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Abstract

This work presents a recursive construction for simple t-designs using reso-
lutions of the ingredient designs. The result extends a construction of t-designs
in our recent paper [39]. Essentially, the method in [39] describes the blocks of
a constructed design as a collection of block unions from a number of appropri-
ate pairs of disjoint ingredient designs. Now, if some pairs of these ingredient
t-designs have both suitable s-resolutions, then we can define a distance map-
ping on their resolution classes. Using this mapping enables us to have more
possibilities for forming blocks from those pairs. The method makes it possible
for constructing many new simple t-designs. We give some application results
of the new construction.
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1 Introduction

In a recent paper [39] we have presented a recursive method for constructing simple
t-designs for arbitrary t. The method is of combinatorial nature since it requires
finding solutions for the indices of the ingredient designs that satisfy a certain set of
equalities. In essence, the core of the construction is that the blocks of a constructed
design are built as a collection of block unions from a number of appropriate pairs of
disjoint ingredient designs. In particular, when a pair of ingredient designs is used, we
take as new blocks the unions of all the pairs of blocks in the two ingredient designs.
For the sake of simplicity we refer to this construction method as the basic method
or the basic construction.

In the present paper we describe an extension of the basic construction by as-
suming that a subset of pairs of ingredient designs have suitable resolutions. For
those given pairs we may define a distance mapping on their resolution classes. By
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using this mapping we have more possibilities for forming blocks from those pairs
other than taking the unions of all possible pairs of blocks in the ingredient designs.
This construction actually extends the basic construction since many new simple t-
designs can only be constructed with the new method. The crucial point of this
extension is the use of s-resolutions for t-designs. The concept of s-resolutions may
be viewed as a generalization of the notion of parallelisms, which may be termed as
(1, 1)-resolutions, i.e. the blocks of the t-design can be partitioned into classes of
mutually disjoint blocks such that every point is in exactly one block of each class.
To date very little is known about s-resolutions for t-designs when s ≥ 2, except for
the trivial t-designs. In this case, an s-resolution of the trivial t-design turns out
to be a large set of s-designs. A great deal of results about large sets of s-designs
have been achieved by many researchers, see the references below. We will describe
our construction in terms of s-resolutions for t-designs in general. However we will
restrict its applications just for the case where pairs of trivial designs are used and
each has a suitable large set. Even with this limitation we find that the construction
using resolutions still possesses its strength since it produces many simple t-designs.

It is worthwhile to emphasize that constructing simple t-designs for large t is
a challenging problem in design theory. There are several major approaches to the
problem. These include constructing t-designs from large sets of t-designs, for instance
[1, 18, 13, 16, 19, 21, 23, 24, 25, 32, 33, 34, 41]; constructing t-designs by using
prescribed automorphism groups, for example [2, 3, 6, 7, 8, 9, 10, 14, 20, 22, 26, 29];
or contructing t-designs via recursive construction methods, see for instance [15, 17,
27, 31, 30, 36, 37, 38, 39, 40].

2 Preliminaries

We recall some basic definitions. A t-design, denoted by t-(v, k, λ), is a pair (X,B),
where X is a v-set of points and B is a collection of k-subsets, called blocks, of X
having the property that every t-set of X is a subset of exactly λ blocks in B. The
parameter λ is called the index of the design. A t-design is called simple if no two
blocks are identical i.e. no block of B is repeated; otherwise, it is called non-simple
(i.e. B is a multiset). It can be shown by simple counting that a t-(v, k, λ) design
is an s-(v, k, λs) design for 0 ≤ s ≤ t, where λs = λ

(
v−s
t−s

)
/
(
k−s
t−s

)
. Since λs is an

integer, necessary conditions for the parameters of a t−design are
(
k−s
t−s

)
|λ
(
v−s
t−s

)
, for

0 ≤ s ≤ t. For given t, v and k, we denote by λmin(t, k, v), or λmin for short, the
smallest positive integer such that these conditions are satisfied for all 0 ≤ s ≤ t.
By complementing each block in X of a t-(v, k, λ) design, we obtain a t-(v, v − k, λ∗)
design with λ∗ = λ

(
v−k
t

)
/
(
k
t

)
, hence we shall assume that k ≤ v/2. The largest value

for λ for which a simple t-(v, k, λ) design exists is denoted by λmax and we have
λmax =

(
v−t
k−t

)
. The simple t-(v, k, λmax) design is called the complete design or the

trivial design. A t-(v, k, 1) design is called a t-Steiner system.
We refer the reader to [5, 12] for more information about designs.

Definition 2.1 A t-(v, k, λ)-design (X,B) is said to be (s, τ)-resolvable with 0 < s <
t, if its block set B can be partitioned into N classes A1, . . . ,AN such that (X,Ai) is
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an s-(v, k, τ) design for all i = 1, . . . , N. Each Ai is called a resolution class. We also
say that a t-(v, k, λ)-design has an s-resolution, if it is (s, τ)-resolvable for a certain
τ .

It is worth noting that the concept of resolvability (i.e. (1, 1)-resolvability) for BIBD
introduced by Bose in 1942 [11] was generalized by Shrikhande and Raghavarao to
τ -resolvability (i.e. (1, τ)-resolvability) for BIBD in 1963 [28]. A definition of (s, λ)-
resolvability for t-designs with t ≥ 3 may be found in [4]. In that paper Baker shows
that the Steiner quadruple system 3-(4m, 4, 1) constructed from an even dimensional
affine space over the field of two elements has a (2, 1)-resolution. Also, Teirlinck
shows for example that there exists a 2-resolvable 3-(2pn + 2, 4, 1) design with p ∈
{7, 31, 127}, for any positive integer n, [35].

To date, very little is known about s-resolutions of non-trivial t-(v, k, λ) designs
for t ≥ 3 and s ≥ 2. Here are examples with t = 4 and s = 3. In [2], Alltop has
shown that there exists a simple 4-(q + 1, 5, 5) design for every q = 2n, n ≥ 5, n
odd. This 4-design (X,B) is constructed by using the group PGL(2, q), which acts
sharply 3-transitively on the projective line X = GF(q) ∪ {∞}. The block set B is a
disjoint union of (q − 2)/6 orbits of 5-sets of X under PGL(2, q). Each orbit forms a
3-(q + 1, 5, 15) design. Hence each 4-(q + 1, 5, 5) design in the Alltop’s family has a
(3, 15)-resolution.

When (X,B) is the trivial t-(v, k,
(
v−t
k−t

)
) design, then an (s, τ)-resolution of (X,B)

is called a large set. Thus, a large set is a partition of the complete t-(v, k,
(
v−t
k−t

)
) design

into s-(v, k, τ) designs, and is denoted by LS[N ](s, k, v), where N =
(
v−s
k−s

)
/τ is the

number of resolution classes in the partition.
We define a distance on the resolution classes of a t-design as follows.

Definition 2.2 Let D be a t-(v, k, λ) design admitting an (s, τ)-resolution with A1, . . . ,AN

as resolution classes. Define a distance between any two classes Ai and Aj by d(Ai,Aj) =
min{|i− j|, N − |i− j|}.

2.1 The basic construction

In this section, we summarize the basic construction as described in [39]. This prepa-
ration is necessary for the description of the construction using resolution in the next
section.

We first give notation and definitions. Let t, v, k be non-negative integers such
that v ≥ k ≥ t ≥ 0. Let X be a v-set and let X = X1 ∪X2 be a partition of X (i.e
X1 ∩X2 = ∅) with |X1| = v1 and |X2| = v2.

The parameter set t-(v2, j, λ̄
(j)
t ) for a design indicates that the point set of the

design is X2. Also, a design defined on the point set X2 is denoted by D̄ = (X2, B̄).

(i) For i = 0, . . . , t, let Di = (X1,B
(i)) be the complete i-(v1, i, 1) design. For

i = t+ 1, . . . , k, let Di = (X1,B
(i)) be a simple t-(v1, i, λ

(i)
t ) design.
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(ii) Similarly, for i = 0, . . . , t, let D̄i = (X2, B̄
(i)) be the complete i-(v2, i, 1) design.

And for i = t+ 1, . . . , k, let D̄i = (X2, B̄
(i)) be a simple t-(v2, i, λ̄

(i)
t ) design.

(iii) Two degenerate cases for designs occur when either k = t = 0 or v = k. The
first case k = t = 0 gives an “empty” design, denoted by ∅, however we use the
convention that the number of blocks of the empty design is 1 (i.e. the unique
block is the empty block). The second case v = k gives a degenerate k-design
having just 1 block consisting of all v points. Thus, in these two extreme cases
the number of blocks of the designs is always 1.

(iv) We denote by T(r,t−r) a t-subset T of X with |T ∩X1| = r and hence |T ∩X2| =
t− r, for r = 0, . . . , t. It is clear that any t-subset of X is a T(r,t−r) set for some
r ∈ {0, . . . , t}.

(v) Let X be a finite set and let u ∈ {0, 1}. The notation X × [u] has the following
meaning. X × [0] is the empty set ∅, and X × [1] = X.

The basic construction in [39] is as follows.
Consider (k + 1) pairs of simple designs (Di, D̄k−i) for i = 0, . . . , k, where Di =

(X1,B
(i)) is a simple t-(v1, i, λ

(i)
t ) design and D̄k−i = (X2, B̄

(k−i)) a simple t-(v2, k −
i, λ̄

(k−i)
t ) design, as defined above. For each pair (Di, D̄k−i) define

B(i,k−i) := {B = Bi ∪ B̄k−i | Bi ∈ B(i), B̄k−i ∈ B̄(k−i)}.

Define

B := B(0,k) × [u0] ∪B(1,k−1) × [u1] ∪ · · · ∪B(k−1,1) × [uk−1] ∪B(k,0) × [uk],

where ui ∈ {0, 1}, for i = 0, . . . , k.
It should be remarked that the notation B(i,k−i) × [ui], as defined in (v) above,

indicates that either we have an empty set ∅ (when ui = 0) or the set B(i,k−i) itself
(when ui = 1). The empty set case means that the pair (Di, D̄k−i) is not used and
the other case means the pair (Di, D̄k−i) is used.

It can be shown that for a given t-set T(r,t−r) of X the number of blocks in B
containing T(r,t−r) is equal to

Lr,t−r :=
k∑
i=0

ui.λ
(i)
r .λ̄

(k−i)
t−r .

Therefore, if

L0,t = L1,t = L2,t−2 = · · · = Lt,0 := Λ,

where Λ is a positive integer, then (X,B) forms a simple t-design with parameters
t-(v, k,Λ).

We record the basic construction in the following theorem.
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Theorem 2.1 (Basic construction) Let v, k, t be integers with v > k > t ≥ 2.
Let X be a v-set and let X = X1 ∪ X2 be a partition of X with |X1| = v1 and
|X2| = v2. Let Di = (X1,B

(i)) be the complete i-(v1, i, 1) design for i = 0, . . . , t and

let Di = (X1,B
(i)) be a simple t-(v1, i, λ

(i)
t ) design for i = t + 1, . . . , k. Similarly,

let D̄i = (X2, B̄
(i)) be the complete i-(v2, i, 1) design for i = 0, . . . , t, and let D̄i =

(X2, B̄
(i)) be a simple t-(v2, i, λ̄

(i)
t ) design for i = t+ 1, . . . , k. Define

B = B(0,k) × [u0] ∪B(1,k−1) × [u1] ∪ · · · ∪B(k−1,1) × [uk−1] ∪B(k,0) × [uk],

where
B(i,k−i) = {B = Bi ∪ B̄k−i | Bi ∈ B(i), B̄k−i ∈ B̄(k−i)}.

Assume that

L0,t = L1,t−1 = L2,t−2 = · · · = Lt,0 := Λ, (1)

for a positive integer Λ, where

Lr,t−r =
k∑
i=0

ui.λ
(i)
r .λ̄

(k−i)
t−r , (2)

r = 0, . . . , t, and ui ∈ {0, 1}, for i = 0, . . . , k. Then (X,B) is a simple t-(v, k,Λ)
design.

3 The construction using resolutions

In this section we describe a recursive construction of simple t-designs using resolu-
tions. Note that in the basic construction, if a pair (Di, D̄k−i) is used in the construc-
tion (i.e. ui = 1), then the new blocks formed by this pair consist of taking the union
of each block of Di with each block of D̄k−i. The crucial idea of the construction
using resolutions is that if Di and D̄k−i have appropriate s1- and s2-resolutions with
the same number of resolution classes, then the new blocks are formed according to
the distance mapping defined on the resolution classes of Di and D̄k−i rather than
taking the unions of each block of Di with each block of D̄k−i.

In the following we go into detail of the construction. We make use of the notation
and definitions for the basic construction in the previous section. When for a certain
i ∈ {0, . . . , k} the t-(v1, i, λ

(i)
t ) design Di = (X1,B

(i)) has an si-resolution, i.e. Di

can be partitioned into Ni disjoint (X1,A
(i)
h ) designs with parameters si-(v1, i, λ

∗(i)
si ),

si < t, then we write

B(i) =

Ni⋃
h=1

A
(i)
h ,

where

Ni = λ
(i)
t

(
v1 − si
t− si

)
/λ∗(i)si

(
i− si
t− si

)
.
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Similarly, we write

B̄(k−i) =

N̄k−i⋃
h=1

Ā
(i)
h ,

when the blocks of a t-(v2, k− i, λ̄(k−i)
t ) design D̄k−i = (X2, B̄

(k−i)) can be partitioned

into N̄k−i disjoint (X2, Ā
(k−i)
h ) designs with parameters sk−i-(v2, k − i, λ̄∗(k−i)sk−i ), where

N̄k−i = λ̄
(k−i)
t

(
v2 − sk−i
t− sk−i

)
/λ̄∗(k−i)sk−i

(
k − i− sk−i
t− sk−i

)
is the number of sk−i-resolution classes.

Let K = {(0, k), (1, k − 1), . . . , (k − 1, 1), (k, 0)}. Assume there exists a subset
R ⊆ K such that if (i, k − i) ∈ R, then Di and D̄k−i have an si-resolution of size Ni

and an sk−i-resolution of size N̄k−i, respectively, satisfying the following conditions.

(i) Ni = N̄k−i,

(ii) si + sk−i ≥ 2b t
2
c.

The construction consists of building two types of blocks.

(1) For each pair (i, k − i) ∈ K \ R form a subset of new blocks B(i,k−i) from the
pair (Di, D̄k−i) as

B(i,k−i) := {B = Bi ∪ B̄k−i | Bi ∈ B(i), B̄k−i ∈ B̄(k−i)}.

(2) For each pair (i, k− i) ∈ R form a subset of new blocks B∗(i,k−i) from (Di, D̄k−i)

by using an si-resolution of Di and an sk−i-resolution of D̄k−i as follows.

B∗(i,k−i) := {Bi∪B̄k−i | Bi ∈ A
(i)
h , B̄k−i ∈ Ā

(k−i)
j , εi ≤ d(A

(i)
h ,A

(i)
j ) ≤ wi, εi = 0, 1; wi ≤ b

Ni

2
c}.

Further, define

zi := (2wi + 1− εi), if wi <
Ni

2
, and zi := (2wi − εi), if wi =

Ni

2
.

Note that wi and zi are considered as variables.
Now, let T(r,t−r) be a t-set of X for r = 0, . . . , t. According to the property of si

and sk−i one of the following cases has to occur.

(a) r ≤ si and t− r ≤ sk−i. Then T(r,t−r) is contained in

Λ
∗(i,k−i)
r,t−r = λ∗(i)r .λ̄

∗(k−i)
t−r .Ni.zi

blocks of B∗(i,k−i).
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(b) r ≤ si and t− r > sk−i. Then T(r,t−r) is contained in

Λ
∗(i,k−i)
r,t−r = λ∗(i)r .λ̄

(k−i)
t−r .zi

blocks of B∗(i,k−i).

(c) r > si and t− r ≤ sk−i. Then T(r,t−r) is contained in

Λ
∗(i,k−i)
r,t−r = λ(i)

r .λ̄
∗(k−i)
t−r .zi

blocks of B∗(i,k−i).

It is straightforward to verify the values of Λ
∗(i,k−i)
r,t−r for the cases (a), (b) and

(c) above. In case (a) each r-subset of X1 is contained in λ
∗(i)
r blocks of A

(i)
h and

each (t − r)-subset of X2 in λ̄
∗(k−i)
t−r blocks of Ā

(k−i)
j . Thus each pair (A

(i)
h , Ā

(k−i)
j )

contributes λ
∗(i)
r .λ̄

∗(k−i)
t−r blocks to B∗(i,k−i). Now each of the Ni resolution classes

A
(i)
1 , . . . ,A

(i)
Ni

is combined with zi resolution classes of Ā
(k−i)
1 , . . . , Ā

(k−i)
Ni

, therefore we

have Λ
∗(i,k−i)
r,t−r = λ

∗(i)
r .λ̄

∗(k−i)
t−r .Ni.zi

In case (b) each r-subset of X1 is contained in λ
∗(i)
r blocks of A

(i)
h and each (t− r)-

subset of X2 in λ̄
(k−i)
t−r blocks of B̄(k−i). These blocks are distributed in the Ni resolu-

tion classes Ā
(k−i)
1 , . . . , Ā

(k−i)
Ni

. Each class Ā
(k−i)
j is combined zi times with A

(i)
h . Hence,

in this case, the contribution of the blocks to B∗(i,k−i) is Λ
∗(i,k−i)
r,t−r = λ

∗(i)
r .λ̄

(k−i)
t−r .zi.

The case (c) is similar to case (b).

Define
B :=

⋃
(i,k−i)∈R

B∗(i,k−i) × [ui] ∪
⋃

(i,k−i)∈K\R

B(i,k−i) × [ui],

with ui ∈ {0, 1}, i = 0, . . . , k.

The above presentation can be summarized as follows. Let T(r,t−r) be a t-subset
of X for r = 0, . . . , t. The number of blocks in B(i,k−i) containing T(r,t−r), for all
(i, k − i) ∈ K \R, is then∑

(i,k−i)∈K\R

ui.Λ
(i,k−i)
(r,t−r) =

∑
(i,k−i)∈K\R

ui.λ
(i)
r .λ̄

(k−i)
t−r .

The number of blocks in B∗(i,k−i) containing T(r,t−r), for all (i, k − i) ∈ R, is then∑
(i,k−i)∈R

ui.Λ
∗(i,k−i)
(r,t−r) ,

where

Λ
∗(i,k−i)
(r,t−r) =


λ
∗(i)
r .λ̄

∗(k−i)
t−r .Ni.zi if r ≤ si, t− r ≤ sk−i,

λ
∗(i)
r .λ̄

(k−i)
t−r .zi if r ≤ si, t− r > sk−i,

λ
(i)
r .λ̄

∗(k−i)
t−r .zi if r > si, t− r ≤ sk−i.
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It follows that the number of blocks in B containing Tr,t−r is equal to

Lr,t−r :=
∑

(i,k−i)∈R

ui.Λ
∗(i,k−i)
(r,t−r) +

∑
(i,k−i)∈K\R

ui.Λ
(i,k−i)
(r,t−r).

Since any t-subset of X is of form Tr,t−r for some r ∈ {0, . . . , t}, we see that if

L0,t = L1,t−1 = · · · = Lt,0 := Λ

for a positive integer Λ, then (X,B) forms a simple t-design with parameters t-
(v, k,Λ).

We record the construction above in the following theorem.

Theorem 3.1 Let v, k, t be integers with v > k > t ≥ 2. Let X be a v-set and let
X = X1 ∪X2 be a partition of X with |X1| = v1 and |X2| = v2. Let Di = (X1,B

(i))
be the complete i-(v1, i, 1) design for i = 0, . . . , t and let Di = (X1,B

(i)) be a simple

t-(v1, i, λ
(i)
t ) design for i = t+ 1, . . . , k. Similarly, let D̄i = (X2, B̄

(i)) be the complete

i-(v2, i, 1) design for i = 0, . . . , t, and let D̄i = (X2, B̄
(i)) be a simple t-(v2, i, λ̄

(i)
t )

design for i = t+ 1, . . . , k. Let K = {(0, k), (1, k − 1), . . . , (k − 1, 1), (k, 0)}. Suppose
there exists a subset R ⊆ K such that for each (i, k − i) ∈ R, the designs Di and
D̄k−i have an si-resolution with Ni classes and an sk−i-resolution with N̄k−i classes,
respectively, satisfying the following conditions.

(i) Ni = N̄k−i,

(ii) si + sk−i ≥ 2b t
2
c.

Define

B =
⋃

(i,k−i)∈R

B∗(i,k−i) × [ui] ∪
⋃

(i,k−i)∈K\R

B(i,k−i) × [ui],

for ui ∈ {0, 1}, i = 0, . . . , k,

B∗(i,k−i) := {Bi∪B̄k−i | Bi ∈ A
(i)
h , B̄k−i ∈ Ā

(k−i)
j , εi ≤ d(A

(i)
h ,A

(i)
j ) ≤ wi, εi = 0, 1; wi ≤ b

Ni

2
c},

with wi as variable, where A
(i)
1 , . . . ,A

(i)
Ni

are si-resolution classes of Di, with (X1,A
(i)
h )

as an si-(v1, i, λ
∗(i)
si ) design; and Ā

(k−i)
1 , . . . , Ā

(k−i)
Ni

are sk−i-resolution classes of D̄k−i,

with (X2, Ā
(k−i)
h ) as an sk−i-(v2, k − i, λ̄∗(k−i)sk−i ) design; and

B(i,k−i) := {B = Bi ∪ B̄k−i | Bi ∈ B(i), B̄k−i ∈ B̄(k−i)}.

Define

Lr,t−r :=
∑

(i,k−i)∈R

ui.Λ
∗(i,k−i)
(r,t−r) +

∑
(i,k−i)∈K\R

ui.Λ
(i,k−i)
(r,t−r),

for r = 0, . . . , t, where

Λ
∗(i,k−i)
(r,t−r) =


λ
∗(i)
r .λ̄

∗(k−i)
t−r .Ni.zi if r ≤ si, t− r ≤ sk−i,

λ
∗(i)
r .λ̄

(k−i)
t−r .zi if r ≤ si, t− r > sk−i,

λ
(i)
r .λ̄

∗(k−i)
t−r .zi if r > si, t− r ≤ sk−i.
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with zi = (2wi + 1− εi), if wi <
Ni

2
, and zi = (2wi − εi), if wi = Ni

2
; and

Λ
(i,k−i)
(r,t−r) = λ(i)

r .λ̄
(k−i)
t−r .

Assume that

L0,t = L1,t−1 = · · · = Lt,0 := Λ (3)

for a positive integer Λ, then (X,B) is a simple t-(v, k,Λ) design.

Remarks 3.1 1. In the basic construction the set B(i,k−i) of the new blocks is
uniquely determined as the unions of all the pairs of blocks in Di and D̄k−i.
Whereas in the construction using resolutions in Theorem 3.1 the set B∗(i,k−i) is
no longer unique. Its size varies according to the variable zi.

2. Theorem 3.1 does not restrict to constructing simple t-designs. Obviously, if
any of the ingredient designs is non-simple, then the construction will yield
non-simple designs.

4 Applications

In this section we illustrate the construction in Theorem 3.1 through a number of
examples which show the strength of the method.

In the following we will employ the notation from Chapter II.4 : t-Designs with
t ≥ 3 of the Handbook of Combinatorial Designs [12]. The parameter set t-(v, k, λ)
of a design will be written as t-(v, k,mλmin). Since the supplement of a simple t-
(v, k, λ) design is a t-(v, k, λmax − λ) design, we usually consider simple t-(v, k, λ)
designs with λ ≤ λmax/2. Thus, the upper limit of m of a constructed design will be
LIM = bλmax/(2λmin)c. But, it should be remarked that, when an ingredient design
with index λ is used, then λ can take on all possible values, i.e. λmin ≤ λ ≤ λmax.

4.1 Simple 5-(38, k,Λ) designs with k = 8, 9, 10

We apply the construction in Theorem 3.1 to the cases t = 5, v1 = v2 = 19 and
k = 8, 9, 10.

4.1.1 Simple 5-(38, 8,Λ) designs

Here we show a detailed example to illustrate the construction.
Let X = X1∪X2 be a partition of the point set X with |X| = 38 into two subsets

X1 and X2 with |X1| = |X2| = 19. For i = 0, 1, 2, 3, 4, 5 let Di = (X1,B(i)) be the

complete i-(19, i, λ
(i)
i ) := i-(19, i, 1) design. For i = 6, 7, 8 let Di = (X1,B(i)) be a

simple 5-(19, i, λ
(i)
5 ) design. These designs have the following parameters.

• 5-(19, 6, λ
(6)
5 ) = 5-(19, 6,m2), m = 1, 2, . . . , 7.
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• 5-(19, 7, λ
(7)
5 ) = 5-(19, 7,m7), m = 1, 2, . . . , 13

• 5-(19, 8, λ
(8)
5 ) = 5-(19, 8,m28), m = 1, 2, . . . , 13

Correspondingly, let D̄i = (X2, B̄(i)) be simple designs defined on X2. Here K =
{(0, 8), (1, 7), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (7, 1), (8, 0)}.

It is known that the complete designs Di and D̄i for i = 3, 4, 5 have each a
2-resolution with the number of resolution classes Ni = 17, i.e. the large sets
LS[17](2, i, 19), see for instance Chapter II.4 [12]. We choose

R = {(3, 5), (4, 4), (5, 3)}.

Thus we have

• B(3) =
⋃17
j=1 A

(3)
j , where (X1,A

(3)
j ) is a 2-(19, 3, λ

∗(3)
2 ) = 2-(19, 3, 1) design, and

λ
(3)
3 = 1, λ

∗(3)
2 = 1, λ

∗(3)
1 = 9, λ

∗(3)
0 = 57;

• B(4) =
⋃17
j=1 A

(4)
j , where (X1,A

(4)
j ) is a 2-(19, 4, λ

∗(4)
2 ) = 2-(19, 4, 8) design and

λ
(4)
4 = 1, λ

(4)
3 = 16, λ

∗(4)
2 = 8, λ

∗(4)
1 = 48, λ

∗(4)
0 = 228;

• B(5) =
⋃17
j=1 A

(5)
j , where (X1,A

(i)
j ) is a 2-(19, 5, λ

∗(4)
2 ) = 2-(19, 5, 40) design and

λ
(5)
5 = 1, λ

(5)
4 = 15, λ

(5)
3 = 120, λ

∗(5)
2 = 40, λ

∗(5)
1 = 180, λ

∗(5)
0 = 684;

Similarly, the complete designs D̄i have the same 2-resolutions as Di, each having
N̄i = 17 resolution classes, for i = 3, 4, 5. Thus B̄(i) =

⋃17
j=1 Ā

(i)
j , and each (X2, Ā

(i)
j )

is a 2-(19, i, λ̄
∗(i)
2 ) design with λ̄

∗(i)
2 = λ

∗(i)
2 .

We compute

Lr,5−r =
∑

(i,8−i)∈R

ui.Λ
∗(i,8−i)
(r,5−r) +

∑
(i,8−i)∈K\R

ui.Λ
(i,8−i)
(r,5−r),

for r = 0, . . . , 5, and ui = 0, 1. If (i, 8− i) ∈ K \R, then

Λ
(i,8−i)
(r,5−r) = λ(i)

r .λ̄
(8−i)
5−r .

If (i, 8− i) ∈ R, then the values of Λ
∗(i,8−i)
(r,5−r) are computed by using the formula

Λ
∗(i,k−i)
(r,t−r) =


λ
∗(i)
r .λ̄

∗(k−i)
t−r .Ni.zi if r ≤ si, t ≤ sk−i,

λ
∗(i)
r .λ̄

(k−i)
t−r .zi if r ≤ si, t > sk−i,

λ
(i)
r .λ̄

∗(k−i)
t−r .zi if r > si, t ≤ sk−i.

Here we have

Λ
∗(3,5)
0,5 = λ

∗(3)
0 .λ̄

(5)
5 .z3 = 57z3, Λ

∗(3,5)
1,4 = λ

∗(3)
1 .λ̄

(5)
4 .z3 = 9× 15z3,

Λ
∗(3,5)
2,3 = λ

∗(3)
2 .λ̄

(5)
3 .z3 = 120z3, Λ

∗(3,5)
3,2 = λ

(3)
3 .λ̄

∗(5)
2 .z3 = 40z3,

Λ
∗(3,5)
4,1 = Λ

∗(3,5)
5,0 = 0.

10



Λ
∗(5,3)
0,5 = Λ

∗(5,3)
1,4 = 0, Λ

∗(5,3)
2,3 = λ

∗(5)
2 .λ̄

(3)
3 .z5 = 40z5,

Λ
∗(5,3)
3,2 = λ

(5)
3 .λ̄

∗(3)
2 .z5 = 120z5, Λ

∗(5,3)
4,1 = λ

(5)
4 .λ̄

∗(3)
1 .z5 = 15× 9z5,

Λ
∗(5,3)
5,0 = λ

(5)
5 .λ̄

∗(3)
0 .z5 = 57z5.

Λ
∗(4,4)
0,5 = Λ

∗(4,4)
5,0 = 0, Λ

∗(4,4)
1,4 = λ

∗(4)
1 .λ̄

(4)
4 .z4 = 48z4,

Λ
∗(4,4)
2,3 = λ

∗(4)
2 .λ̄

(4)
3 .z4 = 8× 16z4, Λ

∗(4,4)
3,2 = λ

(4)
3 .λ̄

∗(4)
2 .z4 = 16× 8z4,

Λ
∗(4,4)
4,1 = λ

(4)
4 .λ̄

∗(4)
1 .z4 = 48z4.

It follows that

L0,5 = u0λ̄
(8)
5 + u119λ̄

(7)
5 + u2171λ̄

(6)
5 + u357z3,

L1,4 = u15λ̄
(7)
5 + u29× 15λ̄

(6)
5 + u39× 15z3 + u448z4,

L2,3 = u240λ̄
(6)
5 + u3120z3 + u48× 16z4 + u540z5,

L3,2 = u640λ
(6)
5 + u5120z5 + u416× 8z4 + u340z3,

L4,1 = u75λ
(7)
5 + u615× 9λ

(6)
5 + u515× 9z5 + u448z4,

L5,0 = u8λ
(8)
5 + u719λ

(7)
5 + u6171λ

(6)
5 + u557z5.

Each set of values of ui ∈ {0, 1}, i = 0, . . . , 8; z3, z4, z5 = 1, . . . , 17; λ
(j)
5 and λ̄

(j)
5 ,

j = 6, 7, 8 for which the equalities

L0,5 = L1,4 = L2,3 = L3,2 = L4,1 = L5,0 := Λ

is satisfied for a positive integer Λ will yield a simple 5-(38, 8,Λ) design. Recall
that a 5-(38, 8,Λ) can be written as 5-(38, 8,m4) with λmin = 4 and λmax = 5456.
Thus LIM = b5456/2 ∗ 4c = 682. By solving the equalities above we obtain all
solutions for m ≤ 1364. Altogether 33 values for m have been found, of which 16
values of m ≤ LIM. Since, not all simple 5-(19, i, λ

(i)
5 ) designs are known to exist,

for example, 5-(19, 7,m7) designs are known for m = 4, 5, 6, 7, 8, 9, 13 only, we just
obtain the following 5 new simple 5-(38, 8,m4) designs for m = 280, 488, 524, 560, 560
(the number 560 repeats twice, as we have two distinct non isomorphic solutions for
this value of m). The details of these 5 constructed designs are given in Table 1.

Table 1: Constructed simple 5-(38, 8,Λ) designs

m z3 z4 z5 λ
(6)
5 λ

(7)
5 λ

(8)
5

280 7 0 7 0 35 56
488 8 4 8 4 28 280
524 6 7 6 6 28 196
560 4 10 4 8 28 112
560 9 5 9 4 49 112

An entry 0 in a column of the table implies that ui = 0, otherwise ui = 1. Here
we have λ

(j)
5 = λ̄

(j)
5 , j = 6, 7, 8 for all these solutions.
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4.1.2 Simple 5-(38, k,Λ) designs with k = 9, 10

Again we assume that v1 = v2 = 19 for the construction of simple 5-(38, k,Λ) designs
with k = 9, 10.

• For construction of 5-(38, 9,Λ) = 5-(38, 9,m30) designs with LIM = 682, we
make use of the large sets LS[17](2, i, 19), i = 3, 4, 5, 6, i.e. the 2-resolutions of
the complete designs i-(19, i, 1) with resolution class number Ni = 17. Thus, we
have R = {(3, 6), (4, 5), (5, 4), (6, 3)}. And the equalities Lr,t−r are the following.

L0,5 = u0λ̄
(9)
5 + u119λ̄

(8)
5 + u2171λ̄

(7)
5 + u357× 14z3 + u4228z4,

L1,4 = u115λ̄
(8)
5 /4 + u218× 5λ̄

(7)
5 + u39× 105z3 + u448× 15z4 + u5180z5,

L2,3 = u220λ̄
(7)
5 + u3560z3 + u48× 120z4 + u540× 16z5 + u6140z6,

L3,2 = u720λ
(7)
5 + u6560z6 + u5120× 8z5 + u416× 40z4 + u3140z3,

L4,1 = u815λ
(8)
5 /4 + u75× 18λ

(7)
5 + u6105× 9z6 + u515× 48z5 + u4180z4,

L5,0 = u9λ
(9)
5 + u819λ

(8)
5 + u7171λ

(7)
5 + u614× 57z6 + u5228z5.

Solving the equalities L0,5 = L1,4 = L2,3 = L3,2 = L4,1 = L5,0 = Λ for Λ > 0
with respect to zi = 1, . . . , 17 we obtain 20 values for m with m ≤ LIM leading
to simple 5-(38, 9,Λ) = 5-(38, 9,m30) designs. Of which 14 designs can be
constructed whose details are given in Table 2.

Table 2: Constructed simple 5-(38, 9,Λ) designs

m z3 z4 z5 z6 λ
(7)
5 λ

(8)
5 λ

(9)
5 λ̄

(7)
5 λ̄

(8)
5 λ̄

(9)
5

100 2 1 1 2 0 56 112 0 56 112
200 4 2 2 4 0 112 224 0 112 224
300 6 3 3 6 0 168 336 0 168 336
400 8 4 4 8 0 224 448 0 224 448
402 5 5 5 5 28 84 546 28 84 546
500 10 5 5 10 0 280 560 0 280 560
502 7 6 6 7 28 140 658 28 140 658
504 4 7 7 4 56 0 756 56 0 756
582 10 4 11 3 28 168 588 63 84 189
602 9 7 7 9 28 196 770 28 196 770
604 6 8 8 6 56 56 868 56 56 868
660 9 8 8 9 35 252 21 35 252 21
680 8 11 4 15 0 364 602 35 280 203
682 5 12 5 12 28 224 700 63 140 301

It should be noted that when applying the basic construction for t = 5, v1 =
v2 = 19 and k = 8, 9 we only obtain the trivial solutions, namely the complete
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5-(38, 8, 1364 × 4) and 5-(38, 9, 1364 × 30) designs. This could be explained as
follows.

In general, if k ≤ 2t−1, then one of the designs in each pair (Di, D̄k−i) is either
the empty or the trivial design and at least one pair having both the trivial
designs, therefore it leaves little room for the basic construction to produce a
non-trivial solution, unless many pairs are unused, i.e. ui = 0. The construction
using resolutions indeed makes more room to create non-trivial solutions, as we
have seen in the above examples.

• For construction of 5-(38, 10,Λ) = 5-(38, 10,m6) designs with LIM = 19778,
we again employ the 2-resolutions of the complete designs i-(19, i, 1) for i =
3, 4, 5, 6, 7 with resolution class number Ni = 17. Here,

R = {(3, 7), (4, 6), (5, 5), (6, 4), (7, 3)}.

And we have

L0,5 = u0λ̄
(10)
5 + u119λ̄

(9)
5 + u2171λ̄

(8)
5 + u357× 91z3 + u4228× 14z4 + u5684z5,

L1,4 = u13λ̄
(9)
5 + u218× 15λ̄

(8)
5 /4 + u39× 455z3 + u448× 105z4 + u5180× 15z5

+u6504z6,

L2,3 = u212λ̄
(8)
5 + u31820z3 + u48× 560z4 + u540× 120z5 + u6140× 16z6

+u7364z7,

L3,2 = u812λ
(8)
5 + u71820z7 + u6560× 8z6 + u5120× 40z5 + u416× 140z4

+u3364z3,

L4,1 = u93λ
(9)
5 + u815× 18λ

(8)
5 /4 + u7455× 9z7 + u6105× 48z6 + u515× 180z5

+u4504z4,

L5,0 = u10λ
(10)
5 + u919λ

(9)
5 + u8171λ

(8)
5 + u791× 57z7 + u614× 228z6 + u5684z5.

Solving the equalities L0,5 = L1,4 = L2,3 = L3,2 = L4,1 = L5,0 = Λ for Λ > 0
with respect to zi = 1, . . . , 17 we obtain an entire number of 479 solutions, of
which 239 have m ≤ LIM. From these 239 parameters 131 simple 5-(38, 10,m6)
designs have been shown to exist. The values of m for these designs are
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12768 17416 2604 6076 7252 10724 13668 15108
15372 18580 18844 3768 6976 8416 8680 11624
11888 12152 16272 16536 16800 19744 4932 8404
9580 9844 12788 13052 13316 13580 17172 17436

17700 17964 18228 6096 9040 10480 10744 11008
13952 11536 14216 14480 15920 18600 18864 19128
7260 11644 11908 12172 14852 15116 15380 15644

16556 16820 19500 17084 19764 8424 11368 12544
12808 13072 13336 16016 16280 16544 16808 17984
9060 9588 13972 14236 16916 14500 17180 17444

17708 18884 19148 10224 10752 14872 15136 15400
18080 15664 18344 18608 19520 11388 11916 16036
16300 16564 19244 16828 19508 19772 12552 13080
17200 17464 17728 13716 14244 18100 18364 18628
18892 19156 14880 15408 19264 19528 16044 17208
18384 18372 19536 16844 11316 13908 14280 14808
19720 16872 17772

Here are two examples:

• 5-(38, 10, 2604× 6) with z3 = 1, z4 = 2, z6 = 2, z7 = 1, λ̄
(9)
5 = 147, λ̄

(10)
5 = 1260,

u2 = u5 = u8 = 0 and λ
(i)
5 = λ̄

(i)
5 for i = 9, 10.

• 5-(38, 10, 11316 × 6) with z3 = 2, z4 = 8, z5 = 2, z6 = 7, z7 = 4, λ̄
(8)
5 = 140,

λ̄
(9)
5 = 336, λ̄

(10)
5 = 294, λ

(8)
5 = 84, λ

(9)
5 = 378, λ

(10)
5 = 1890.

On the other hand, when the basic construction is applied for this case (i.e. v1 =
v2 = 19 and k = 10), we just obtain 5 solutions with m ≤ LIM.

Remark 4.1 1. It should be noted that when v1 = v2, any solution with λ
(i)
t 6= λ̄

(i)
t

will appear twice by reason of symmetry, since λ
(i)
t and λ̄

(i)
t may be interchanged.

These two solutions are indeed the same. This fact should be taken into account
by counting the number of solutions throughout Section 4.

2. Up to now the number of known parameter sets for 5-(38, k,Λ) with k = 8, 9, 10
are 8, 14, and 23 respectively, see [12], for instance. For k = 8, 9 all the param-
eters of the constructed designs differ from the known ones. For k = 10, only
one of the 23 known parameter sets does appear in the list of 131 constructed
designs, namely the parameters 5-(38, 10, 11368× 6). However, it is not known
whether the corresponding designs are isomorphic.

4.2 Some further results of applications

We briefly record some further examples of simple t-designs for t = 4, 5, 6 by using
Theorem 3.1.
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4.2.1 t = 4

Following are several small parameters for t = 4.

1. 4-(26, 8,m35): Take v1 = v2 = 13 and R = {(3, 5), (4, 4), (5, 3)} by using
LS[55](2, 4, 13) and LS[11](2, i, 13) for i = 3, 5. There are 3 non-trivial solu-
tions of Eq(3) with m = 44, 66 satisfying m ≤ LIM(= 104). A design with
m = 44 is known. The two solutions for m = 66 are non-isomorphic and new.
These are

• u4 = 0, z3 = z5 = 7, λ
(7)
4 = 42, λ

(8)
4 = 126, u2 = u6 = 0, and λ̄

(i)
4 = λ

(i)
4 for

i = 7, 8.

• z4 = 24, z3 = z5 = 2, λ
(6)
4 = 18, λ

(8)
4 = 126, u1 = u7 = 0, and λ̄

(i)
4 = λ

(i)
4 for

i = 6, 8.

The basic construction for 4-(26, 8,m35) with v1 = v2 = 13 only yields the
trivial solution.

2. 4-(28, 9,m168): Take v1 = v2 = 14 andR = {(4, 5), (5, 4)} by using LS[11](2, i, 14)
for i = 4, 5. There is a unique non-trivial solution of Eq(3) with m = 110 satis-

fying m ≤ LIM(= 126). This solution with z4 = z5 = 4, u2 = u7 = 0, λ
(6)
4 = 30,

λ
(8)
4 = 210, λ

(9)
4 = 252, and λ̄

(i)
4 = λ

(i)
4 for i = 6, 8, 9 yields a new design.

3. 4-(30, 7,m20): Take v1 = v2 = 15 andR = {(3, 4), (4, 3)} by using LS[13](2, i, 15)
for i = 3, 4. There are 3 non-trivial solutions of Eq(3) with m = 39, 52, 65 sat-

isfying m ≤ LIM(= 65). The solution for m = 52 with z3 = z5 = 5, λ
(5)
4 = 5,

λ
(6)
4 = 15, λ

(7)
4 = 115, and λ̄

(i)
4 = λ

(i)
4 for i = 5, 6, 7 gives a new design.

4.2.2 t = 5

1. 5-(36, 10,m63): Take v1 = v2 = 18 and R = {(5, 5)} by using LS[7](2, 5, 18).
There are 164 non-trivial solutions of Eq(3) with m ≤ LIM(= 1348). Of which
37 are shown to exist. It is interesting to remark that these 37 designs include
the 10 designs constructed using the basic construction [39]. Actually, 27 new
designs with parameters 5-(36, 10,m63) have been obtained. These are

m = 611, 818, 921, 945, 969, 1048, 1072, 911, 934, 1094, 1197, 1221, 1245, 1269,

1324, 1325, 1348, 1187, 1210, 1234, 1337, 1152, 1176, 1200, 1224, 1303, 1131.

2. 5-(37, 8,m40): Take v1 = 13, v2 = 24 and R = {(3, 5), (4, 4), (5, 3)} by using
LS[11](2, i, 13), LS[11](2, i, 24) for i = 3, 4, 5. There is a unique non-trivial
solution of Eq(3) with m = 55 such that m ≤ LIM(= 62). This solution with

z3 = 2,z5 = 2, z4 = 8, λ
(6)
5 = 4, λ

(7)
5 = 28, λ

(8)
5 = 56, λ̄

(6)
5 = 13, λ̄

(7)
5 = 36,

λ̄
(7)
5 = 666 gives a new design.
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3. 5-(37, 9,m10): Take v1 = 13, v2 = 24 and R = {(3, 6), (4, 5), (5, 4), (6, 3)} by
using LS[11](2, i, 13), LS[11](2, i, 24) for i = 3, 4, 5, 6. There is a unique non-
trivial solution of Eq(3) with m = 874 such that m ≤ LIM(= 1798). This

solution with z3 = 2, z4 = 2, z5 = 4, z6 = 1, λ
(7)
5 = 14, u8 = u9 = 0, λ̄

(6)
5 = 72,

λ̄
(7)
5 = 30, λ̄

(8)
5 = 1980 gives a new design.

4. 5-(44, 8,m): Take v1 = v2 = 22 and R = {(4, 4)} by using LS[19](2, 5, 22).
There are 9 non-trivial solutions of Eq(3) with m ≤ LIM(= 4569). Of which

one design with m = 3344 and u3 = u5 = 0, z4 = 4, λ
(6)
5 = 12, λ

(7)
5 = 16,

λ
(8)
5 = 220, and λ̄

(i)
5 = λ

(i)
5 for i = 6, 7, 8, is shown to exist.

5. 5-(46, 10,m2): Take v1 = v2 = 23 and R = {(4, 6), (5, 5), (6, 4)} by using
LS[133](2, 5, 23), LS[7](2, i, 23) for i = 4, 6. There are 3986 non-trivial solu-
tions of Eq(3) with m ≤ LIM(= 187349). Of which 176 designs are shown to
exist with the following values of m.

65246 75487 73758 83999 86526 94240 96140 96767
106381 107008 116622 117021 125134 123405 127262 139004
137503 142633 139403 143887 149644 151772 159885 162013
164540 166668 174781 185497 59014 79667 78166 89908
88179 92435 98420 102676 108661 110561 120802 126160

122930 125058 131043 136401 133171 139555 137826 145540
153425 157054 158308 175807 174705 184319 182818 184946
77064 94088 99446 96216 104329 109687 102600 119928

112841 116698 121828 115368 123082 132069 124982 125609
130967 142310 135223 140581 135850 141208 145464 150822
145863 153976 156104 163590 167846 166345 171475 168245
178486 183844 180614 185972 86526 105355 113867 112366
118750 124108 126635 134349 127262 136249 134748 131518
136876 137503 146490 139403 147117 140030 156731 149644
155002 151772 157130 150271 153900 159885 165243 162013
167371 166668 177612 174382 179512 182267 185896 187150
121505 119776 128288 132544 138529 142785 148770 145540
150670 160911 163039 159809 171152 169423 164692 170050
168321 179664 174705 182818 184946 135850 148694 152950
158707 163191 165091 163590 165718 171076 175332 179189
175959 181317 174230 185573 178486 183844 180614 185972
184471 182742 176985 164540 177612 179512 187226 173052

Here is an example with m = 59014: z4 = z6 = 1, z5 = 20, u2 = u8 = 0,
λ

(7)
5 = 36, λ

(9)
5 = 810, λ

(10)
5 = 7812, and λ̄

(i)
5 = λ

(i)
5 for i = 7, 9, 10.

4.2.3 t = 6

Following are some examples for t = 6.
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1. 6-(38, 10,m10): Take v1 = v2 = 19 and R = {(4, 6), (5, 5), (6, 4)} by using
LS[4](3, i, 19) for i = 4, 5, 6. There are 4 non-trivial solutions of Eq(3) with
m = 1360, 892, 1340, 1788 for m ≤ LIM(= 1798).

2. 6-(46, 12,m420): Take v1 = v2 = 23 and R = {(6, 6)} by using LS[3](3, 6, 23).
There are 2 non-trivial solutions of Eq(3) with m = 3363, 3819 for m ≤ LIM(=

4569). The solution for m = 3363 has z6 = 1, λ
(7)
5 = 7, λ

(8)
5 = 40, λ

(9)
5 = 340,

λ
(10)
5 = 350, λ

(11)
5 = 4046, λ

(12)
5 = 5320, and λ̄

(i)
5 = λ

(i)
5 for i = 7, 8, 9, 10, 11, 12.

All the ingredient designs corresponding to m = 3363 exist except that the
existence of a 6-(23, 10, 5 × 70) design is still in doubt. So, we would have a
6-(46, 12, 3364× 420) design if a 6-(23, 10, 5× 70) design would exist.

3. 6-(50, 12,m308): Take v1 = v2 = 25 and R = {(6, 6)} by using LS[7](3, 6, 25).
There are 195 non-trivial solutions of Eq(3) for m ≤ LIM(= 11459).

5 Conclusion

We have presented a recursive construction for simple t-designs by using the concept
of resolutions. This may be viewed as an extension of the basic construction as shown
in our previous paper. The s-resolutions of trivial t-designs are equivalent to the large
sets of s-designs, which have been extensively studied. Since our construction does not
exclude the use of trivial designs as ingredients, we have restricted its applications to
resolutions of the trivial ingredient designs only. In spite of this fact, the construction
still produces a large number of new simple t-designs. We strongly believe that the
construction would unfold its full impact when we would gain more knowledge about
resolutions of non-trivial t-designs.
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