Dipl.-Math. Andreas Fischle

Advanced Numerical Methods - Homework 4.

The following programming project is due in two weeks and you can earn 4 bonus points for the exam. Next week you will receive another set of homeworks.

MATLAB Programming Project 1 (4 Bonus Points)

Consider the following second-order system of ODEs modelling a particle at position $x(t) \in$ \mathbb{R}^{2} with mass m moving in a force field $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ (and obeying Newtonian physics):

$$
F(x(t))=m \cdot a(t)
$$

Note that the acceleration vector $a(t)$ is the second derivative of the position vector $x(t)$ with respect to time, i.e.,

$$
a(t)=\frac{\mathrm{d}}{\mathrm{~d} t} v(t)=\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} x(t)
$$

where v denotes the velocity of the particle.
At time $t=0$ the particle is located at $x^{(0)}=(1,0)^{T}$ and has the initital velocity $v^{(0)}=$ $(0,1 / \sqrt{2})^{T}$. For the force field we assume $F\left(x_{1}, x_{2}\right)=\left(-x_{2}, x_{1}\right)^{T}$.
Introducing the components of the velocities as a new set of variables in the ODE, we can reduce this initial value problem to an equivalent first order system of ODEs

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
v_{1}(t) \\
v_{2}(t)
\end{array}\right)=\left(\begin{array}{c}
v_{1}(t) \\
v_{2}(t) \\
F_{1}\left(x_{1}(t), x_{2}(t)\right) / m \\
F_{2}\left(x_{1}(t), x_{2}(t)\right) / m
\end{array}\right)
$$

If you prefer, you can also relabel $v_{1}=x_{3}$ and $v_{2}=x_{4}$.

1. Write down the update rule for the Euler, Modified Euler and Heun's scheme for the first order system given above.
2. Write a MATLAB program which simulates the particle with the Euler, Modified Euler and Heun's scheme, respectively, for the time interval $[0, T]$, for some $T>0$ and with a given step size h.
3. Visualize the trajectory (as a curve in the plane) of the particle for each of the three methods in a plot. Take $T=10[s]$ and use the three different step sizes $h=10^{-1}, 10^{-2}$, 10^{-3}. Do also produce superimposed plots showing the numerical approximations obtained from the different schemes but using the same stepsize.
4. Give a short comparison of the three different schemes you implemented based on your numerical results. Try to measure the global error of your approximations at $T=10[\mathrm{~s}]$.

Hint: The exact solution to the initial value problem is given by:

$$
\begin{aligned}
& x_{1}(t)=\frac{1}{4} e^{-\frac{t}{\sqrt{2}}}\left(\left(3 e^{\sqrt{2} t}+1\right) \cos \left(\frac{t}{\sqrt{2}}\right)-\left(e^{\sqrt{2} t}+1\right) \sin \left(\frac{t}{\sqrt{2}}\right)\right), \\
& x_{2}(t)=\frac{1}{4} e^{-\frac{t}{\sqrt{2}}}\left(\left(3 e^{\sqrt{2} t}-1\right) \sin \left(\frac{t}{\sqrt{2}}\right)+\left(e^{\sqrt{2} t}-1\right) \cos \left(\frac{t}{\sqrt{2}}\right)\right)
\end{aligned}
$$

You can use this to check whether you're on the right track.

