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ADAPTIVE EDGE ELEMENT APPROXIMATION FOR H(CURL)
ELLIPTIC VARIATIONAL INEQUALITIES OF SECOND KIND∗
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Abstract. This paper is concerned with the analysis of an adaptive edge element method for
solving elliptic curl-curl variational inequalities of second kind. We derive a posteriori error estima-
tors based on a special combination of the Moreau–Yosida regularization and Nédélec’s edge elements
of first family. With the help of these a posteriori error estimators, an AFEM algorithm is proposed
and studied. We are able to establish both the reliability and the efficiency of these estimators, by
means of a special linear auxiliary problem involving the discrete Moreau–Yosida-regularized dual for-
mulation, along with a local regular decomposition for H(curl)-functions and the bubble functions.
Furthermore, we demonstrate the strong convergence of the sequence of the edge element solutions
generated by the adaptive algorithm toward the solution of a limiting problem, by first achieving
the convergence of the maximal error indicator and the residual corresponding to the sequence of
the adaptive edge element solutions, under a reasonable condition on the regularization parameter
in terms of the adaptive mesh size. Three-dimensional numerical experiments are presented to verify
the robustness and effectiveness of the adaptive algorithm when it is applied to a problem arising
from the type-II (high-temperature) superconductivity.
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1. Introduction. The adaptive finite element method (AFEM) based on a pos-
teriori error estimators is a useful technique to increase the numerical accuracy of
solutions to PDE problems in certain sensitive regions of the concerned domain. For
variational inequalities (VIs) of the first kind or obstacle problems, these regions are
typically the (a priori unknown) free boundaries which correspond to the interfaces
between the active and inactive areas of the obstacle. AFEM consists of a repeating
execution of the loop:

SOLVE → ESTIMATE → MARK → REFINE.

Typically, when dealing with obstacle problems, AFEM refines the mesh adaptively
where the solution is close to the obstacle, whereas the mesh on the remaining do-
main stays relatively coarse. This procedure yields a practically important feature to
predict and detect the free boundaries without a priori knowledge. For H1(Ω)-elliptic
obstacle problems, earlier results go back to [23, 27], and wide studies can be found in
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1942 MALTE WINCKLER, IRWIN YOUSEPT, AND JUN ZOU

this direction; see [9, 12, 14, 33] and the references therein. However, many important
physical phenomena, including Bingham fluid, friction, and high-temperature super-
conductivity (HTS), cannot be modeled by obstacle problems, hence leading to VIs
of second kind. Bostan, Han, and Reddy [7] were the first to propose a duality ap-
proach to derive reliable a posteriori error estimators for H1(Ω)-elliptic VIs of second
kind. Some years later, Wang and Han [39] adapted the idea by Braess [8] to prove
the efficiency of the proposed estimators by considering an auxiliary linear equation
taking the associated discrete dual variable into account.

The first contribution toward residual-type a posteriori error estimators for edge
element methods in H(curl)-elliptic equations go back to Beck et al. [6]. Schöberl [35]
established some stability estimates for a Clément-type quasi-interpolation operator,
which turned out to be a very useful tool in the a posteriori error analysis of Max-
well’s equations. The strong convergence of AFEM algorithms for various Maxwell-
type equations with edge elements was analyzed in [10, 11, 13, 15, 24, 41]. Some of
these developments relied on a key strategy with limiting spaces, which was initially
adopted by Babuška and Vogelius [3] for a one-dimensional boundary value problem
and then extended to several higher-dimensional problems by Morin, Siebert, and
Veeser [31]. We refer the reader to [43, 46] for edge element methods for optimal
control problems.

To the best of the authors’ knowledge, a posteriori error analysis and adaptive
edge element methods for elliptic curl-curl VIs still remain an open research area (see
[42] for recent mathematical results on (full) hyperbolic Maxwell VIs). In particular,
such a class of problems works with the space H(curl) (instead of H1) and features
various special singularities [16, 17, 18]. These facts, along with the main difficulties
arising from the VI character, make the numerical analysis, especially the rigorous a
posteriori error analysis of the resulting AFEM, rather challenging.

In this work, we propose and analyze a posteriori error estimators and an AFEM
algorithm for H(curl)-elliptic VIs of second kind. Due to the curl-curl structure in-
volved, our a posteriori error estimators require a local divergence regularity property
of the dual variable. For this reason, unlike all the aforementioned contributions, we
make use of a special combination of the Moreau–Yosida regularization and Nédélec’s
edge elements of first family [32]. We are able to demonstrate that the proposed error
estimators are both reliable and efficient. More important, under a certain condi-
tion on the regularization parameter depending on the adaptive mesh, we can even
establish the strong convergence of the AFEM algorithm. Let us point out that the
Moreau–Yosida regularization is a key feature which is not only crucial to our theoret-
ical analysis but also brings a significant advantage to the numerical implementation
of our new AFEM. In fact, it makes our implementation much more realistic and effi-
cient. Our numerical realizations are carried out by means of the efficient and robust
semismooth Newton method [25] that demands a certain regularity of the dual formu-
lation. This regularity property is well satisfied by the Moreau–Yosida approximation
but in general not by the original VI of second kind (cf. [19]). This work appears to be
the first contribution that makes full use of the Moreau–Yosida regularization with its
great flexibility and advantage in the a posteriori error analysis. The regularization
strategy is very different from the finite element discretization of the VIs as was done
in the previous studies [7, 39] for H1(Ω)-elliptic VIs of second kind.

We end this section by introducing the H(curl)-elliptic VIs of second kind of
our interest and outlining the main results of this work. We consider the VI of theD
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following form: Find E ∈ H0(curl) such that

a(E,v −E) + ϕ(v)− ϕ(E) ≥
∫

Ω

f · (v −E) dx ∀v ∈ H0(curl) ,(VI)

where a : H0(curl)×H0(curl)→ R is a bilinear form defined by

a(v,w) =

∫
Ω

εv ·w dx+

∫
Ω

µ−1 curl v · curl w dx

and ϕ : L2(Ω)→ R is a nonlinear and nonsmooth functional of the form

ϕ(v) =

∫
Ω

jc(x)|v(x)| dx.(1.1)

The specific assumptions on ε, µ, jc and f are stated in Assumption 2.1. The re-
mainder of this work is structured as follows. First, we introduce the Moreau–Yosida
regularization for the dual formulation of (VI) (see (3.3)). After showing a crucial
regularity property for the dual variable of the regularized problem, we propose the a
posteriori error estimator (3.17). Thereafter, its reliability is proven in Theorem 3.6
by considering the linear auxiliary problem (3.5) and using the Schöberl local regular
decomposition (cf. Lemma 3.5). The efficiency of the estimators, stated in Theo-
rem 3.7, follows from a standard argumentation with bubble functions (cf. [1]). With
the help of these essential properties, we present the adaptive edge element algorithm
for (VI). The main result is a strong convergence theorem (see Theorem 4.10) of the
sequence of adaptive solutions generated by Algorithm 4.1 toward the unique solu-
tion of (VI). Therefore, the limiting space (4.6) as well as the corresponding limiting
variational inequality (VI∞) are the starting points for all that follows. First, the
strong convergence toward this limiting problem is established. Hereafter, under a
specific condition on the regularization parameter depending on the adaptive mesh
(Assumption 4.6), we derive convergence results for the maximal error indicator and
the residual corresponding to the sequence of adaptive solutions (Lemmas 4.7 and 4.8).
By means of these convergence properties, we are able to prove that the solution to
the limiting problem (VI∞) coincides with the one to (VI). Hence, strong conver-
gence of Algorithm 4.1 follows as an immediate consequence. We conclude the work
by presenting numerical results for an important physical application in the type-II
(high-temperature) superconductivity [40, 44, 45].

2. Preliminaries. We consider a bounded, polyhedral and simply connected
domain Ω ⊂ R3 with a connected Lipschitz boundary. For a given Banach space
X, we denote its norm by ‖ · ‖X and the duality pairing with the corresponding dual
space X∗ by 〈·, ·〉. If X is a Hilbert space, then (·, ·)X stands for its scalar product and
‖ · ‖X for the induced norm. In the case of X = Rn, we renounce the subscript in the
(Euclidean) norm and write | · |. The Euclidean scalar product is denoted by a dot. In
the case that X = L2(ω) for some ω ⊂ Ω, its norm is denoted by ‖ · ‖0,ω. Hereinafter
a bold type always indicates a vector-valued function or a vector-valued space. Now
let us introduce the most basic Hilbert spaces that will be used throughout this work:

H(curl) := {v∈L2(Ω):curl v∈L2(Ω)} and H(div) := {v∈L2(Ω):div v∈L2(Ω)},

where curl and div are understood in the distributional sense. As usual, C∞0 (Ω)
denotes the space of all infinitely differentiable functions with compact support in Ω.
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1944 MALTE WINCKLER, IRWIN YOUSEPT, AND JUN ZOU

The space H0(curl) stands for the closure of C∞0 (Ω) with respect to the H(curl)-
norm.

Next, we present all the necessary assumptions for the material parameters and
the given data in (VI).

Assumption 2.1 (material parameters and given data).
(A1) There are polyhedral Lipschitz subdomains Ωj in Ω, j = 1, . . . ,M , such that

Ωi ∩ Ωj = ∅ for i 6= j and Ω̄ =

M⋃
j=1

Ω̄j .

Furthermore, the material parameters ε, µ, jc satisfy

ε(x) = cεi and µ(x) = cµi and jc(x) = cjci ∀x ∈ Ωi, i ∈ {1, . . . ,M}

for positive constants cεi , c
µ
i > 0 and a nonnegative constant cjci ≥ 0 for all

i ∈ {1, . . . ,M}.
(A2) The source f of (VI) lies in L2(Ω) and satisfies the divergence-free condition:

(f ,∇φ)0,Ω = 0 ∀φ ∈ H1
0 (Ω).

Under Assumption 2.1 the bilinear form a is continuous and coercive; i.e., there
are positive constants 0 < κ < κ depending only on ε and µ such that

|a(v,w)| ≤ κ‖v‖H(curl)‖w‖H(curl) ∀v,w ∈ H0(curl),(2.1)

a(v,v) ≥ κ‖v‖2H(curl) ∀v ∈ H0(curl).(2.2)

Due to (2.1), (2.2), and its symmetry, the bilinear form a defines a scalar product
whose induced norm ‖ · ‖a :=

√
a(·, ·) is equivalent to ‖ · ‖H(curl). Furthermore, the

induced norm over an arbitrary measurable set ω ⊂ Ω is denoted by ‖ · ‖a,ω.
We close this section by introducing the discrete approximation to (VI). Let T0

be a shape-regular triangulation of Ω̄ such that ε, µ, and jc are constant in every
T ∈ T0, and let T be the set of all possible conforming triangulations obtained from
T0 by successive bisection. One key property of the refinement process ensures that all
constants depending only on the shape regularity of any T ∈ T are uniformly bounded
by a constant depending only on the initial mesh T0 (cf. [37]). For any T ∈ T the
finite element space of Nédélec’s first family of edge elements is defined by

VT := {vT ∈ H0(curl) : vT |T = aT + bT × x with aT ,bT ∈ R3, ∀T ∈ T }.

We are now ready to formulate the edge element approximation to (VI).
Find ET ∈ VT such that

(VIT ) a(ET ,vT − ET ) + ϕ(vT ) − ϕ(ET ) ≥
∫

Ω

f · (vT − ET ) dx ∀vT ∈ VT .

Existence and uniqueness of the solutions to (VI) and (VIT ) follow by the classical
theory of elliptic VIs (cf. [28, Theorem 2.2]).
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3. A posteriori error analysis. As already pointed out in the introduction,
our adaptive algorithm is based on efficient and reliable a posteriori error estimators.
In order to establish this, we introduce some additional notation: By FT , we denote
the set of all faces in T ∈ T, and FT (Ω) stands for the set of all interior faces. Let
hT = diam(T ) for T ∈ T and hF = diam(F ) for F ∈ FT . Furthermore, we use DT

(resp., DF ) to denote the union of all elements that have a nonempty intersection
with T ∈ T (resp., F ∈ FT ). Finally, for T ∈ T , we define the patch set ωT as the
union of all elements sharing a common face with T , and for any face F ∈ FT shared
by two elements K, K̃ ∈ T , we set ωF = K ∪ K̃.

A classical result from the theory of VIs yields the existence of a Lagrange-
multiplier for (VI) (cf. [22]). Let E ∈ H0(curl) be the unique solution to (VI).
Then there exists a unique λ ∈ L∞(Ω) such thata(E,v) +

∫
Ω

λ · v dx =

∫
Ω

f · v dx ∀v ∈ H0(curl)

|λ(x)| ≤ jc(x), λ(x) ·E(x) = jc(x)|E(x)| for a.e. x ∈ Ω.

(3.1)

For (3.1), we denote the active and inactive sets by

A := {x ∈ Ω : |E(x)| > 0} and I = Ω\A.

Next, we introduce the Moreau–Yosida regularization ψγ : R3 → R of | · | by

ψγ(x) :=


|x| − 1

2γ
for |x| ≥ 1

γ
,

γ

2
|x|2 for |x| < 1

γ

and consider the regularized version of (VIT ): Find Eγ
T ∈ VT such that

a(Eγ
T ,vT −Eγ

T ) + ϕγ(vT )− ϕγ(Eγ
T ) ≥

∫
Ω

f · (vT −Eγ
T ) dx ∀vT ∈ VT ,(3.2)

where ϕγ(v) :=
∫

Ω
jc(x)ψγ(v(x)) dx for v ∈ L2(Ω) and γ > 0. The next lemma states

some helpful properties of the Moreau–Yosida regularization (see [34, Lemma 5.17]).

Lemma 3.1. Let {vγ}γ>0 ⊂ L2(Ω) and v ∈ L2(Ω). For every γ > 0 it holds that
ϕγ(v) ≤ ϕ(v) and the following convergence properties are satisfied:

vγ ⇀ v weakly in L2(Ω) ⇒ lim inf
γ→∞

ϕγ(vγ) ≥ ϕ(v),

vγ → v strongly in L2(Ω) ⇒ lim sup
γ→∞

ϕγ(vγ) ≤ ϕ(v).

Moreover, ϕγ : L2(Ω)→ R is Gâteaux-differentiable for every γ > 0.

Thanks to the Gâteaux-differentiability of ϕγ , (3.2) is equivalent to finding Eγ
T ∈

VT such that
a(Eγ

T ,vT ) +

∫
Ω

λγT · vT dx =

∫
Ω

f · vT dx ∀vT ∈ VT

λγT (x) = jc(x)
γEγ
T (x)

max{1, γ|Eγ
T (x)|}

for a.e. x ∈ Ω.

(3.3)D
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In this context, the active and inactive sets are given by

Aγ := {x ∈ Ω : γ|Eγ
T (x)|>1} and Iγ := Ω\Aγ .(3.4)

Since λ and λγT are essentially bounded in Ω, we may interpret them as elements in
H0(curl)∗ with the operator norm

‖λ‖∗,a := sup

{∫
Ω

λ · v dx : v ∈ H0(curl), ‖v‖a = 1

}
.

As a starting point for a posteriori error analysis, we consider the auxiliary problem

a(z,v) +

∫
Ω

λγT · v dx =

∫
Ω

f · v dx ∀v ∈ H0(curl),(3.5)

which admits a unique solution z ∈ H0(curl).

Lemma 3.2. Under Assumption 2.1 and for C = max{5, 6‖jc‖L1(Ω)}, there holds
that

‖Eγ
T −E‖2a + ‖λ− λγT ‖

2
∗,a ≤ C

(
‖Eγ
T − z‖2a +

1

γ

)
.

Proof. We begin by subtracting (3.1) from (3.5) to obtain

a(z−E,v) =

∫
Ω

(λ− λγT ) · v dx ∀v ∈ H0(curl).(3.6)

Therefore,

a(Eγ
T −E,v) = a(Eγ

T − z,v) +

∫
Ω

(λ− λγT ) · v dx ∀v ∈ H0(curl).(3.7)

Next, we exploit properties of λ and λγT in (3.1) and (3.3) and prove that∫
Ω

(λ− λγT ) · (Eγ
T −E) dx ≤ 1

γ
‖jc‖L1(Ω).(3.8)

To this aim, we divide Ω into A ∩ Aγ ,A ∩ Iγ , I ∩ Aγ as well as I ∩ Iγ and show
pointwise estimates for the integrand in (3.8). For x ∈ A∩Aγ , (3.1) and (3.3) imply

(λ(x)− λγT (x)) · (Eγ
T (x)−E(x))

= λ(x) ·Eγ
T (x)− λ(x) ·E(x) + λγT (x) ·E(x)− λγT (x) ·Eγ

T (x)

≤ jc(x)|Eγ
T (x)| − jc(x)|E(x)|+ jc(x)|E(x)| − jc(x)|Eγ

T (x)| = 0.

For x ∈ A ∩ Iγ , (3.1) and (3.3) yield jc(x)Eγ
T (x) = γ−1λγT (x), |λγT (x)| ≤ jc(x),

|Eγ
T (x)|≤γ−1, and |λ(x)| = jc(x). Hence, we can derive

(λ(x)− λγT (x)) · (Eγ
T (x)−E(x))

= λ(x) ·Eγ
T (x)− jc(x)|E(x)| − γjc(x)|Eγ

T (x)|2 + λγT (x) ·E(x)

≤ 1

γ
jc(x)− jc(x)|E(x)|+ jc(x)|E(x)| − γjc(x)|Eγ

T |
2 ≤ 1

γ
jc(x).

For x ∈ I ∩ Aγ , we have E(x) = 0 and thus

(λ(x)− λγT (x)) · (Eγ
T (x)−E(x)) = (λ(x)− λγT (x)) ·Eγ

T (x) ≤ 0.
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Finally, for x ∈ I ∩ Iγ , we have E(x) = 0, jc(x)Eγ
T (x) = γ−1λγT (x) as well as

|Eγ
T (x)|≤γ−1. This implies that

(λ(x)− λγT (x)) · (Eγ
T (x)−E(x)) ≤ 1

γ
jc(x)− γjc(x)|Eγ

T |
2 ≤ 1

γ
jc(x).

After taking all the pointwise estimates above together, (3.8) follows by integration
over Ω. Now, inserting v = ET −E into (3.7), we get from (3.8) that

‖Eγ
T −E‖2a ≤ ‖E

γ
T − z‖a‖Eγ

T −E‖a +
1

γ
‖jc‖L1(Ω) .

Further, the application of Young’s inequality yields

‖Eγ
T −E‖2a ≤ ‖E

γ
T − z‖2a +

2

γ
‖jc‖L1(Ω).(3.9)

Finally, (3.6), (3.9), and the triangle inequality give us

‖λ− λγT ‖
2
∗,a ≤ ‖z−E‖2a ≤ 2‖z−Eγ

T ‖
2
a + 2‖Eγ

T −E‖2a(3.10)

≤ 4‖z−Eγ
T ‖

2
a +

4

γ
‖jc‖L1(Ω).

The desired assertion follows directly from (3.9) and (3.10).

The next lemma gives a local regularity property of the regularized dual variable.

Lemma 3.3. Under Assumption 2.1, the dual variable from (3.3) enjoys the regu-
larity property λγT |T ∈ H(div, T ) for every T ∈ T and the following stability estimate:

‖ divλγT |T ‖0,T ≤
γ‖jc‖L∞(Ω)√

2
‖ curl Eγ

T ‖0,T ∀T ∈ T .

Proof. Let T ∈ T be an arbitrarily fixed element. As Eγ
T ∈ VT , it holds that

Eγ
T |T ∈ C∞(T ), and thus max{1, γ|Eγ

T |T |} ∈ W 1,∞(T ) (see [26, Corollary A.6]). For
this reason and the fact that jc|T is constant, λγT |T ∈ W 1,∞(T ) follows from (3.3).
Now we show that

divλγT |T =

−
jc|T
|Eγ
T |T |3

(∇Eγ
T |TEγ

T |T ) ·Eγ
T |T in Aγ ∩ T,

0 in Iγ ∩ T,
(3.11)

where ∇Eγ
T |T = (∇Eγ

T |T,1 ∇Eγ
T |T,2 ∇Eγ

T |T,3). Indeed, since jc is piecewise constant
(see (A1)) and according to (3.3) and (3.4), we may compute

∂iλ
γ
T |T,i = jc|T∂i

(
γEγ
T |T,i

max{1, γ|Eγ
T |T |}

)(3.12)

= jc|T
(

γ∂iE
γ
T |T,i

max{1, γ|Eγ
T |T |}

−
γEγ
T |T,i

max{1, γ|Eγ
T |T |}2

∂i
(

max{1, γ|Eγ
T |T |}

))
.

Additionally, thanks to [26, Corollary A.6], it holds that

(3.13) ∂i
(

max{1, γ|Eγ
T |T |}

)
=


γEγ
T |T · ∂iE

γ
T |T

|Eγ
T |T |

in Aγ ∩ T,

0 in Iγ ∩ T.
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Thus, in view of (3.12), (3.13), the regularity λγT |T ∈ W 1,∞(T ), and div Eγ
T |T ≡ 0,

it follows that

divλγT |T =

3∑
i=1

∂iλ
γ
T |T,i =


− jc|T
|Eγ
T |T |3

3∑
i=1

Eγ
T |T,i

(
∂iE

γ
T |T ·E

γ
T |T

)
in Aγ ∩ T,

0 in Iγ ∩ T,

which yields that (3.11) is valid. Note that according to (3.4), (3.11) implies that
divλγT |T = 0 a.e. in {x ∈ T : γ|Eγ

T |T (x)| = 1}. Next, (3.11) together with the
inequality |Eγ

T (x)|> 1
γ for a.e. x ∈ Aγ (see (3.4)) leads to

‖ divλγT |T ‖
2
0,T = ‖divλγT |T ‖

2
L2(T∩Aγ) ≤ ‖jc‖

2
L∞(Ω)

∫
T∩Aγ

|∇Eγ
T |T (x)|2

|Eγ
T |T (x)|2

dx(3.14)

≤ γ2‖jc‖2L∞(Ω)‖∇Eγ
T |T ‖

2
0,T .

But, for every x ∈ T , we know that Eγ
T |T (x) = aT × x + bT for some aT ,bT ∈ R3.

Thus,

∇Eγ
T |T (x) =

 0 −aT,3 aT,2
aT,3 0 −aT,1
−aT,2 aT,1 0

 and curl Eγ
T |T (x) =2

aT,1
aT,2
aT,3

 ,
which implies that

√
2|∇Eγ

T |T (x)| = | curl Eγ
T |T (x)| for all x ∈ T . Combining this

with (3.14) yields the desired estimate.

Remark 3.4. Lemma 3.3 does not hold true in general for the unregularized dual
variable corresponding to (VIT ) due to the lack of information in the inactive set.

Next, we start to investigate the a posterior error estimate of the edge element
solution (Eγ

T ,λ
γ
T ) ∈ VT × L∞(Ω) to the discrete system (3.3). To do so, we define

for (Eγ
T ,λ

γ
T ) the element residual RT for every T ∈ T and the normal and tangential

jumps across every face F ∈ FT :

RT := f |T − εEγ
T |T − curlµ−1 curl Eγ

T |T − λ
γ
T |T ,(3.15)

JF,1 := [µ−1 curl Eγ
T × nF ] and JF,2 := [(λγT + εEγ

T ) · nF ].(3.16)

For any subset M of elements from T , we define its error estimator

η2
T (Eγ

T ,λ
γ
T , f ,M) :=

∑
T∈M

η2
T ,1(Eγ

T ,λ
γ
T , f , T ) + η2

T ,2(Eγ
T ,λ

γ
T , T ),(3.17)

where ηT ,1(Eγ
T ,λ

γ
T , f , T ) and ηT ,2(Eγ

T ,λ
γ
T , T ) are given by

η2
T ,1(Eγ

T ,λ
γ
T , f , T ) := h2

T ‖RT ‖20,T +
∑

F∈∂T∩Ω

hF ‖JF,1‖20,F ,

η2
T ,2(Eγ

T ,λ
γ
T , T ) := h2

T ‖ divλγT ‖
2
0,T +

∑
F∈∂T∩Ω

hF ‖JF,2‖20,F .
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We further define an oscillation term associated with the subset M, namely,

oscT
2(Eγ
T ,λ

γ
T , f ,M) :=

∑
T∈M

oscT
2(Eγ
T ,λ

γ
T , f , T )

with

oscT
2(Eγ
T ,λ

γ
T , f , T ) := h2

T ‖RT − R̄T ‖20,T + h2
T ‖divλγT |T − divλγT ‖

2
0,T

+
∑

F∈∂T∩Ω

hF ‖JF,1 − J̄F,1‖20,F + hF ‖JF,2 − J̄F,2‖20,F ,

where R̄T , divλγT |T , J̄F,1, and J̄F,2 denote the averages of RT , divλγT , JF,1, and JF,2
over T ∈ T and F ∈ FT , respectively, i.e.,

R̄T :=
1

|T |

∫
T

RT dx, divλγT |T :=
1

|T |

∫
T

divλγT dx, J̄F,1 :=
1

|F |

∫
F

JF,1 dS,

and analogously for J̄F,2. In the case ofM = T , we simply write ηT (Eγ
T ,λ

γ
T , f , T ) as

ηT (Eγ
T ,λ

γ
T , f) and oscT (Eγ

T ,λ
γ
T , f , T ) as oscT (Eγ

T ,λ
γ
T , f). Let us now recall a quasi-

interpolation operator to relate H0(curl) to the finite element space VT (see [35,
Theorem 1]).

Lemma 3.5 (Schöberl interpolation operator). Under Assumption 2.1, there
exists a quasi-interpolation operator Πs

T : H0(curl) → VT such that for every v ∈
H0(curl) there exist φ ∈ H1

0(Ω) and ϕ ∈ H1
0 (Ω) satisfying

v −Πs
T v = φ+∇ϕ

with the stability estimates

h−1
T ‖φ‖0,T + ‖∇φ‖0,T ≤ C‖ curl v‖0,D̃T ,

h−1
T ‖ϕ‖0,T + ‖∇ϕ‖0,T ≤ C‖v‖0,D̃T ,

where the constant C > 0 depends only on the shape of the elements in the enlarged
element patch D̃T := {T ′ ∈ T | T ′ ∩DT 6= ∅}.

We have now collected all the necessary preparations for the a posteriori error
analysis. Let us begin by proving the reliability of (3.17) in the following theorem.

Theorem 3.6. Under Assumption 2.1, there exists a constant C > 0 depending
only on Ω, the shape-regularity of T , and the material parameters ε, µ as well as jc
such that the solutions (E,λ) and (ET ,λT ) to (3.1) and (3.3) satisfy

‖E−Eγ
T ‖

2
a + ‖λ− λT ‖2∗,a ≤ C

(
η2
T (Eγ

T ,λ
γ
T , f) +

1

γ

)
.

Proof. We define v := z − Eγ
T ∈ H0(curl) and use Lemma 3.5 to decompose

v−Πs
T v = φ+∇ϕ with φ ∈ H1

0(Ω) and ϕ ∈ H1
0 (Ω). Then we take (A2), (3.3), and

(3.5) into account and use integration by parts, the stability estimates in Lemma 3.5,
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as well as the trace theorem (cf. [38, pp. 87]) to obtain

‖v‖2a = a(v,v) = a(z,v)− a(Eγ
T ,v) = (f − λγT ,v)0,Ω − a(Eγ

T ,v)(3.18)

= (f − λγT ,v −Πs
T v)0,Ω + (f − λγT ,Π

s
T v)0,Ω − a(Eγ

T ,v)

= (f − λγT ,v −Πs
T v)0,Ω − a(Eγ

T ,v −Πs
T v)

= (f − λγT ,φ+∇ϕ)0,Ω − a(Eγ
T ,φ+∇ϕ)

= (f − λγT ,φ)0,Ω − a(Eγ
T ,φ)− (λγT + εEγ

T ,∇ϕ)0,Ω

=
∑
T∈T

(RT ,φ)0,T −
∑
F∈FT

(JF,1,φ)0,F − (λγT + εEγ
T ,∇ϕ)0,Ω

≤
∑
T∈T

hT ‖RT ‖0,Th−1
T ‖φ‖0,T +

∑
F∈FT

h
1/2
F ‖JF,1‖0,Fh

−1/2
F ‖φ‖0,F

− (λγT + εEγ
T ,∇ϕ)0,Ω

≤ C
∑
T∈T

ηT ,1(Eγ
T ,λ

γ
T , f , T )(h−1

T ‖φ‖0,T + ‖∇φ‖0,T )

− (λγT + εEγ
T ,∇ϕ)0,Ω

≤ C
∑
T∈T

ηT ,1(Eγ
T ,λ

γ
T , f , T )‖ curl v‖0,D̃T − (λγT + εEγ

T ,∇ϕ)0,Ω .

For the last term on the right-hand side of (3.18), we apply integration by parts, using
Lemma 3.3 and the fact that div εEγ

T |T = 0 over every T ∈ T , as well as the trace
theorem and the stability estimates from Lemma 3.5 to obtain

(3.19)

− (λγT + εEγ
T ,∇ϕ)0,Ω

=
∑
T∈T

(divλγT , ϕ)0,T −
∑
F∈FT

(JF,2, ϕ)0,F

≤ C
∑
T∈T

hT ‖ divλγT ‖0,Th
−1
T ‖ϕ‖0,T +

∑
F∈FT

h
1/2
F ‖JF,2‖0,Fh

−1/2
F ‖ϕ‖0,F

≤ C
∑
T∈T

ηT ,2(ET ,λT , T )(h−1
T ‖ϕ‖0,T + ‖∇ϕ‖0,T )

≤ C
∑
T∈T

ηT ,2(ET ,λT , T )‖v‖0,D̃T .

Finally, by inserting (3.19) into (3.18) and making use of the finite overlapping prop-
erty of elements in D̃T as well as the equivalence between ‖ · ‖a and ‖ · ‖H(curl), we
deduce that

‖z−Eγ
T ‖

2
a ≤ C

∑
T∈Tk

ηT (Eγ
T ,λ

γ
T , f , T )‖z−Eγ

T ‖a,D̃T ≤ CηT (Eγ
T ,λ

γ
T , f)‖z−Eγ

T ‖a

Lemma 3.2︷︸︸︷⇒ ‖E−Eγ
T ‖

2
a + ‖λ− λT ‖2∗,a ≤ C

(
η2
T (Eγ

T ,λ
γ
T , f) +

1

γ

)
,

where the constant C > 0 depends only on Ω, ε, µ, jc and the shape-regularity of T .

The next theorem establishes the efficiency of the a posteriori error estimator.
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Theorem 3.7. Under Assumption 2.1, there exists a constant C > 0 depending
only on the shape-regularity of T and the material parameters such that the solutions
(E,λ) and (ET ,λT ) to (3.1) and (3.3) fulfill

Cη2
T (Eγ

T ,λ
γ
T , f , T ) ≤‖E−Eγ

T ‖
2
a,ωT + ‖λ− λγT ‖

2
∗,a,ωT(3.20)

+ oscT
2(Eγ
T ,λ

γ
T , f , ωT ) ∀T ∈ T .

Proof. To prove this result, we use the well-known tetrahedral bubble functions
bT for every given T ∈ T and their associated estimates (see [1, page 23]). We choose
v = vT = R̄T bT ∈ H1

0(T ) and obtain by means of (3.1) and integration by parts

C‖R̄T ‖20,T ≤
(
R̄T ,vT

)
0,T

=
(
R̄T −RT ,vT

)
0,T

+ (RT ,vT )0,T

=
(
f − curlµ−1 curl Eγ

T − εE
γ
T − λ

γ
T ,vT

)
0,T

+
(
R̄T −RT ,vT

)
0,T

= (ε(E−Eγ
T ),vT )0,T + (λ− λγT ,vT )0,T

+
(
µ−1 curl(E−Eγ

T ), curl vT
)

0,T
+
(
R̄T −RT ,vT

)
0,T

≤ C‖E−Eγ
T ‖a,T ‖vT ‖H(curl,T ) + ‖λ− λγT ‖∗,a,T ‖vT ‖H(curl,T )

+ ‖R̄T −RT ‖0,T ‖vT ‖0,T .

Now the estimates for vT [1, Theorem 2.2] give us

(3.21) ‖vT ‖0,T + hT ‖ curl vT ‖0,T ≤ C‖R̄T ‖0,T ,

which, together with the triangle inequality, implies that

Ch2
T ‖RT ‖20,T ≤ ‖E−Eγ

T ‖
2
a,T + ‖λ− λγT ‖

2
∗,a,T + h2

T ‖R̄T −RT ‖20,T .(3.22)

Next, we set v = vT = divλγT |T bT ∈ H1
0 (T ) and obtain by (3.1) and div Eγ

T |T = 0
for every T ∈ T that

C‖divλγT |T ‖
2
0,T ≤

(
divλγT |T , vT

)
0,T

= (divλγT , vT )0,T +
(

divλγT |T − divλγT , vT

)
0,T

= (λγT ,∇vT )0,T +
(

divλγT |T − divλγT , vT

)
0,T

= (λγT − λ,∇vT )0,T + (ε(Eγ
T −E),∇vT )0,T +

(
divλγT |T − divλγT , vT

)
0,T

.

Hence, the estimates for vT yield

Ch2
T ‖ divλγT ‖

2
0,T ≤ ‖E−Eγ

T ‖
2
a,T + ‖λ− λγT ‖

2
∗,a,T(3.23)

+ h2
T ‖divλγT |T − div Eγ

T ‖
2
0,T .

For a face F ∈ FT , we use the face bubble function bF [1] and set v = vF = J̄F,1bF ∈
H1

0(ωF ). Then similar arguments yield

C‖J̄F,1‖20,F ≤
(
J̄F,1,vF

)
0,F

= (JF,1,vF )0,F +
(
J̄F,1 − JF,1,vF

)
0,F

= (RT ,vF )0,ωF
− (f − εEγ

T − λ
γ
T ,vF )0,ωF

+
(
µ−1 curl Eγ

T , curl vF
)

0,ωF

+
(
J̄F,1 − JF,1,vF

)
0,F

= (RT ,vF )0,ωF
− (ε(E−Eγ

T ),vF )0,ωF
− (λ− λγT ,vF )0,ωF

−
(
µ−1 curl(E−Eγ

T ), curl vF
)

0,ωF
+
(
J̄F,1 − JF,1,vF

)
0,F

.
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We use the estimates for vF [1, Theorem 2.4] again, along with (3.22), to obtain

ChF ‖JF,1‖20,F ≤
∑
T∈ωF

(
‖E−Eγ

T ‖
2
H(curl,T ) + ‖λ− λγT ‖

2
∗,T(3.24)

+ h2
T ‖R̄T −RT ‖20,T

)
+ hF ‖J̄F,1 − JF,1‖20,F .

Next, we set q = qF = J̄F,2bF ∈ H1
0 (ωF ) to derive analogously

C‖J̄F,2‖20,F ≤
(
J̄F,2, qF

)
0,F

= (JF,2, qF )0,F +
(
J̄F,2 − JF,2, qF

)
0,F

= (ε(E−Eγ
T ),∇qF )0,ωF

+ (λ− λγT ,∇qF )0,ωF
+ (divλγT , qF )0,ωF

+
(
J̄F,2 − JF,2, qF

)
0,F

≤ C

(
h
−1/2
F

∑
T∈ωF

‖E−Eγ
T ‖0,T + ‖λ− λγT ‖∗,a,T

+ h
1/2
F

∑
T∈ωF

‖ divλγT ‖0,T+h
1/2
F ‖J̄F,2 − JF,2‖0,F

)
‖J̄F,2‖0,F .

Hence,

ChF ‖JF,2‖20,F ≤
∑
T∈ωF

‖E−Eγ
T ‖

2
0,T + ‖λ− λγT ‖

2
∗,a,T + h2

T ‖divλγT |T − divλγT ‖
2
0,T

+ hF ‖J̄F,2 − JF,2‖20,F .

This, along with (3.22)–(3.24), leads directly to the efficiency of the estimator (3.20).

4. Adaptive algorithm and its convergence. This section is devoted to the
development of an adaptive mesh refinement algorithm for solving elliptic VIs of the
second kind and a rigorous convergence analysis thereof. The algorithm is based on
the reliable and efficient a posteriori error estimator (3.17).

While we were using the subscript T to indicate the finite element spaces in the
previous section, we will now work with triangulations generated by our new adaptive
mesh refinement algorithm. So it will be more convenient for us to indicate the
dependencies on the triangulations by the number of refinement steps k ∈ N0.

Algorithm 4.1 Adaptive mesh refinement algorithm.

1: Set k = 0, and choose an initial conforming mesh T0

2: (SOLVE) Compute the solution (Ek,λk) of (3.3) for T = Tk, γ = γk
3: (ESTIMATE) Compute the error estimator ηT (Ek,λk, f) defined in (3.17)
4: (MARK) Mark a subset Mk ⊂ Tk containing at least the element T̃ ∈ Tk with

the largest error indicator, i.e.,

ηk(Ek,λk, f , T̃ ) = max
T∈Tk

ηk(Ek,λk, f , T ).(4.1)

5: (REFINE) Refine each T ∈Mk by bisection to obtain Tk+1

6: Set k = k + 1 and go to step 2 unless a stopping criterion is satisfiedD
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Remark 4.1.
(i) The Moreau–Yosida regularization enables us to accomplish step 2 of Algo-

rithm 4.1 by using the semismooth Newton method [25].
(ii) We emphasize that many practical marking strategies satisfy (4.1), including

the maximum strategy [2], the equidistribution strategy [21], the modified
equidistribution strategy, as well as Dörfler’s strategy [20].

We shall choose the sequence of Moreau–Yosida regularization parameters such
that

lim
k→∞

γk =∞.(4.2)

For instance, we may set γk =
√
|Tk|+ γ0, where γ0 > 0 and |Tk| denotes the number

of elements in Tk.
Our aim now is to prove the convergence of Algorithm 4.1. As a first result in

this section, we establish a stability estimate for the a posteriori error estimator.

Lemma 4.2. Let Assumption 2.1 hold and {(Ek,λk)}k∈N0 be the sequence gener-
ated by Algorithm 4.1. Then there exists a constant C > 0 independent of k ∈ N0

such that for every T ∈ Tk,

ηk(Ek,λk, f , T ) ≤ C
(
‖Ek‖0,ωT + (1 + γkhT )‖ curl Ek‖0,ωT + ‖λk‖0,ωT + hT ‖f‖0,T

)
.

Proof. Using the fact that curlµ−1 curl Ek|T ≡ 0 holds for all T ∈ Tk, we have

hT ‖RT ‖0,T ≤ ChT (‖f‖0,T + ‖Ek‖0,T + ‖λk‖0,T ) .(4.3)

Further, by the trace theorem [38, page 87], we can estimate the tangential and normal
jump terms across a face F ∈ Fk(Ω) shared by T, T ′ ∈ Tk, respectively, by

h
1/2
F ‖JF,1‖0,F ≤ Ch

1/2
F (‖ curl Ek|T ‖0,F + ‖ curl Ek|T ′‖0,F )(4.4)

≤ C‖ curl Ek‖0,ωF ,

h
1/2
F ‖JF,2‖0,F ≤ C(‖Ek‖0,ωF + ‖λk‖0,ωF ).(4.5)

Now the desired estimate follows directly from (4.3)–(4.5) and Lemma 3.3.

To proceed with the convergence analysis, we introduce the following limiting
problem: Find E∞ ∈ V∞ such that

a(E∞,v∞ −E∞) + ϕ(v∞)− ϕ(E∞) ≥
∫

Ω

f · (v∞ −E∞) dx ∀v∞ ∈ V∞,(VI∞)

where V∞ is a limiting space formed by the discrete spaces Vk generated by Algo-
rithm 4.1, namely,

V∞ :=
⋃
k∈N0

Vk

‖·‖H(curl)

.(4.6)

Since V∞ is a closed subspace of H(curl), the existence and uniqueness of the so-
lutions to (VI∞) follows again by [28, Theorem 2.2]. The next lemma shows the
existence of a corresponding Lagrange multiplier.
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1954 MALTE WINCKLER, IRWIN YOUSEPT, AND JUN ZOU

Lemma 4.3. Under Assumption 2.1, there exists a corresponding Lagrange mul-
tiplier λ∞ ∈ L∞(Ω) for the solution E∞ ∈ V∞ to (VI∞) such thata(E∞,v∞) +

∫
Ω

λ∞ · v∞ dx =

∫
Ω

f · v∞ dx ∀v∞ ∈ V∞

|λ∞(x)| ≤ jc(x), λ∞(x) ·E∞(x) = jc(x)|E∞(x)| for a.e. x ∈ Ω.

(4.7)

Proof. For the convenience of the reader, we provide a quick proof for this result.
Choosing v∞ = 0 and v∞ = 2E∞, respectively, in (VI∞) yields

a(E∞,E∞) + ϕ(E∞) =

∫
Ω

f ·E∞ dx.(4.8)

Applying this identity to (VI∞) leads to∫
Ω

f · v∞ dx− a(E∞,v∞) =: l(v∞) ≤ ϕ(v∞) =︸︷︷︸
(1.1)

∫
Ω

jc|v∞| dx ∀v∞ ∈ V∞.

As V∞ ⊂ L2(Ω) is a subspace, l : V∞ → R is a linear functional, and ϕ : L2(Ω)→ R
is sublinear, the Hahn–Banach theorem implies the existence of a linear extension
F : L2(Ω)→ R such that

F (v∞) = l(v∞) ∀v∞ ∈ V∞ ; |F (v)| ≤ ϕ(v) ∀v ∈ L2(Ω).(4.9)

By the boundedness of ϕ : L2(Ω) → R, the Riesz representation theorem yields the
existence of λ∞ ∈ L2(Ω) satisfying

F (v) = (λ∞,v)L2(Ω) ∀v ∈ L2(Ω).

Thus, the equation in (4.9) is equivalent to

a(E∞,v∞) +

∫
Ω

λ∞ · v∞ dx =

∫
Ω

f · v∞ dx ∀v∞ ∈ V∞.(4.10)

Assume now that there exists a measurable set ω ⊂ Ω with |ω| 6= 0 such that
|λ∞(x)| > jc(x) for a.e. x ∈ ω. By this assumption, the function v̂ := λ∞

|λ∞|χω

belongs to L2(Ω). Then taking v = v̂ in the inequality in (4.9) leads readily to a
contradiction ∫

ω

jc dx <

∫
ω

|λ∞| dx ≤
∫
ω

jc dx.

Thus,

|λ∞(x)| ≤ jc(x) a.e. x ∈ Ω ⇒ λ∞ ∈ L∞(Ω).(4.11)

Finally, inserting v∞ = E∞ into (4.10), we deduce from (4.8) that∫
Ω

jc(x)|E∞(x)| − λ∞(x) ·E∞(x) dx = 0

⇒︸︷︷︸
(4.11)

λ∞(x) ·E∞(x) = jc(x)|E∞(x)| for a.e. x ∈ Ω.

In conclusion, (E∞,λ∞) ∈ V∞ × L∞(Ω) satisfies (4.7).
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Next, we prove the strong convergence of the edge element sequence {Ek}k∈N0

towards the unique solution of (VI∞).

Theorem 4.4. Let Assumption 2.1 hold. Moreover, let E∞ ∈ V∞ be the unique
solution to (VI∞) and {Ek}k∈N0

be the sequence generated by Algorithm 4.1. Then
the following convergence holds:

lim
k→∞

‖Ek −E∞‖a = 0.

Proof. Let us begin this proof by showing that the sequence {Ek}k∈N0
⊂ H(curl)

is bounded. Since Ek solves (VIT ), we obtain

(4.12) a(Ek,Ek) ≤ (f ,Ek − vk)0,Ω + a(Ek,vk) + ϕγk(vk)− ϕγk(Ek) ∀vk ∈ Vk.

Then, setting vk = 0 in (4.12), we derive by Hölder’s inequality and Lemma 3.1 that

‖Ek‖2a ≤ C(‖Ek‖a + 1) ⇒ ‖Ek‖a ≤ C,

where the constant C > 0 is independent of k. Hence, there exists a w∞ ∈ V∞ and
a subsequence of {Ek}k∈N0 , still denoted by {Ek}k∈N0 , such that

(4.13) Ek ⇀ w∞ weakly in H0(curl) as k →∞.

By exploiting the weak lower semicontinuity of the squared norm ‖ · ‖2a, we obtain

(4.14) a(w∞,w∞) ≤ lim inf
k→∞

a(Ek,Ek).

Now fix v∞ ∈ V∞. Thanks to (4.6), we may find a sequence {vk}k∈N0
such that

vk ∈ Vk for every k ∈ N0 and vk → v∞ in H(curl) as k → ∞. Thus, (3.2),
Lemma 3.1 with (4.2), (4.13), and (4.14) lead to

(f ,v∞ −w∞)0,Ω

= lim
k→∞

(f ,vk −Ek)0,Ω

≤ lim sup
k→∞

[
a(Ek,vk −Ek) + ϕγk(vk)− ϕγk(Ek)

]
≤ lim sup

k→∞
a(Ek,vk)− lim inf

k→∞
a(Ek,Ek) + lim sup

k→∞
ϕγk(vk)− lim inf

k→∞
ϕγk(Ek)

≤ a(w∞,v∞ −w∞) + ϕ(v∞)− ϕ(w∞).

Since v∞ ∈ V∞ was chosen arbitrarily, the uniqueness of the solution to (VI∞) implies
that w∞ = E∞ and Ek ⇀ E∞ in H0(curl) as k →∞.

To further show the strong convergence, we consider {vk}k∈N0
such that vk ∈ Vk

for every k ∈ N0 and vk → E∞ in H(curl) as k → ∞. The existence of such a
sequence follows by the definition of V∞ in (4.6). Therefore, we deduce by means of
(4.12) that

0 ≤ ‖Ek −E∞‖2a ≤ a(Ek,Ek)− a(Ek,E∞)− a(E∞,Ek −E∞) ≤ (f ,Ek − vk)0,Ω

+ a(Ek,vk) + ϕγk(vk)− ϕγk(Ek)− a(Ek,E∞)− a(E∞,Ek −E∞).

Ultimately, by passing to the lim sup in the previous estimate, the strong convergence
of {Ek}k∈N0

follows readily from Lemma 3.1 and (4.13).
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From Theorem 4.4, we can easily see the convergence of Algorithm 4.1 if we are
able to prove that E∞ is also the unique solution to (VI). To do so, let us first split
each Tk as follows:

T +
k :=

⋂
l≥k

Tl, T 0
k := Tk\T +

k , Ω+
k :=

⋃
T∈T +

k

DT , Ω0
k :=

⋃
T∈T 0

k

DT .

That is, T +
k consists of all elements that are not refined after the kth iteration,

whereas elements in T 0
k are refined at least once after the kth iteration. Obviously,

T +
l ⊂ T +

k for l < k, and we have Mk ⊂ T 0
k for the set of the marked elements

from Algorithm 4.1. Furthermore, we define a mesh-size function hk : Ω̄ → R+ by
hk(x) = hT for x in the interior of an element T ∈ Tk and hk(x) = hF for x in the
relative interior of a face F ∈ Fk. This mesh-size function has a property that is
crucial for our further analysis (see [31, Corollary 4.1] and [36, Corollary 3.3]).

Lemma 4.5. Let χ0
k be the characteristic function of Ω0

k. Then it holds that

lim
k→∞

‖hkχ0
k‖L∞(Ω) = 0.

In order to prove that the maximal error indicator in each loop of Algorithm 4.1
converges to zero, we need an additional assumption for the sequence of regularization
parameters {γk}k∈N0

.

Assumption 4.6. There is a constant C > 0 independent of k ∈ N0 such that the
sequence of Moreau–Yosida regularization parameters {γk}k∈N0 satisfies

(4.15) γkhT̃k ≤ C ∀k ∈ N0,

where T̃k denotes the element with the largest error estimator in the kth refinement
step of Algorithm 4.1.

Lemma 4.7. Let Assumptions 2.1 and 4.6 hold, and let {(Tk,Mk,Ek,λk)}k∈N0

be the sequence generated by Algorithm 4.1. Then it holds that

lim
k→∞

max
T∈Mk

ηk(Ek,λk, f , T ) = 0.

Proof. For convenience, we denote the element with the largest error indicator in
Mk by T̃k. Since T̃k ∈ Ω0

k, the local quasi-uniformity and Lemma 4.5 imply that

|ωT̃k | ≤ C|T̃k| ≤ C‖hkχ
0
k‖3L∞(Ω) → 0 as k →∞.(4.16)

By using Lemma 4.2 and (3.3), (4.15), and (4.16), we obtain

ηk(Ek,λk, f , jc, T̃k)

≤ C
(
‖Ek‖0,ωT̃k + (1 + γkhT̃k)‖ curl Ek‖0,ωT̃k + ‖λk‖0,ωT̃k + hT̃k‖f‖0,T̃k

)
≤ C

(
‖ curl(Ek −E∞)‖0,Ω + ‖Ek −E∞‖0,Ω + ‖ curl E∞‖0,ωT̃k

+ ‖E∞‖0,ωT̃k + h
3/2

T̃k
‖jc‖L∞(Ω) + hT̃k‖f‖0,T̃k

)
.

Now Theorem 4.4 readily implies the convergence of the first two terms, and (4.16)
yields the convergence of the remaining terms, leading to the desired result.
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To proceed our analysis, we introduce the residual with respect to Ek ∈ Vk:

(4.17) 〈R(Ek),v〉 := a(Ek,v) + (λk,v)0,Ω − (f ,v)0,Ω ∀v ∈ H0(curl),

which satisfies the Galerkin orthogonality (as Ek solves (3.3))

(4.18) 〈R(Ek),vk〉 = 0 ∀vk ∈ Vk, k ∈ N0.

Lemma 4.8. Under Assumptions 2.1 and 4.6, the following convergence holds for
the residual defined in (4.17) for the sequence {Ek}k∈N0 generated by Algorithm 4.1:

lim
k→∞

〈R(Ek),v〉 = 0 ∀v ∈ H0(curl).

Proof. Let v ∈ C∞0 (Ω), and set w := v − Πkv, where Πk : H0(curl) → Vk

denotes the curl-conforming Nédélec interpolant [30]. By virtue of Lemma 3.5, there
exist φ ∈ H1

0(Ω) and ϕ ∈ H1
0 (Ω) such that

w −Πs
kw = φ+∇ϕ.

Hence, the Galerkin orthogonality (4.18) yields

〈R(Ek),v〉 = 〈R(Ek),v −Πkv〉 = 〈R(Ek),w −Πs
kw〉(4.19)

= 〈R(Ek),φ〉+ 〈R(Ek),∇ϕ〉.

We will begin by estimating the first term on the right-hand side of (4.19). It follows
by integration by parts, the trace theorem [38, page 87], and the stability estimate
for φ (cf. Lemma 3.5) that

〈R(Ek),φ〉 = −
∑
T∈Tk

(RT ,φ)0,T +
∑

F∈Fk(Ω)

(JF,1,φ)0,F

≤
∑
T∈Tk

hT ‖RT ‖0,Th−1
T ‖φ‖0,T +

∑
F∈Fk(Ω)

h
1/2
F ‖JF,1‖0,Fh

−1/2
F ‖φ‖0,F

≤ C
∑
T∈Tk

ηk,1(Ek,λk, f , T )(h−1
T ‖φ‖0,T + ‖∇φ‖0,T )

≤ C
∑
T∈Tk

ηk,1(Ek,λk, f , T )‖ curl(v −Πkv)‖0,D̃T .

To estimate the second term on the right-hand side of (4.19), we use similar arguments
and the fact that div εEk|T = 0 in every T ∈ Tk, the regularity of λk|T ∈ H(div, T )
from Lemma 3.3, as well as Lemma 3.5 to derive

〈R(Ek),∇ϕ〉 = (εEk + λk,∇ϕ)0,Ω = −
∑
T∈Tk

(divλk, ϕ)0,T +
∑

F∈Fk(Ω)

(JF,2, ϕ)0,F

≤ C
∑
T∈Tk

hT ‖ divλk‖0,Th−1
T ‖ϕ‖0,T +

∑
F∈Fk

h
1/2
F ‖JF,2‖0,Fh

−1/2
F ‖ϕ‖0,F

≤ C
∑
T∈Tk

ηk,2(Ek,λk, T )(h−1
T ‖ϕ‖0,T + ‖∇ϕ‖0,T )

≤ C
∑
T∈Tk

ηk,2(Ek,λk, T )‖v −Πkv‖0,D̃T .
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Thus, combining the above estimates with (4.19) yields

(4.20) |〈R(Ek),v〉| ≤ C
∑
T∈Tk

ηk(Ek,λk, f , T )‖v −Πkv‖H(curl,D̃T ).

Since the right-hand side of (4.20) depends on the enlarged element patch D̃T , we
introduce a buffer layer of elements between Tl and Tk for k, l ∈ N with k > l by

T bk,l := {T ∈ Tk\T +
l : T ∩ T ′ 6= ∅ ∀T ′ ∈ T +

l }.

The uniform shape regularity of {Tk}k∈N and the fact that T +
l ⊂ T

+
k ⊂ Tk yield

|T bk,l| ≤ Cl|T +
l |(4.21)

with a constant Cl > 0 depending only on T0 and D̃T ⊂ Ω0
l for any T ∈ Tk\(T +

l ∪T bk,l)
(cf. [41]). We note that in this context, |M| denotes the number of elements contained
inM⊂ Tk. With these preparations, we can split Tk into T +

l ∪T bk,l and Tk\(T +
l ∪T bk,l)

and derive by (4.20) that

|〈R(Ek),v〉| ≤ C
(
ηk(Ek,λk, f , Tk\(T +

l ∪ T
b
k,l))‖v −Πkv‖H(curl,Ω0

l )
(4.22)

+ ηk(Ek,λk, f , T +
l ∪ T

b
k,l)‖v −Πkv‖H(curl)

)
.

The stability estimate in Lemma 4.2 and Theorem 4.4 together with the error estimate
for Πk (see [30, Theorem 5.41]) yield

ηk(Ek,λk, f , Tk\(T +
l ∪ T

b
k,l))‖v −Πkv‖H(curl,Ω0

l )
≤ C‖hlχ0

l ‖L∞(Ω)‖v‖H2(Ω).(4.23)

As before, Lemma 4.5 ensures that (4.23) becomes small for a (fixed) sufficiently large
l ∈ N. Moreover, by using (4.1) and (4.21), we obtain

ηk(Ek,λk, f , T +
l ∪ T

b
k,l) ≤

√
|T +
l |+ |T bk,l| max

T∈T +
l ∪T

b
k,l

ηk(Ek,λk, f , T )(4.24)

≤
√

(Cl + 1)|T +
l | max

T∈Mk

ηk(Ek,λk, f , T ).

In view of Lemma 4.7, this gets smaller and smaller for increasing k > k0 with a
sufficiently large k0 ∈ N. Hence, we can combine (4.22)–(4.24) to obtain

lim
k→∞

〈R(Ek),v〉 = 0 ∀v ∈ C∞0 (Ω),

which completes the proof by exploiting the density of C∞0 (Ω) in H0(curl).

With the help of Lemma 4.8, we are able to prove the following important result.

Theorem 4.9. Under Assumptions 2.1 and 4.6, the solution E∞ ∈ H0(curl) of
(VI∞) solves (VI), i.e.,

a(E∞,v −E∞) + ϕ(v)− ϕ(E∞) ≥
∫

Ω

f · (v −E∞) dx ∀v ∈ H0(curl).

Proof. Let v ∈ H0(curl). By virtue of (4.17), it holds for every k ∈ N that

a(Ek,v −E∞) = 〈R(Ek),v −E∞〉+ (f ,v −E∞)0,Ω − (λk,v −E∞)0,Ω ,
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from which we can derive

a(E∞,v −E∞) + ϕ(v)− ϕ(E∞)

(4.25)

= lim inf
k→∞

[
a(E∞ −Ek,v −E∞) + ϕ(v)− ϕ(E∞) + a(Ek,v −E∞)

]
= lim inf

k→∞

[
a(E∞ −Ek,v −E∞) + 〈R(Ek),v −E∞〉

+ ϕ(v)− ϕ(E∞)− (λk,v −E∞)0,Ω

]
+ (f ,v −E∞)0,Ω

≥ lim inf
k→∞

[
a(E∞ −Ek,v −E∞) + 〈R(Ek),v −E∞〉

]
+ lim inf

k→∞

[
ϕ(v)− ϕ(E∞)− (λk,v −E∞)0,Ω

]
+ (f ,v −E∞)0,Ω .

Using Theorem 4.4 and Lemma 4.8, we get the convergence of the first limit on the
right-hand side of (4.25):

|a(E∞ −Ek,v −E∞) + 〈R(Ek),v −E∞〉|(4.26)

≤ ‖E∞ −Ek‖a‖v −E∞‖a + |〈R(Ek),v −E∞〉| → 0 as k →∞.

In order to estimate the remaining terms on the right-hand side of (4.25), we subtract
(3.3) from (4.7) to obtain with v∞ = vk = Ek that

(4.27) a(E∞ −Ek,Ek) =

∫
Ω

(λk − λ∞) ·Ek dx ∀k ∈ N.

Then all these remaining terms can be estimated (with |λk| ≤ jc a.e. in Ω) as follows:

lim inf
k→∞

[
ϕ(v)− ϕ(E∞)− (λk,v)0,Ω + (λk,E∞)0,Ω

]
(4.28)

≥ lim inf
k→∞

(λk,E∞)0,Ω − ϕ(E∞) =︸︷︷︸
(4.7)

lim inf
k→∞

(λk − λ∞,E∞)0,Ω

= lim inf
k→∞

[
(λk − λ∞,E∞ −Ek)0,Ω + (λk − λ∞,Ek)0,Ω

]
(4.27)︷︸︸︷

= lim inf
k→∞

[
(λk − λ∞,E∞ −Ek)0,Ω + a(E∞ −Ek,Ek)

]
= 0.

Finally, inserting (4.26) and (4.28) into (4.25) concludes that E∞ ∈ H0(curl) is the
unique solution to (VI).

Theorems 4.4 and 4.9 lead to our main convergence result for Algorithm 4.1.

Theorem 4.10. Let Assumptions 2.1 and 4.6 hold. Furthermore, let {Ek}k∈N0

be the sequence generated by Algorithm 4.1 and E ∈ H0(curl) denote the solution to
(VI). Then

(4.29) lim
k→∞

‖Ek −E‖H(curl) = 0 and lim
k→∞

‖λk − λ∞‖V∗k = 0

with the dual norm ‖λk−λ‖V∗k := sup
{

(λk−λ,v)0,Ω/‖v‖H(curl) : v ∈ Vk \ {0}
}

for
all k ∈ N0.

Proof. The first convergence in (4.29) follows by combining Theorems 4.4 and 4.9.
Furthermore, in view of (3.1) and (3.3), we have that

sup
v∈Vk\{0}

(λk − λ,v)0,Ω

‖v‖H(curl)
= sup

v∈Vk\{0}

a(E−Ek,v)

‖v‖H(curl)
≤ 2 max{ε, µ−1}‖E−Ek‖H(curl),

which implies the second convergence in (4.29) and concludes the proof.
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5. Numerical results. As pointed out in the introduction, we apply Algo-
rithm 4.1 to confirm a physical phenomenon numerically from the type-II (high-
temperature) superconductivity. Type-II superconductors are characterized by the
loss of electrical resistance and the repulsion of weak magnetic fields when cooled
down below a certain critical temperature. The latter is known as the Meissner effect.
In order to describe the penetration and exit of the magnetic flux in a type-II super-
conductor, Bean [4, 5] proposed a critical state model that relates the electrical field E
and the current density J. By combining his model with Maxwell’s equations, we ob-
tain a nonlinear hyperbolic mixed Maxwell system which is equivalent to a hyperbolic
mixed VI of second kind [44]. We can deduce a stationary mixed problem satisfied
by the electromagnetic field by considering, e.g., a semidiscretization in time, i.e.,

∫
Ω

εE · (v −E) + µ−1B · (w −B) dx

+

∫
Ω

µ−1 curl E ·w − µ−1B · curl v dx

+ ϕ(v)− ϕ(E) ≥
∫

Ω

f · (v −E) dx

for all (v,w) ∈ H0(curl)× L2(Ω),

(5.1)

where ε, µ and f satisfy Assumption 2.1. In (5.1), E denotes the electric field, B stands
for the magnetic induction, and the right-hand side f is the applied current source.
Moreover, ε and µ represent the electric permittivity and the magnetic permeability,
respectively.

Now we are able to decouple (5.1) by taking v = E. Hence, we have B = − curl E.
Using this and taking w = B in (5.1), we obtain

(5.2) a(E,v −E) + ϕ(v)− ϕ(E) ≥
∫

Ω

f · (v −E) dx ∀v ∈ H0(curl),

which corresponds to the variational inequality (VI) of our interest. Then we can
use Algorithm 4.1 to compute the electrical field E from (5.2) and get the magnetic
induction from B = − curl E.

Let us now specify the numerical setup. We choose the computational domain
Ω = (−2, 2)3 and the right-hand side f ∈ L2(Ω) that satisfies the divergence-free
condition (A2) as a circular current applied to a pipe coil Ωp ⊂ Ω with inner radius
rp = 0.8, e.g.,

f(x1, x2, x3) =

1/R
(

0, −x3/(x
2
2 + x2

3)1/2, x2/(x
2
2 + x2

3)1/2
)

for (x1, x2, x3) ∈ Ωp,

0 for (x1, x2, x3) /∈ Ωp,

where the constant R > 0 denotes the electrical resistance of the pipe coil Ωp and
is set to be R = 103 in our experiments. The superconductor Ωsc ⊂ Ω is a ball
around the origin with the radius rsc = 0.5. The physical parameters ε and µ are
both taken to be 1. All implementations were realized with the open-source finite-
element computational software FEniCS [29], and we used Paraview to visualize the
numerical outcome. All the figures presented in this section are the two-dimensional
(2D) slices of the original three-dimensional plots.

We initialize Algorithm 4.1 with a coarse uniform mesh T0 consisting of 384 cells
and set

γk(Tk) =
√
|Tk|+ γ0, γ0 = 7× 104,
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Table 1
The degrees of freedom and a numerical verification of Assumption 4.6 (first example).

k 2 3 4 5 6 7 8 9

γkhT̃k
6.065e+4 4.953e+4 2.478e+4 1.518e+4 1.754e+4 6.213e+3 3.817e+3 1.920e+3

#DoFs 1236 2436 7486 14521 32837 97840 315675 1068215

Table 2
The degrees of freedom and a numerical verification of Assumption 4.6 (second example).

k 1 2 3 4 5 6 7 8

γkhT̃k
1.213e+5 6.065e+4 3.917e+4 4.958e+4 2.481e+4 1.758e+4 1.248e+4 1.930e+3

#DoFs 604 1670 5754 14882 35824 114620 443502 2045523

Fig. 1. Evolution of the adaptive mesh (2D slice) for the first example in steps k = 6, 7, 8, 9.

Fig. 2. Evolution of the adaptive mesh (2D slice) for the second example in steps k = 5, 6, 7, 8.

which apparently satisfies (4.2). Moreover, to verify Assumption 4.6 numerically, we
computed the factor γkhT̃k in every step of Algorithm 4.1 (see Tables 1 and 2). Our
numerical results confirmed Assumption 4.6 for the above choice of γk. Indeed, it
holds that

γkhT̃k ≤ γ1hT̃1
,

for all iterations k. The very complicated structure of (VI) makes it practically im-
possible to find an analytical solution. Thus, we tested Algorithm 4.1 in a setup where
we would expect a certain behavior. For this purpose, we selected the critical current
density jc(x) = 0.1χΩsc(x), where we know the interface between the superconduct-
ing and the normal region a priori—due to the comparatively high critical current
density, there is no penetration of the superconductor at all. Hence, the interface
corresponds to the surface of the superconductor Ωsc. In Figure 1 the evolution of the
adaptive mesh is shown, and the corresponding magnetic field lines are displayed in
Figure 4(a). Our expectations are confirmed since we can observe that Algorithm 4.1
adaptively refines the mesh around the surface of the superconductor and that there
is no magnetic field penetration.

Keeping the observations of the first example in mind, we choose a significantly
smaller critical current density jc(x) = 0.001χΩsc(x) as the second example. The
remaining parameters in the setup remain the same. In this case, we do not have
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Fig. 3. 2D slices of the final meshes in total.

Fig. 4. 2D slices of the magnetic field lines.

any (a priori) knowledge of the approximate position and shape of the mentioned
interface. Therefore, this example is much more challenging, and the adaptivity is
necessary to extract this interface. Again, Algorithm 4.1 adaptively refines the mesh,
but it exhibits a wider interface than the first example, which indicates that the
superconductor is partially penetrated by the magnetic field lines (see Figure 2). This
is also confirmed by the magnetic field shown in Figure 4(b). Last but not least, we
compare the final meshes in Figure 3 and observe that in both the examples the coil
Ωp is also refined. We justify this behavior with the fact that there is also a strong
change of the magnetic field strength around Ωp (see also Figure 4).

5.1. Convergence rate tests. We close our paper by reporting the numerical
convergence order of Algorithm 4.1 for our numerical example. Since we do not know
the exact solution, we consider a reference solution Eref at a very fine adaptive mesh
and test the convergence behavior of the adaptive solutions Ek toward the reference
one. More precisely, this can be quantitatively clarified by evaluating the experimental
rate of convergence (ERC) using two consecutive adaptive solutions and #DoFs:

ERCk =

∣∣∣∣ log(‖Ek −Eref‖H(curl))− log(‖Ek−1 −Eref‖H(curl))

log(#DoFsk)− log(#DoFsk−1)

∣∣∣∣ .
For our two examples, we computed the experimental rate of convergence at different
levels k and conclude a convergence order of around 0.15 for the first example and 0.35
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Table 3
Experimental rates of convergence for the first example (left) and the second example (right).

k 4 5 8

ERCk 0.1445 0.1558 0.1832

k 3 5 8

ERCk 0.3288 0.3698 0.3663

for the second one (see Table 3). The very sharp phase transition in the first example
implies that the corresponding solution is discontinuous around Ωsc (see Figure 4(a)).
On the other hand, for the second example, this transition is significantly smoother
(see Figure 4(b)). This fact may explain the difference in the convergence rates.
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[3] I. Babuška and M. Vogelius, Feedback and adaptive finite element solution of one-
dimensional boundary value problems, Numer. Math., 44 (1984), pp. 75–102.

[4] C. P. Bean, Magnetization of hard superconductors, Phys. Rev. Lett., 8 (1962), pp. 250–253.
[5] C. P. Bean, Magnetization of high-field superconductors, Rev. Mod. Phys., 36 (1964), pp. 31–

39.
[6] R. Beck, R. Hiptmair, R. H. W. Hoppe, and B. Wohlmuth, Residual based a posteriori

error estimators for eddy current computation, ESAIM Math. Model. Numer. Anal., 34
(2000), pp. 159–182.

[7] V. Bostan, W. Han, and B. D. Reddy, A posteriori error estimation and adaptive solution of
elliptic variational inequalities of the second kind, Appl. Numer. Math., 52 (2005), pp. 13–
38.

[8] D. Braess, A posteriori error estimators for obstacle problems—Another look, Numer. Math.,
101 (2005), pp. 415–421.

[9] D. Braess, C. Carstensen, and R. H. W. Hoppe, Convergence analysis of a conforming
adaptive finite element method for an obstacle problem, Numer. Math., 107 (2007), pp. 455–
471.

[10] Z. Cai and S. Cao, A recovery-based a posteriori error estimator for H(curl) interface prob-
lems, Comput. Methods Appl. Mech. Engrg., 296 (2015), pp. 169–195.

[11] Z. Cai, S. Cao, and R. Falgout, Robust a posteriori error estimation for finite element
approximation to H(curl) problem, Comput. Methods Appl. Mech. Engrg., 309 (2016),
pp. 182–201.

[12] C. Carstensen and J. Hu, An optimal adaptive finite element method for an obstacle problem,
Comput. Methods Appl. Math., 15 (2015), pp. 259–277.

[13] J. Chen, Y. Xu, and J. Zou, Convergence analysis of an adaptive edge element method for
Maxwell’s equations, Appl. Numer. Math., 59 (2009), pp. 2950–2969.

[14] Z. Chen and R. H. Nochetto, Residual type a posteriori error estimates for elliptic obstacle
problems, Numer. Math., 84 (2000), pp. 527–548.

[15] Z. Chen, L. Wang, and W. Zheng, An adaptive multilevel method for time-harmonic Maxwell
equations with singularities, SIAM J. Sci. Comput., 29 (2007), pp. 118–138.

[16] P. Ciarlet, Jr., On the approximation of electromagnetic fields by edge finite elements. Part
1: Sharp interpolation results for low-regularity fields, Comput. Math. Appl., 71 (2016),
pp. 85–104.

[17] M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhedral domains,
Arch. Ration. Mech. Anal., 151 (2000), pp. 221–276.

[18] M. Costabel, M. Dauge, and S. Nicaise, Singularities of Maxwell interface problems, ESAIM
Math. Model. Numer. Anal., 33 (1999), pp. 627–649.

[19] J. C. De Los Reyes and M. Hintermüller, A duality based semismooth Newton framework
for solving variational inequalities of the second kind, IFB, 13 (2011), pp. 437–462.

[20] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal.,
33 (1996), pp. 1106–1124.

[21] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems I: A
linear model problem, SIAM J. Numer. Anal., 28 (1991), pp. 43–77.

D
ow

nl
oa

de
d 

06
/2

7/
20

 to
 1

32
.2

52
.2

02
.8

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1964 MALTE WINCKLER, IRWIN YOUSEPT, AND JUN ZOU

[22] R. Glowinski, J. L. Lions, and R. Trémolières, Numerical Analysis of Variational Inequal-
ities, Studies in Mathematics and Its Applications, Elsevier Science, Amsterdam, 1981.

[23] R. H. W. Hoppe and R. Kornhuber, Adaptive multilevel methods for obstacle problems, SIAM
J. Numer. Anal., 31 (1994), pp. 301–323.
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