Universität Duisburg-Essen
Campus Essen

Prof. Dr. A. Klawonn

Sommersemester 2004 30.4.2004

Dr. A. Kovac Dr. D. Krutikov Dipl.-Math. O. Rheinbach

2. Übung zur Vorlesung Mathematik II für Bauingenieure

Aufgabe 1 (3+3+3+3 Punkte)

Berechnen Sie die folgenden Integrale direkt oder mit partieller Integration:

a)
$$\int_0^{\pi} x \cdot \cos(x) \, dx$$
 b) $\int_0^1 x^{-3} \, dx$ c) $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2(x) \, dx$ d) $\int_1^e \sqrt{x} \cdot \ln(x) \, dx$

Aufgabe 2 (3 Punkte)

Berechnen Sie

$$\int_{0}^{2} (4x - 3)^{2} dx$$

direkt und mit Hilfe der Substitution z := 4x - 3.

Aufgabe 3 (3 Punkte)

Berechnen Sie

$$\frac{d}{dx}\int_0^x te^{-t^2}dt$$
.

Aufgabe 3 (3+3+3+3 Punkte)

Bestimmen Sie die folgenden Integrale mit Integration durch Substitution

a)
$$\int_0^1 \frac{1}{\sqrt{4-3x}} dx$$
 b) $\int_0^{\pi} \sin(2x) dx$ c) $\int_{\frac{1}{9}\pi^2}^{\frac{1}{4}\pi^2} \frac{1}{\sqrt{x}} \cos\sqrt{x} dx$
d) $\int_0^b (px+q)^n dx$ mit $p, q \in \mathbb{R}, n \in \mathbb{N}$.

Aufgabe 5 (4 Punkte)

Es sei

$$I_n := \int_0^1 x^n \cdot e^x dx.$$

Berechnen Sie I_0 . Führen Sie I_n mit partieller Integration auf I_{n-1} zurück. Berechnen Sie mit Hilfe der Rekursionsformel I_3 und I_4 .

Abgabetermin: 7.05.2004.