)

min(\epsilon , \nu )\| \bfitP \gamma \| 2\bfitH (\bfc \bfu \bfr \bfl ) \leq a(\bfitP \gamma ,\bfitP \gamma )

=  - 
\int 
B

\kappa (\bfitE \gamma  - \bfitE d) \cdot \bfitP \gamma dx - 
\int 
\omega 

\bfitpsi \gamma (\bfitE \gamma )\bfitP \gamma \cdot \bfitP \gamma dx.

Hence, we obtain a uniform bound for \bfitP \gamma by means of (5.3) and (5.4), i.e.,

(5.5) \| \bfitP \gamma \| \bfitH (\bfc \bfu \bfr \bfl ) \leq \| \kappa \| \scrC (\Omega ) min(\epsilon , \nu ) - 1
\bigl( 
C\bfitE + \| \bfitE d\| \bfitL 2(B)

\bigr) 
=: C\bfitP .

With (5.3) and (5.5) at hand, we may now estimate both terms in (5.2) separately.
Therefore, let us introduce the notation (see Theorem 4.6)

(5.6) S\gamma 
1 =:

14\sum 
i=1

\Theta i,
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2262 ANTOINE LAURAIN, MALTE WINCKLER, AND IRWIN YOUSEPT

where \Theta i \in L1(B,\BbbR 3\times 3) for every i \in \{ 1, . . . , 14\} . Now, Assumption 2.1, (3.10), (5.3)
and (5.5) together with H\"older's and Young's inequalities yield

6\sum 
i=1

\| \Theta i\| L1(B,\BbbR 3\times 3)(5.7)

\leq 
\int 
B

| \kappa | 
2
| \bfitE \gamma  - \bfitE d| 2 + \chi \omega dx+

\int 
B

| \nu curl\bfitE \gamma \cdot curl\bfitP \gamma | + | \epsilon \bfitE \gamma \cdot \bfitP \gamma | dx

+

\int 
\omega 

| \Lambda \gamma (\bfitE 
\gamma ) \cdot \bfitP \gamma | dx+

\int 
B

| \bfitf \cdot \bfitP \gamma | dx

(5.3) (5.5)\& (3.10)\underbrace{}  \underbrace{}  
\leq \| \kappa \| \scrC (B)

\bigl( 
C2

\bfitE + \| \bfitE d\| 2\bfitL 2(B)

\bigr) 
+ | \omega | +

\bigl( 
\| \nu \| \scrC (B,\BbbR 3\times 3) + \| \epsilon \| \scrC (B,\BbbR 3\times 3)

\bigr) 
C\bfitE C\bfitP 

+ (jc
\sqrt{} 
| \omega | + \| \bfitf \| \bfitL 2(B))C\bfitP .

For the remaining terms, we use again Assumption 2.1, (3.10), (5.3), and (5.5) as well
as the identity | \bfitx \otimes \bfity | = | \bfitx | \cdot | \bfity | for all \bfitx ,\bfity \in \BbbR 3 to infer

(5.8)

13\sum 
i=7

\| \Theta i\| L1(B,\BbbR 3\times 3) \leq 
1

2
\| \kappa \| \scrC (B)

\bigl( 
3C2

\bfitE + \| \bfitE d\| 2\bfitL 2(B)

\bigr) 
+ 2(\| \nu \| \scrC (B,\BbbR 3\times 3) + \| \epsilon \| \scrC (B,\BbbR 3\times 3))C\bfitE C\bfitP + (\| \bfitf \| \bfitL 2(B) + jc

\sqrt{} 
| \omega | )C\bfitP ,

where we have also used Young's inequality to obtain the first term in (5.8). Moreover,
the last summand of S\gamma 

1 can be estimated as follows:

\| \Theta 14\| L1(B,\BbbR 3\times 3) = \| \bfitE \gamma \otimes \bfitpsi \gamma (\bfitE \gamma )\bfitP \gamma \| L1(\Omega ,\BbbR 3\times 3) \leq 
\int 
\omega 

| \bfitpsi \gamma (\bfitE \gamma )\bfitP \gamma | \cdot | \bfitE \gamma | dx(5.9)

(3.6)\& (3.7)\underbrace{}  \underbrace{}  
\leq 

\int 
\omega 

\biggl( 
jc\gamma | \bfitP \gamma | 

max\gamma \{ 1, \gamma | \bfitE \gamma | \} 
+

\gamma | \bfitE \gamma \otimes \Lambda \gamma (\bfitE 
\gamma )| \cdot | \bfitP \gamma | 

max\gamma \{ 1, \gamma | \bfitE \gamma | \} | \bfitE \gamma | 

\biggr) 
| \bfitE \gamma | dx

(3.9)\& (3.10)\underbrace{}  \underbrace{}  
\leq 

\int 
\omega 

2jc| \bfitP \gamma | dx \leq 2jc
\sqrt{} 
| \omega | C\bfitP .

Gathering (5.7)--(5.9) we deduce the final estimate for S\gamma 
1 :

(5.10) \| S\gamma 
1 \| L1(B,\BbbR 3\times 3) \leq 

1

2
\| \kappa \| \scrC (B)

\bigl( 
5C2

\bfitE + 3\| \bfitE d\| 2\bfitL 2(B)

\bigr) 
+ | \omega | 

+ 3
\bigl( 
\| \nu \| \scrC (B,\BbbR 3\times 3) + \| \epsilon \| \scrC (B,\BbbR 3\times 3)

\bigr) 
C\bfitE C\bfitP +

\bigl( 
2\| \bfitf \| \bfitL 2(B) + 4jc

\sqrt{} 
| \omega | 

\bigr) 
C\bfitP .

Again, (5.3) and (5.5) with H\"older's and Young's inequalities imply for \bfitS \gamma 
0

\| \bfitS \gamma 
0 \| \bfitL 1(B) \leq 

\int 
B

1

2
| \nabla \kappa | \cdot | \bfitE \gamma  - \bfitE d| 2 + | \kappa D\bfitE \sansT 

d (\bfitE 
\gamma  - \bfitE d)| dx

+

\int 
B

| D\nu \sansT curl\bfitE \gamma | \cdot | curl\bfitP \gamma | + | D\epsilon \sansT \bfitE \gamma | \cdot | \bfitP \gamma | + | D\bfitf \sansT \bfitP \gamma | dx

\leq 1

2
\| \kappa \| \scrC 1(B)

\bigl( 
3C2

\bfitE + 5\| \bfitE d\| 2\bfitH 1(B)

\bigr) 
+
\bigl( 
\| \nu \| \scrC 1(B,\BbbR 3\times 3) + \| \epsilon \| \scrC 1(B,\BbbR 3\times 3)

\bigr) 
C\bfitP C\bfitE + \| \bfitf \| \bfitH 1(B)C\bfitP .(5.11)
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Finally, we combine (5.2), (5.10), and (5.11) to conclude

| dJ\gamma (\omega )(\bfittheta )| \leq 
\biggl[ 
4\| \kappa \| \scrC 1(B)

\bigl( 
C2

\bfitE +\| \bfitE d\| 2\bfitH 1(B)

\bigr) 
+4

\bigl( 
\| \nu \| \scrC 1(B,\BbbR 3\times 3)+\| \epsilon \| \scrC 1(B,\BbbR 3\times 3)

\bigr) 
C\bfitE C\bfitP 

+ | \omega | +
\bigl( 
3\| \bfitf \| \bfitH 1(B) + 4jc

\sqrt{} 
| \omega | 

\bigr) 
C\bfitP 

\biggr] 
\| \bfittheta \| \bfscrC 0,1(B).

Hence, the proof is finished.

5.2. Convergence of the regularized shape optimization problem. Our
aim is to prove the strong convergence of (P\gamma ) toward (P). For this purpose, we recall
a helpful result which states the strong convergence of the solution to (3.1) for a fixed
\omega \in \scrO . This result goes back to [6, Corollary 4.3]. Since the argumentation has to be
modified and adapted to our case, we include a complete proof below.

Lemma 5.2. Let Assumption 2.1 be satisfied and \omega \in \scrO . Moreover, for every
\gamma > 0, let (\bfitE \gamma ,\bfitlambda \gamma ) \in \bfitH 0(curl)\times \bfitL \infty (\omega ) denote the solution to (3.1). Then,

(5.12) (\bfitE \gamma ,\bfitlambda \gamma ) \rightarrow (\bfitE ,\bfitlambda ) strongly in \bfitH 0(curl)\times \bfitH 0(curl)
\ast as \gamma \rightarrow \infty ,

where (\bfitE ,\bfitlambda ) \in \bfitH 0(curl)\times \bfitL \infty (\omega ) is the unique solution to (2.3).

Proof. At first, we introduce (\bfitz \gamma , \bfitxi \gamma ) \in \bfitH 0(curl)\times \bfitL \infty (\Omega ) as the solution to the
auxiliary problem

(5.13)

\left\{       
a(\bfitz \gamma ,\bfitv ) +

\int 
\omega 

\bfitxi \gamma \cdot \bfitv dx =

\int 
\Omega 

\bfitf \cdot \bfitv dx \forall \bfitv \in \bfitH 0(curl),

\bfitxi \gamma (x) = \Xi \gamma (\bfitz \gamma ) :=
jc\gamma \bfitz 

\gamma (x)

max\{ 1, \gamma | \bfitz \gamma (x)| \} 
for a.e. x \in \omega .

We note that the mapping \Xi \gamma : \bfitL 2(\Omega ) \rightarrow \bfitL 2(\Omega ) is monotone in the sense of (3.5) being
the derivative of the convex functional

\int 
\omega 
jc\Psi \gamma (\bfitv ) dx, where \Psi \gamma : \BbbR 3 \rightarrow \BbbR denotes the

Huber regularization of | \cdot | :

\Psi \gamma (x) :=

\left\{       
| x|  - 1

2\gamma 
for | x| \geq 1

\gamma 
,

\gamma 

2
| x| 2 for | x| < 1

\gamma 
.

Thus, the well-posedness of (5.13) follows from the Minty--Browder theorem [41, The-
orem 2.18] by completely analoguous arguments used for (3.1). Now, by substracting
(5.13) from (3.1), inserting \bfitv = \bfitE \gamma  - \bfitz \gamma , we obtain that

a(\bfitE \gamma  - \bfitz \gamma ,\bfitE \gamma  - \bfitz \gamma )+
\int 
\omega 

\biggl( 
jc\gamma \bfitE 

\gamma 

max\gamma \{ 1, \gamma | \bfitE \gamma | \} 
 - jc\gamma \bfitz 

\gamma 

max\{ 1, \gamma | \bfitz \gamma | \} 

\biggr) 
\cdot (\bfitE \gamma  - \bfitz \gamma ) dx = 0.

This implies

a(\bfitE \gamma  - \bfitz \gamma ,\bfitE \gamma  - \bfitz \gamma ) +
\int 
\omega 

\biggl( 
jc\gamma \bfitE 

\gamma 

max\{ 1, \gamma | \bfitE \gamma | \} 
 - jc\gamma \bfitz 

\gamma 

max\{ 1, \gamma | \bfitz \gamma | \} 

\biggr) 
\cdot 
\bigl( 
\bfitE \gamma  - \bfitz \gamma 

\bigr) 
dx

=

\int 
\omega 

\biggl( 
jc\gamma \bfitE 

\gamma 

max\gamma \{ 1, \gamma | \bfitE \gamma | \} 
 - jc\gamma \bfitE 

\gamma 

max\{ 1, \gamma | \bfitE \gamma | \} 

\biggr) 
\cdot 
\bigl( 
\bfitz \gamma  - \bfitE \gamma ) dx.
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2264 ANTOINE LAURAIN, MALTE WINCKLER, AND IRWIN YOUSEPT

Thanks to the monotonicity of \Xi \gamma , the second summand on the left-hand side is
nonnegative. Hence, the coercivity property (2.2) yields

C\| \bfitE \gamma  - \bfitz \gamma \| 2\bfitH (\bfc \bfu \bfr \bfl ) \leq jc\gamma 

\int 
\omega 

\biggl( 
max\{ 1, \gamma | \bfitE \gamma | \}  - max\gamma \{ 1, \gamma | \bfitE \gamma | \} 
max\gamma \{ 1, \gamma | \bfitE \gamma | \} max\{ 1, \gamma | \bfitE \gamma | \} 

\biggr) 
\bfitE \gamma \cdot 

\bigl( 
\bfitz \gamma  - \bfitE \gamma ) dx.

Since 0 \leq max\gamma \{ 1, x\}  - max\{ 1, x\} \leq 1
4\gamma holds for every x \in \BbbR , it follows that

(5.14) C\| \bfitE \gamma  - \bfitz \gamma \| 2\bfitH (\bfc \bfu \bfr \bfl ) \leq 
jc
4\gamma 

\int 
\omega 

\gamma | \bfitE \gamma | 
max\{ 1, \gamma | \bfitE \gamma | \} 2\underbrace{}  \underbrace{}  

\leq 1

| \bfitE \gamma  - \bfitz \gamma | dx.

Therefore, after applying the H\"older inequality, (5.14) implies

(5.15) lim
\gamma \rightarrow \infty 

\| \bfitE \gamma  - \bfitz \gamma \| \bfitH (\bfc \bfu \bfr \bfl ) = 0.

The next step is to verify the strong convergence \bfitz \gamma \rightarrow \bfitE as \gamma \rightarrow \infty . We proceed
similarly as before by substracting (5.13) from (2.3) and inserting \bfitv = \bfitE  - \bfitz \gamma to
deduce that

(5.16) C\| \bfitE  - \bfitz \gamma \| 2\bfitH (\bfc \bfu \bfr \bfl ) \leq a(\bfitE  - \bfitz \gamma ,\bfitE  - \bfitz \gamma ) =
\int 
\omega 

(\bfitxi \gamma  - \bfitlambda ) \cdot (\bfitE  - \bfitz \gamma ) dx.

Next, we exploit the properties of \bfitlambda and \bfitxi \gamma from (2.3) and (5.13) to estimate the
right-hand side of (5.16). For this purpose, we divide \omega into the disjoint sets \scrA \cap \scrA \gamma ,
\scrA \cap \scrI \gamma , \scrI \cap \scrA \gamma , and \scrI \cap \scrI \gamma where

\scrA := \{ x \in \omega : | \bfitE (x)| > 0\} , \scrI := \omega \setminus \scrA ,

\scrA \gamma := \{ x \in \omega : \gamma | \bfitz \gamma (x)| > 1\} , \scrI \gamma := \omega \setminus \scrA \gamma .

Now, we establish pointwise estimates for the integrand in (5.16). For x \in \scrA \cap \scrA \gamma ,
(2.3) and (5.13) imply

(\bfitlambda (x) - \bfitxi \gamma (x)) \cdot (\bfitz \gamma (x) - \bfitE (x))

=\bfitlambda (x) \cdot \bfitz \gamma (x) - \bfitlambda (x) \cdot \bfitE (x) + \bfitxi \gamma (x) \cdot \bfitE (x) - \bfitxi \gamma (x) \cdot \bfitz \gamma (x)
\leq jc| \bfitz \gamma (x)|  - jc| \bfitE (x)| + jc| \bfitE (x)|  - jc| \bfitz \gamma (x)| = 0.

For x \in \scrA \cap \scrI \gamma , (2.3) and (5.13) yield jc\bfitz 
\gamma (x) = \gamma  - 1\bfitxi \gamma (x), | \bfitxi \gamma (x)| \leq jc, | \bfitz \gamma (x)| \leq \gamma  - 1,

and | \bfitlambda (x)| = jc. Hence, we can derive

(\bfitlambda (x) - \bfitxi \gamma (x)) \cdot (\bfitz \gamma (x) - \bfitE (x))

=\bfitlambda (x) \cdot \bfitz \gamma (x) - jc| \bfitE (x)|  - \gamma jc| \bfitz \gamma (x)| 2 + \bfitxi \gamma (x) \cdot \bfitE (x)

\leq 1

\gamma 
jc  - jc| \bfitE (x)| + jc| \bfitE (x)|  - \gamma jc| \bfitz \gamma (x)| 2 \leq 1

\gamma 
jc.

For x \in \scrI \cap \scrA \gamma , we have \bfitE (x) = 0 and thus

(\bfitlambda (x) - \bfitxi \gamma (x)) \cdot (\bfitz \gamma (x) - \bfitE (x)) = (\bfitlambda (x) - \bfitxi \gamma (x)) \cdot \bfitz \gamma (x) \leq 0,

where the last inequality follows from (5.13). Finally, for x \in \scrI \cap \scrI \gamma we have \bfitE (x) =
0, jc\bfitz 

\gamma (x) = \gamma  - 1\bfitxi \gamma (x) as well as | \bfitz \gamma (x)| \leq \gamma  - 1. This implies

(\bfitlambda (x) - \bfitxi \gamma (x)) \cdot (\bfitz \gamma (x) - \bfitE (x)) \leq 1

\gamma 
jc  - \gamma jc| \bfitz \gamma | 2 \leq 1

\gamma 
jc.
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After taking all the pointwise estimates above together in (5.16), it follows that

(5.17) C\| \bfitE  - \bfitz \gamma \| 2\bfitH (\bfc \bfu \bfr \bfl ) \leq jc\gamma 
 - 1| \omega | \Rightarrow lim

\gamma \rightarrow \infty 
\| \bfitE  - \bfitz \gamma \| \bfitH (\bfc \bfu \bfr \bfl ) = 0.

Therefore, (5.15) and (5.17) imply the strong convergence \| \bfitE \gamma  - \bfitE \| \bfitH (\bfc \bfu \bfr \bfl ) \rightarrow 0 as
\gamma \rightarrow \infty . Finally, in view of (2.3) and (5.13), we have that

sup
\bfitv \in \bfitH 0(\bfc \bfu \bfr \bfl )\setminus \{ 0\} 

\int 
\omega 
(\bfitlambda \gamma  - \bfitlambda ) \cdot \bfitv dx
\| \bfitv \| \bfitH (\bfc \bfu \bfr \bfl )

= sup
\bfitv \in \bfitH 0(\bfc \bfu \bfr \bfl )\setminus \{ 0\} 

a(\bfitE  - \bfitE \gamma ,\bfitv )

\| \bfitv \| \bfitH (\bfc \bfu \bfr \bfl )
\leq C\| \bfitE  - \bfitE \gamma \| \bfitH (\bfc \bfu \bfr \bfl ),

which implies the convergence \bfitlambda \gamma \rightarrow \bfitlambda in \bfitH 0(curl)
\ast as \gamma \rightarrow \infty .

Let us point out that in (5.12) we extended the Lagrange multipliers \bfitlambda \gamma ,\bfitlambda by
zero as functions in \bfitL 2(\Omega ), i.e., we set \bfitlambda \gamma (x) = 0 and \bfitlambda (x) = 0 for all x \in \Omega \setminus \omega . This
zero extension shall also be used in the following theorem.

Theorem 5.3. Let Assumption 2.1 hold and \{ \gamma n\} n\in \BbbN \subset \BbbR + be such that \gamma n \rightarrow \infty 
as n \rightarrow \infty . Then, there exists a subsequence of \{ \gamma n\} n\in \BbbN , still denoted by \{ \gamma n\} n\in \BbbN ,
such that the sequence of solutions \{ \omega \gamma n\} n\in \BbbN of (P\gamma ) with \gamma = \gamma n converges toward
an optimal solution \omega  \star \subset \scrO of (P) in the sense of Hausdorff and in the sense of
characteristic functions.

Moreover, \{ (\bfitE \gamma n(\omega \gamma n),\bfitlambda \gamma n(\omega \gamma n))\} n\in \BbbN and (\bfitE (\omega  \star ),\bfitlambda (\omega  \star )) as the solutions of
(3.1) for \omega = \omega \gamma n and (2.3) for \omega = \omega  \star , respectively, satisfy

lim
\gamma \rightarrow \infty 

\| \bfitE \gamma n(\omega \gamma n) - \bfitE (\omega  \star )\| \bfitH (\bfc \bfu \bfr \bfl ) = 0,(5.18)

lim
\gamma \rightarrow \infty 

\| \bfitlambda \gamma n(\omega \gamma n) - \bfitlambda (\omega  \star )\| \bfitH 0(\bfc \bfu \bfr \bfl )\ast = 0,(5.19)

where \bfitlambda \gamma n(\omega \gamma n) (resp., \bfitlambda (\omega  \star ) ) is extended by zero in \Omega \setminus \omega \gamma n (resp., in \Omega \setminus \omega  \star ).

Proof. Thanks to Theorem 2.3 and \gamma n \rightarrow \infty , there exists \omega  \star \in \scrO such that,
possibly for a subsequence,

(5.20) \omega \gamma n \rightarrow \omega  \star as n \rightarrow \infty 

in the sense of Hausdorff and in the sense of characteristic functions. Furthermore,
we have the estimate

(5.21) \| \bfitE \gamma n(\omega \gamma n) - \bfitE (\omega  \star )\| \bfitH (\bfc \bfu \bfr \bfl ) \leq \| \bfitE \gamma n(\omega \gamma n) - \bfitE \gamma n(\omega  \star )\| \bfitH (\bfc \bfu \bfr \bfl )

+ \| \bfitE \gamma n(\omega  \star ) - \bfitE (\omega  \star )\| \bfitH (\bfc \bfu \bfr \bfl ).

Now, by virtue of Lemma 5.2, the second term on the right-hand side of (5.21) con-
verges to 0 as n \rightarrow \infty . For the first term we observe (for every n \in \BbbN ) that the
arguments used to derive (3.13) are applicable. Thus, we substract (3.1) for \bfitE \gamma n(\omega \gamma n)
and (3.1) for \bfitE \gamma n(\omega  \star ) and test the resulting equation with \bfitv = \bfitE \gamma n(\omega  \star ) - \bfitE \gamma n(\omega \gamma n).
Hereafter, analoguously to (3.12), calculations involving (3.5) yield

(5.22) \| \bfitE \gamma n(\omega \gamma n) - \bfitE \gamma n(\omega  \star )\| \bfitH (\bfc \bfu \bfr \bfl ) \leq 
jc

min\{ \nu , \epsilon \} 
\| \chi \omega  \star 

 - \chi \omega \gamma n \| L2(\Omega ) \forall n \in \BbbN .

Combining Lemma 5.2 and (5.20)--(5.22) together leads to (5.18).
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Furthermore, substracting (2.3) for \omega = \omega  \star and (3.1) for \omega = \omega \gamma n implies

sup
\bfitv \in \bfitH 0(\bfc \bfu \bfr \bfl )

(\bfitlambda \gamma n(\omega \gamma n) - \bfitlambda (\omega  \star ),\bfitv )\bfitL 2(\Omega )

\| \bfitv \| \bfitH (\bfc \bfu \bfr \bfl )
= sup

\bfitv \in \bfitH 0(\bfc \bfu \bfr \bfl )

a(\bfitE (\omega  \star ) - \bfitE \gamma n(\omega \gamma n),\bfitv )

\| \bfitv \| \bfitH (\bfc \bfu \bfr \bfl )
(5.23)

(A2)\underbrace{}  \underbrace{}  
\leq max\{ \| \epsilon \| L\infty (\Omega ,\BbbR 3\times 3), \| \nu \| L\infty (\Omega ,\BbbR 3\times 3)\} \| \bfitE (\omega  \star ) - \bfitE \gamma n(\omega \gamma n)\| \bfitH (\bfc \bfu \bfr \bfl ).

Thus, (5.19) follows from (5.18). It remains to verify that \omega  \star \in \scrO is in fact a minimizer
of (P). First, we note that since \omega \gamma n is a solution of (P\gamma ) for \gamma = \gamma n, the following
estimate holds:

(5.24) J\gamma n
(\omega \gamma n) = min

\omega \in \scrO 
J\gamma n

(\omega ) \leq J\gamma n
(\omega ) \forall \omega \in \scrO .

Finally, gathering all the previous results, we obtain for every \omega \in \scrO that

J(\omega  \star ) =
1

2

\int 
B

\kappa | \bfitE (\omega  \star ) - \bfitE d| 2dx+

\int 
\omega  \star 

dx

(5.18)\& (5.20)\underbrace{}  \underbrace{}  
= lim

n\rightarrow \infty 

1

2

\int 
B

\kappa | \bfitE \gamma n(\omega \gamma n) - \bfitE d| 2dx+

\int 
\omega \gamma n

dx = lim
n\rightarrow \infty 

J\gamma n
(\omega \gamma n)

(5.24)\underbrace{}  \underbrace{}  
\leq lim

n\rightarrow \infty 
J\gamma n

(\omega ) = lim
n\rightarrow \infty 

1

2

\int 
B

\kappa | \bfitE \gamma n(\omega ) - \bfitE d| 2dx+

\int 
\omega 

dx

(5.12)\underbrace{}  \underbrace{}  
=

1

2

\int 
B

\kappa | \bfitE (\omega ) - \bfitE d| 2dx+

\int 
\omega 

dx = J(\omega ).

This shows J(\omega  \star ) \leq J(\omega ) for every \omega \in \scrO , which yields the assertion.

Remark 5.4. As we have obtained the optimal shape \omega  \star \in \scrO in (5.20) as the limit
of the optimal shapes for (P\gamma ), Theorem 2.4 follows immediately from Theorem 5.3.

6. Numerical tests. Our algorithm to obtain a numerical approximation for
the optimal shape \omega  \star of (P) is based on a variant of the level set method where the
distributed shape derivative (Theorem 4.6) is used to obtain a descent direction (see
[25]). We consider the proposed approach (P\gamma ) with \gamma = 7\cdot 104. The forward problems
(3.1) are computed using the Newton method with a finite element discretization
based on the first family of N\'ed\'elec's edge elements [33] at roughly 2,000,000 DOFs.
As announced in the introduction, we apply our algorithm to two problems stemming
from HTS, also widely known as type-II superconductivity.

We choose \Omega = [ - 2, 3]3 and B = [0, 1]3. For simplicity, we take the material
parameters \epsilon = \nu = \bfitI 3 (cf. (A2)). Moreover, \bfitf is a circular current

\bfitf (x, y, z) =

\left\{     
R\sqrt{} 

(y  - 0.5)2 + (z  - 0.5)2
(0,  - z + 0.5, y  - 0.5) for (x, y, z) \in \Omega p,

0 for (x, y, z) /\in \Omega p,

applied to a pipe coil \Omega p \subset \Omega which is defined by

\Omega p :=
\Bigl\{ 
(x, y, z) \in \Omega : | z  - 0.5| \leq 0.5,

\sqrt{} 
(x - 0.5)2 + (y  - 0.5)2 \in [1.2, 1.6]

\Bigr\} 
.

The constant R > 0 denotes the electrical resistance of \Omega p (here: R = 10 - 3). As
\Omega p \cap B = \emptyset , we have \bfitf \equiv 0 in B and (A3) is satisfied. Without a superconductor in
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the system, this current would induce an orthogonal magnetic field which admits its
highest field strength inside the coil.

At each new iteration of the optimization algorithm, we use the distributed ex-
pression (4.39) of the shape derivative to obtain a new descent direction \Theta . More
precisely, let \bfitV h \subset \bfitH 1(B) \cap \bfscrC 0,1(B) be the space of piecewise linear and continuous
finite elements on B. Given a positive definite bilinear form \scrB : \bfitV h \times \bfitV h \rightarrow \BbbR , the
problem is to find \Theta \in \bfitV h such that

(6.1) \scrB (\Theta , \bfitxi ) =  - dJ\gamma (\omega )(\bfitxi ) \forall \bfitxi \in \bfitV h.

With this choice, the solution \Theta of (6.1) is defined on B and is a descent direction
since dJ\gamma (\omega )(\Theta ) =  - \scrB (\Theta ,\Theta ) < 0 if \Theta \not = 0. In our algorithm we choose

(6.2) \scrB (\Theta , \bfitxi ) =

\int 
B

\alpha 1D\Theta : D\bfitxi + \alpha 2\Theta \cdot \bfitxi dx+ \alpha 3

\int 
\partial B

(\Theta \cdot \bfitn )(\bfitxi \cdot \bfitn ) ds

with \alpha 1 = 0.5, \alpha 2 = 0.5, and \alpha 3 = 1.0. Moreover, the geometry was optimized in the
class of shapes with two symmetries with respect to the planes x = 0.5 and y = 0.5.
This is achieved by symmetrizing \Theta with respect to these axis, and it can be shown
that the symmetrized vector field is still a descent direction. The description of the
symmetrization strategy can be found in the extended version of this paper (see [26]).

Then, the moving domain \omega t = \bfitT t(\Theta ) corresponding to the descent direction \Theta 
is represented implicitly as the zero sublevel set of a Lipschitz continuous function
\phi : B \times [0, \tau ] \rightarrow \BbbR , i.e.,

\omega t = \{ x \in B | \phi (x, t) < 0\} and \partial \omega t = \{ x \in B | \phi (x, t) = 0\} ,

assuming | \nabla \phi (\cdot , t)| \not = 0 on \partial \omega t. It can be shown that the evolution of \phi corresponding
to the flow \bfitT t(\Theta ) is determined by the following transport equation:

(6.3) \partial t\phi (x, t) +\Theta (x) \cdot \nabla x\phi (x, t) = 0 in B \times [0, \tau ].

A Lax--Friedrichs flux is used for the discretization of (6.3); we refer to [24] for a
detailed description of this level set method including its implementation in a two-
dimensional (2D) framework. All codes are written in Python with the open-source
finite-element computational software FEniCS [29]. We used ParaView to visualize
the 3D plots.

6.1. First example. We set \bfitE d \equiv 0 in compliance with (A1) to find the optimal
shape of a superconductor that minimizes both the electromagnetic field penetration
and the volume of material. This example is motivated by the HTS application in the
superconducting shielding (cf. [22]). We take \kappa \equiv 8 \cdot 107, which is a reasonable choice
considering that the electric field strength is roughly | \bfitE | \approx 10 - 3 due to the weak
applied current strength | \bfitf | . The initial shape consists of material attached to the
boundary of B (see Figure 1(a)). In Figures 1(b) to 1(d) we see some snapshots of the
evolving shape generated by our algorithm. The algorithm generates two connected
components on the top and the bottom of the (lateral) boundary. It is interesting
to observe that the magnetic field (curl\bfitE ) hits the boundary of the bounding box
B from above and, despite the small amount of material used, the field lines do
not penetrate through the inside of the area enclosed by the superconductor (see
Figures 2(b) and 2(d)). Moreover, in Figure 2 we can compare the magnetic field
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Fig. 1. Shapes generated by the algorithm at iterations 0, 42, 45, 143.

Fig. 2. Different views on the magnetic field at the initial and the final iteration. (a)--(b) 2D
slice in the center. (c)--(d) Total shot from the same view as Figure 1.
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Fig. 3. Function value (solid) and volume (dashed): 1. Example (left), 2. Example (right).

penetration for the initial and the final shape from different camera perspectives.
The interior of the initial shape is barely protected from penetration, whereas the
final shape redirects the magnetic field lines such that they are condensed on the
outside of B.

In the final iteration the functional value is around 0.444 at a volume of roughly
0.278, which is only 27.8\% of the volume of B. The E-field fraction in the cost
functional amounts roughly to 0.166. This means that there is only a weak magnetic
field left in small areas of B. The penetration is mostly between the connected
components on the lateral surface of the conducting material. The development of the
functional value as well as the volume fraction is documented in Figure 3(a) and the
minimal value is reached after roughly 125 iterations. Thereafter, it remains almost
constant.

We also observe a slight increase of the cost functional at iterations 43 and 44,
due to a topological change in the design. Indeed, at iteration 42 the components
on the lateral sides of the cube are disconnected (see Figure 1(b)) and then merge at
iteration 45 (see Figure 1(c)). This is a well-known issue with the level set method;
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SHAPE OPTIMIZATION FOR SUPERCONDUCTORS 2269

Fig. 4. The original superconductor and the final shape generated by the algorithm in the second
example. The third figure is the final shape clipped along the plane x = 0.5.

Fig. 5. Different views on the magnetic field of the original and the final superconductor. Left:
2D slice in the center. Right: Total shot from the same view as Figures 4(a) and 4(b).

see [23] for a recent study on this topic. However, in this example the increase in the
functional value is negligible and immediately compensated by a sharp decrease.

6.2. Second example. We place a superconducting ball \omega b with radius rb = 0.5
inside B (see Figure 4(a)) and compute \bfitE d as the corresponding solution of (3.1). The
resulting magnetic field is displayed in Figures 5(a) and 5(c). The initial shape and
parameters are the same as in the first example (see Figure 1(a)). In the end, we obtain
two bell-shaped components connected by small transitions on the boundary. In
Figures 4(b) to 4(d) we see this shape from different camera positions. It corresponds
to a functional value of 0.223 where the electric field costs get as low as 0.071 at
a volume fraction of 0.153. As the original superconductor was a ball with radius
0.5, our algorithm computed an optimal shape with around 70\% less material. The
development of the functional value and the volume is documented in Figure 3(b).
Moreover, the descent in this example is smoother and notably faster than the first
example. This could be due to \bfitE d \not \equiv 0, which gives more structure than \bfitE d \equiv 0, and
thus the algorithm has fewer possibilities to design the superconductor and converges
faster.

We underline that the optimization problem (P\gamma ) is highly nonlinear and noncon-
vex. Therefore, the solution generated by our algorithm can only be expected to be
a local solution. In fact, nonconvex optimization problems may admit many different
(or even infinitely many) solutions. With regard to this, one may address an open
question whether there exists a form \omega exact which on the one hand minimizes (P\gamma )
and at the same time yields the desired target for the corresponding solution to (3.1).
This issue is highly related to the question of exact controllability. Previous results in
this direction for Maxwell's equations and optimal design can be found in [35, 36, 39].

6.3. Convergence tests with respect to \bfitgamma . Let us now report on a numerical
test to verify our theoretical convergence result (Theorem 5.3). Since no analytical
solution is available for the limit case (P), we consider the computed solution of (P\gamma )
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for \gamma = \gamma ref = 7\cdot 106 as the reference solution and test the convergence behavior of (P\gamma )
with respect to \gamma . More precisely, this is quantitatively clarified by the experimental
order of convergence (EOC):

EOCk :=

\bigm| \bigm| \bigm| \bigm| log(Errork) - log(Errork - 1)

log(\gamma k) - log(\gamma k - 1)

\bigm| \bigm| \bigm| \bigm| ,
where Errork = \| \chi \omega \gamma k  - \chi \omega \gamma ref\| L1(\Omega ) + \| \bfitE \gamma k  - \bfitE \gamma ref\| \bfitH (\bfc \bfu \bfr \bfl ). Our numerical results
with \gamma 1 = 10, \gamma 2 = 1000, \gamma 3 = 7 \cdot 104, and \gamma 4 = 7 \cdot 105 reveal a first guess for EOC
of around 0.45 as confirmed by the following values: EOC2 = 0.468, EOC3 = 0.516,
EOC4 = 0.425.
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