Advanced Numerical Methods - Review Exercises.

Exercise 1:

Consider the initial value problems

- $y^{\prime}(t)=(t-1)^{2} y(t), \quad y(0)=1$
- $y^{\prime}(t) y(t)=t, \quad y(0)=1$

1. Try to apply the Picard-Lindelöf existence and uniqueness theorem.
2. Solve the initial value problems.

Exercise 2:

Reduce the second order system of ODEs

$$
y^{\prime \prime}(t)=A y(t), \quad A \in \mathbb{R}^{n \times n}, \quad y(0)=y_{0} \in \mathbb{R}^{n}, \quad y^{\prime}(0)=0 \in \mathbb{R}^{n}
$$

to a first order system in the $2 n$ auxiliary variables $z=\left[z_{1}, z_{2}\right]^{T} \in \mathbb{R}^{2 n}$.
Write this in block matrix form and compute one step of the explicit Euler method for the reduced system.

Exercise 3:

Compute the set $\mathcal{A} \subset \mathbb{C}$ of absolute stability for the explicit and implicit Euler methods and draw them.

Exercise 4:

Write down the Runge-Kutta method corresponding to the following Butcher tableau:

0	0	0	0
$1 / 2$	$1 / 2$	0	0
1	-1	2	0
	$1 / 6$	$2 / 3$	$1 / 6$

Apply this scheme to the ODE

$$
y^{\prime}(t)=y(t), \quad y(0)=1
$$

and compute the first step.

Exercise 5:

Use the method of lines to discretize the advection boundary value problem

$$
\begin{aligned}
\frac{\partial u}{\partial t}(x, t)+c \frac{\partial u}{\partial x}(x, t) & =0, & (x, t) & \in(0,2 \pi) \times(0, \infty), c>0 \\
u(x, 0) & =\sin (x), & x & \in[0,2 \pi] \\
u(0, t) & =u(2 \pi, t)=\sin (-c t), & & t \in[0, \infty)
\end{aligned}
$$

in space. Use the finite difference approximation

$$
u^{\prime}(x)=\frac{u(x+h)-u(x-h)}{2 h}+O\left(h^{2}\right)
$$

and an equidistantly spaced grid

$$
0=x_{0}<x_{1}<\ldots<x_{n}<x_{m+1}=1
$$

with step size $h=\frac{1}{m+1}$.

Exercise 6:

Let $u: \mathbb{R} \rightarrow \mathbb{R}$ be sufficiently smooth. Derive the finite difference approximation

$$
u^{\prime}(x)=\frac{u(x+h)-u(x-h)}{2 h}+O\left(h^{2}\right) .
$$

Exercise 7:

Derive the modified Euler method from a suitable quadrature rule.

Exercise 8:

Prove that the order of consistency of Heun's method is 2 .

