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Abstract. Dual-primal FETI methods for linear elasticity problems in three dimensions are

considered. These are nonoverlapping domain decomposition methods where some primal continuity
constraints across subdomain boundaries are required to hold throughout the iterations, whereas
most of the constraints are enforced by Lagrange multipliers. An algorithmic framework for dual-
primal FETI methods is described together with a transformation of basis to implement the primal
constraints. Numerical results obtained from a parallel implementation of these algorithms applied
to a model benchmark problem and to problems with more complicated geometries from industrial
and biological applications are provided. These results show that the presented FETI-DP algorithms
are numerical and parallel scalable.
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1. Introduction. Dual-primal FETI (FETI-DP) methods are the most recent
members of the family of Finite Element Tearing and Interconnecting (FETI) do-
main decomposition methods. The FETI methods are all dual iterative substruc-
turing methods for partial differential equations. In these methods the original do-
main, on which the given partial differential equation has to be solved, is decomposed
into nonoverlapping subdomains. The intersubdomain continuity is then enforced by
Lagrange multipliers across the interface defined by the subdomain boundaries. In
dual-primal FETI methods, some continuity constraints on the primal displacement
variables are forced to hold throughout iterations, as in primal substructuring algo-
rithms, while the other constraints are enforced by the use of Lagrange multipliers,
as in standard one-level FETI. The primal constraints have to be chosen such that
the local subproblems become invertible and such that a parallel scalable method is
obtained; the primal constraints provide a coarse problem for these domain decom-
position methods.

FETI-DP algorithms were introduced by Farhat et al. in [9] for linear elasticity
problems in the plane and then extended by Farhat, Lesoinne, and Pierson [10] to
three dimensional elasticity problems. The first theoretical analysis for two dimen-
sional, scalar elliptic partial differential equations of second and fourth order with
only small coefficient jumps across the subdomain boundaries was given by Mandel
and Tezaur [23]; it was shown that the condition number is bounded polylogarith-
mically as a function of the dimension of the individual subregion problems. The
family of algorithms for scalar, second order elliptic problems in three dimensions was
extended by Klawonn, Widlund, and Dryja [13, 17, 18]; see also [26]. There, also a
theory was provided which shows that the condition number in three dimensions can
be again bounded polylogarithmically as a function of the dimension of the individ-
ual subdomain problems and that the bounds can otherwise be made independent of
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the number of subdomains, the mesh size, and the jumps in the coefficients. More
recently, new FETI-DP algorithms for three dimensional, linear elasticity problems
were provided by Klawonn and Widlund [15, 16] together with a theoretical analysis
proving a polylogarithmic condition number estimate as in the scalar case which is
also robust with respect to discontinuities in the material coefficients. For benign
elasticity problems, it is shown that selecting an appropriate set of edge averages
as primal constraints is sufficient to obtain good polylogarithmic bounds. For arbi-
trary coefficient distributions, certain first order moments on selected edges have to
be added as primal constraints as well as constraints at some of the vertices in order
to obtain robust, polylogarithmic bounds.

The purpose of this article is to present results obtained from a parallel imple-
mentation of some of the algorithms developed in Klawonn and Widlund [15]. Here,
we restrict ourselves to homogeneous elasticity problems without any jumps in the
material coefficients; numerical experiments for heterogeneous problems are part of
ongoing research. It is shown that using a transformation of basis for the implemen-
tation of the primal constraints leads to a parallel scalable domain decomposition
method. We report on experiments for model benchmark problems and for more
complicated geometries from industrial applications.

Strongly related to FETI-DP methods are the more recently developed Neumann-
Neumann methods with constraints, also known as balancing domain decomposi-
tion methods by constraints (BDDC); cf. [8, 21, 22]. It was first shown in Mandel,
Dohrmann, and Tezaur [22] that BDDC and FETI-DP have all non zero eigenvalues
in common; see also Li and Widlund [20] for another approach. Neumann-Neumann
methods with primal vertex constraints were also developed independently by Cros
[6]; see also Fragakis and Papadrakakis [11] for further experimental work.

The remainder of this article is organized as follows. In Section 2, we introduce the
equations of linear elasticity in three dimensions, the discretization by finite elements
and the partition of the domain into substructures. In Section 3, we present the
algorithmic framework for our FETI-DP methods and in Section 4 we describe how
to perform the transformation of basis to implement the primal constraints. Finally,
in Section 5 we present the numerical results obtained from a parallel implementation
of our methods. First, we apply it to a benchmark problem on the unit cube, testing
for numerical and parallel scalability, confirming the theoretical findings in [15]. We
then show the parallel performance of our algorithms applied to geometries obtained
from industrial and biological applications.

2. The equations of linear elasticity, finite elements, and geometry. The
equations of linear elasticity model the displacement of a linear elastic material under
the action of external and internal forces. The elastic body occupies a domain Ω ⊂ IR3,
which is assumed to be polyhedral and of diameter one. We denote its boundary by
∂Ω and assume that one part of it, ∂ΩD, is clamped, i.e., with homogeneous Dirichlet
boundary conditions, and that the rest, ∂ΩN := ∂Ω \ ∂ΩD, is subject to a surface
force g, i.e., a natural boundary condition. We can also introduce a body force
f , e.g., gravity. With H1(Ω) := (H1(Ω))3, the appropriate space for a variational
formulation is the Sobolev space H1

0(Ω, ∂ΩD) := {v ∈ H1(Ω) : v = 0 on ∂ΩD}. The
linear elasticity problem consists in finding the displacement u ∈ H1

0(Ω, ∂ΩD) of the
elastic body Ω, such that

∫

Ω

G(x)ε(u) : ε(v)dx+
∫

Ω

G(x)β(x) div u div v dx = 〈F,v〉 ∀v ∈ H1
0(Ω, ∂ΩD). (2.1)
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Here G and β are material parameters which depend on the Young’s modulus E > 0
and the Poisson ratio ν ∈ (0, 1/2]; we have G = E/(1 + ν) and β = ν/(1 − 2ν). In
this article, we only consider the case of compressible elasticity, which means that the
Poisson ratio ν is bounded away from 1/2. Furthermore, εij(u) := 1

2 ( ∂ui

∂xj
+ ∂uj

∂xi
) is

the linearized strain tensor, and

ε(u) : ε(v) =
3∑

i,j=1

εij(u)εij(v), 〈F,v〉 :=
∫

Ω

fT v dx +
∫

∂ΩN

gT v dσ.

For convenience, we also introduce the notation

(ε(u), ε(v))L2(Ω) :=
∫

Ω

ε(u) : ε(v)dx.

The bilinear form associated with linear elasticity is then

a(u,v) = (Gε(u), ε(v))L2(Ω) + (G β div u, div v)L2(Ω).

The wellposedness of the linear system (2.1) follows immediately from the continuity
and ellipticity of the bilinear form a(·, ·), where the first follows from elementary
inequalities and the latter from Korn’s first inequality; see, e.g., Ciarlet [5].

The null space ker (ε) of ε is the space of rigid body motions which is spanned
by the three translations

r1 :=




1
0
0


 , r2 :=




0
1
0


 , r3 :=




0
0
1


 , (2.2)

and the three rotations

r4 :=




x2 − x̂2

−x1 + x̂1

0


 , r5 :=



−x3 + x̂3

0
x1 − x̂1


 , r6 :=




0
x3 − x̂3

−x2 + x̂2


 . (2.3)

Here x̂ ∈ Ω to shift the origin to a point in Ω.
We will only consider compressible elastic materials. It is therefore sufficient to

discretize our elliptic problem (2.1) by low order, conforming finite elements, e.g.,
linear or trilinear elements.

Let us assume that a triangulation τh of Ω is given which is shape regular and has a
typical diameter of h. We denote by Wh := Wh(Ω) ⊂ H1

0(Ω, ∂ΩD) the corresponding
conforming finite element space of finite element functions. The corresponding discrete
problem is then

a(uh,vh) = 〈F,vh〉 ∀vh ∈ Wh. (2.4)

When there is no risk of confusion, we will drop the subscript h.
Let the domain Ω ⊂ IR3 be decomposed into nonoverlapping subdomains Ωi, i =

1, . . . , N , each of which is the union of finite elements with matching finite element
nodes on the boundaries of neighboring subdomains across the interface Γ. The inter-
face Γ is the union of three different groups of open sets, namely, subdomain faces,
edges, and vertices. We denote individual faces, edges, and vertices by F , E , and V,
respectively. To define faces, edges, and vertices, we introduce certain equivalence
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classes. Let us denote the sets of nodes on ∂Ω, ∂Ωi, and Γ by ∂Ωh, ∂Ωi,h, and Γh,
respectively. For any interface nodal point x ∈ Γh, we define

Nx := {j ∈ {1, . . . , N} : x ∈ ∂Ωj},

i.e., Nx is the set of indices of all subdomains with x in the closure of the subdomain.
For a node x we define the multiplicity as |Nx|.

Associated with the nodes of the finite element mesh, we have a graph, the nodal
graph, which represents the node-to-node adjacency. For a given node x ∈ Γh, we
denote by Ccon(x) the connected component of the nodal subgraph, defined by Nx,
to which x belongs. For two interface points x, y ∈ Γh, we introduce an equivalence
relation by

x ∼ y :⇐⇒ Nx = Ny and y ∈ Ccon(x).

We can now describe faces, edges, and vertices using their equivalence classes. Here,
|G| denotes the cardinality of the set G. We define

Definition 2.1.

x ∈ F :⇐⇒ |Nx| = 2
x ∈ E :⇐⇒ |Nx| ≥ 3 and ∃y ∈ Γh, y 6= x, such that y ∼ x
x ∈ V :⇐⇒ |Nx| ≥ 3 and 6 ∃y ∈ Γh, such that x ∼ y.

In the case of a decomposition into regular substructures, e.g., cubes or tetrahedrons,
our definition of faces, edges, and vertices is conform with our basic geometric intu-
ition; see Figure 2.1. On the other hand, for subdomains generated by an automatic
mesh partitioner, the situation can be quite complicated. We can, e.g., have several
edges with the same index set Nx or an edge and a vertex with the same Nx. In prac-
tice, we can also have situations when there are not enough edges and potential edge
constraints for some subdomains. Then, we have to use constraints on some extra
edges on ∂ΩN , which otherwise would be regarded as part of a face. A similar problem
might occur for flat structures for which additional constraints might be required for
each subdomain. Therefore, we introduce an alternative definition of edges.

Definition 2.2. An edge is the largest connected set of nodes with the same
index set Nx where |Nx| ≥ 3 or |Nx| ≥ 2 and x is on ∂ΩN .

If needed, we will increase the number of edges in unstructured cases by switching
locally from the definition of edges given in Definition 2.1 to Definition 2.2 by splitting
edges into several edges.

3. The FETI-DP algorithms. In this section, we introduce a matrix formu-
lation of the FETI-DP algorithms considered in this article. For each subdomain
Ωi, i = 1, . . . , N , we assemble local stiffness matrices Ki and local load vectors fi of
the elasticity problem (2.4). Furthermore, we denote by ui the local solution vectors
of nodal values. In the dual-primal FETI methods, we distinguish between dual and
primal displacement variables according to the way the continuity of the solution in
those variables is established. Dual displacement variables are those, for which the
continuity is enforced by a continuity constraint and Lagrange multipliers λ and thus,
continuity is not established until convergence of the iterative method is reached, as
in the classical one-level FETI methods. On the other hand, continuity of the primal
displacement variables is enforced explicitly in each iteration step by subassembly of
the local stiffness matrices Ki at the primal displacement variables. This subassembly
yields a symmetric, positive definite stiffness matrix K̃ which is not block diagonal
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Fig. 2.1. For 8 = 2 × 2 × 2 subdomains the 6 edges in the interior of Ω are shown (two
subdomains in front of the cube are not shown).

anymore but coupled at the primal displacement variables. Let us note that this cou-
pling yields a global problem which is necessary to obtain a parallel and numerical
scalable algorithm. An obvious choice of primal variables are (selected) vertices for
which a partial assembly is then carried out. We will see in Section 4 that there are
other possible choices, such as edge averages over selected edges; cf., Klawonn and
Widlund [15] for other possible choices. If a transformation of basis is used, then the
edge average constraints can be treated algorithmically exactly as primal vertices; cf.
Section 4.

We will use subscripts I, ∆, and Π, to denote the interior, dual, and primal
displacement variables, respectively, and obtain for the local stiffness matrices, load
vectors, and solution vectors of nodal values

K(i) =




K
(i)
II K

(i)T
∆I K

(i)T
ΠI

K
(i)
∆I K

(i)
∆∆ K

(i)T
Π∆

K
(i)
ΠI K

(i)
Π∆ K

(i)
ΠΠ


 ,u(i) =




u(i)
I

u(i)
∆

u(i)
Π


 , f (i) =




f (i)
I

f (i)
∆

f (i)
Π


 .

By subassembly in the primal displacement variables, we obtain

K̃ =

[
KBB K̃T

ΠB

K̃ΠB K̃ΠΠ

]
,

where a tilde indicates the subassembled matrices and where

KBB =




K
(1)
BB O · · · O

O
. . . . . .

...
...

. . . . . . O

O · · · O K
(N)
BB




, K
(i)
BB =

[
K

(i)
II K

(i)T
∆I

K
(i)
∆I K

(i)
∆∆

]
,

and

K̃ΠB = [K̃(1)
ΠB · · · K̃(N)

ΠB ].

Introducing local assembly operators R
(i)
Π which map from the local primal displace-
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ment variables u(i)
Π to the global, assembled ũΠ, we have

K̃
(i)
ΠB = R

(i)
Π K

(i)
ΠB , i = 1, . . . , N, ũΠ =

N∑

i=1

R
(i)
Π u(i)

Π ,

and

K̃ΠΠ =
N∑

i=1

R
(i)
Π K

(i)
ΠΠR

(i)T
Π .

We also introduce the notation

uB = [uI u∆]T , fB = [fI f∆]T ,u(i)
B = [u(i)

I u(i)
∆ ]T , and f (i)

B = [f (i)
I f (i)

∆ ]T .

To guarantee continuity at the dual displacement variables, we introduce a jump
operator B, which is constructed from {0, 1,−1}, in such a way that the values of the
solution u∆, associated with more than one subdomain, coincide when BuB = 0; the
interior variables uI remain unchanged and thus the corresponding entries in B are
zero. These constraints are very simple and just express that the nodal values coincide
across the interface; clearly, we do not need any constraints associated with the primal
displacement variables. However, we will otherwise use all possible constraints and
thus work with a fully redundant set of Lagrange multipliers as in [14, Section 5];
cf. also [24]. Thus, for an edge node common to four subdomains, we will use six
constraints rather than choosing as few as three.

We can now reformulate the finite element discretization of (2.4) as



KBB K̃T
ΠB BT

K̃ΠB K̃ΠΠ O

B O O







uB

ũΠ

λ


 =




fB
f̃Π
0




Elimination of the interior and dual displacement variables uB and of the primal
displacement variables ũΠ leads to




KBB K̃T
ΠB BT

O S̃ΠΠ −S̃T
ΛΠ

O O −F







uB

ũΠ

λ


 =




fB
f̃Π − K̃ΠBK−1

BBfB
−d




with

S̃ΠΠ = K̃ΠΠ − K̃ΠBK−1
BBK̃T

ΠB , S̃T
ΛΠ = K̃ΠBK−1

BBBT ,

F = BK−1
BBBT + BK−1

BBK̃T
ΠBS̃−1

ΠΠK̃ΠBK−1
BBBT ,

d = BK−1
BBfB + BK−1

BBK̃T
ΠBS̃−1

ΠΠ

(
f̃Π − K̃ΠBK−1

BB

)
.

Since KBB is a block-diagonal matrix, we obtain

F =
N∑

i=1

B(i)
(
K

(i)
BB

)−1

B(i)T

+

(
N∑

i

B(i)(K(i)
BB)−1K̃

(i)T
ΠB

)
S̃−1

ΠΠ




N∑

j

K̃
(j)
ΠB(K(j)

BB)−1B(j)T


 .

(3.1)
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We see that in a matrix-vector multiplication with F , we only need to solve local
linear systems in the first sum. To apply the second term in (3.1) to a vector, we first
apply the right sum in it to that vector; this represents a gather operation. Next, we
have to solve a linear system with the matrix S̃ΠΠ, which yields our global problem
neeeded for scalability. Finally, we apply the left sum of the second term in (3.1) to
the result; this represents a scatter operation. A similar form can be derived for the
right hand side d.

To define the FETI-DP Dirichlet preconditioner M−1, we first need to introduce
a scaled jump operator BD; this is done by scaling the contributions of B associated
with the dual displacement variables from individual subdomains. We can write

BD = [B(1)
D , . . . , B

(N)
D ],

where the B
(i)
D are defined as follows: each row of B(i) with a nonzero entry cor-

responds to a Lagrange multiplier connecting the subdomain Ωi with a neighboring
subdomain Ωj at a point x ∈ ∂Ωi,h ∩ ∂Ωj,h. We obtain B

(i)
D by multiplying each such

row of B(i) with Gj(x)/
∑

k∈Nx
Gk(x) where Gl(x) := G(x) for x ∈ ∂Ωl, l = 1, . . . , N .

In the homogeneous case, this results in scaling each such row with the reciproke of
the multiplicity |Nx| of the node x ∈ ∂Ωi,h ∩ ∂Ωj,h; thus it is also called multiplicity
scaling.

Let us now consider the matrix representation of our preconditioner M−1. For
this, we need certain Schur complement matrices S(i), i = 1, . . . , N. Each S(i) is
obtained from the local stiffness matrices K(i) by eliminating the interior displacement
variables. Denoting the displacement variables on the local interface ∂Ωi by the
subscript Γ, we then have

K(i) =

[
K

(i)
II K

(i)T
ΓI

K
(i)
ΓI K

(i)
ΓΓ

]

and the local Schur complements S(i) are obtained as

S(i) = K
(i)
ΓΓ −K

(i)
ΓI (K(i)

II )−1K
(i)T
ΓI .

We now define the block-diagonal Schur complement matrix S as

S =




S(1) O
. . .

O S(N)


 .

Our preconditioner is then given in matrix form by

M−1 = BDRT
ΓSRΓBT

D =
N∑

i=1

B
(i)
D R

(i)T
Γ S(i)R

(i)
Γ B

(i)T
D . (3.2)

Here, R
(i)
Γ are restriction matrices that restrict the degrees of freedom of a subdomain

to its interface and RΓ = diagi(R
(i)
Γ ).

Let us note that generally the local Schur complements S(i) are never built ex-
plicitly, instead, in each iteration step and each application of M−1 to a vector, local
linear systems with K(i) are solved. This corresponds to the solution of local Dirich-
let problems, thus, this preconditioner is also known as the Dirichlet preconditioner.
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Clearly, a matrix-vector multiplication with M−1 requires only the solution of local
linear systems and can be carried out completely in parallel.

The FETI-DP method can now be described as the pcg method for solving the
preconditioned linear system

M−1Fλ = M−1d

and the algorithm is given in Algorithm 3.1.
Algorithm 3.1.
(i) Initialization: r0 := d− Fλ0

(ii) Iterate for k = 1, 2, . . ., until convergence,

zk−1 := M−1rk−1

βk :=
〈zk−1, rk−1〉
〈zk−2, rk−2〉 [β1 := 0]

pk := zk−1 + βkpk−1 [p1 := z0]

αk :=
〈zk−1, rk−1〉
〈pk, Fpk〉

λk := λk−1 + αkpk

rk := rk−1 − αkFpk

4. Primal constraints and a change of basis. We have to decide how to
choose the primal displacement variables. The simplest choice is to choose them as
certain selected primal vertices of the subdomains, see Farhat et al. [9], where this
approach was first considered. In this section, we show that edge average constraints
can be treated the same way by using a transformation of basis. In the following, we
will denote the FETI-DP algorithm which exclusively uses selected vertices as primal
displacement constraints as Algorithm A, cf. Klawonn, Widlund, and Dryja [17],
where this notation was introduced. In Lesoinne [19], an algorithm for the choice of
selected vertices as primal variables is suggested in the context of choosing a relatively
small number of vertices to guarantee invertibility of the subproblems and otherwise
enhance the coarse problem by face averages using optional Lagrange multipliers.

For scalar, second order, elliptic differential equations in three dimensions, certain
edge and face averages were suggested in [13], [17] as additional primal constraints.
For linear elasticity problems in three dimensions, Farhat, Lesoinne, and Pierson [10]
considered face averages as primal constraints. In Klawonn and Widlund [15], edge
averages and first order edge moments were introduced and analyzed in order to obtain
scalable algorithms which are also robust for arbitrarily large jumps of the material
coefficients across the subdomain interface. The algorithms described in this article
are based on [15].

There are two different approaches to implement the edge and face constraints, one
using optional Lagrange multipliers, which form a part of the global, coarse problem,
cf. [10] and [15, Sect. 6.1], and the other using a change of basis; cf. [15, Sect. 6.2].
The latter approach generally leads to smaller and computationally more efficient
coarse problems. Using this approach, the invertibility of the local problems and
the positive definiteness of the entire problem can also be guaranteed without any
vertex constraints. In fact, vertex constraints are only needed for problems with very
challenging distributions of the material coefficients; see [15, Sect. 8.3].

We now describe the approach using an explicit change of basis. As a result,
the finite element functions associated with dual displacement vectors will have zero
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edge averages over primal edges. In addition, we introduce these averages as primal
variables. Here and in the following, we define an edge as primal if at least one
component of the displacements has the same edge average across the interface on
this edge.

The transformation matrix TE performs the desired change of basis from the new
basis to the original nodal basis since we would like to iterate in the original nodal
finite element space. Denoting the edge unknowns in the new basis by ûE , we have

uE = TEûE .

Such a transformation matrix TE can be constructed separately for each edge
with three primal edge constraints. Ordering the three edge averages last, a possible
implementation of TE is

TE =




I3 O I3

. . .
...

O I3 I3

−I3 · · · −I3 I3


 ,

where I3 is the 3× 3 identity matrix. We denote the resulting transformation, which
operates on all relevant edges of ∂Ωi, by T

(i)
E . The transformation for all variables of

one subdomain Ωi is then of the form

T (i) =




I O O
O I O

O O T
(i)
E


 .

Here, we assume that the variables are ordered interior variables first, interface vari-
ables not related to the primal edges second, and the variables on the primal edges
last, i.e., a typical vector of nodal unknowns is of the form [u(i)T

I ,u(i)T

Γ
,u(i)T

E ]T . Here,
we denote the interface variables not related to a primal edge by the subscript Γ. We
note that T

(i)
E is a direct sum of the relevant transformation matrices associated with

the primal edges of that subdomain; T
(i)
E is a block-diagonal matrix where each block

represents the transformation of a component of a primal edge.
Decomposing the subdomain stiffness matrices K(i) in the same manner, we ob-

tain

K(i) =




K
(i)
II K

(i)

IΓ
K

(i)
IE

K
(i)

ΓI
K

(i)

ΓΓ
K

(i)

ΓE

K
(i)
EI K

(i)

EΓ
K

(i)
EE


 .

Using the transformation u(i) = T (i)û(i), we obtain

T (i)T K(i)T (i) =




K
(i)
II K

(i)

IΓ
K

(i)
IET

(i)
E

K
(i)

ΓI
K

(i)

ΓΓ
K

(i)

ΓE
T

(i)
E

T
(i)T
E K

(i)
EI T

(i)T
E K

(i)

EΓ
T

(i)T
E K

(i)
EET

(i)
E


 ,

where the upper left 2 × 2 block matrix is not affected by the basis transformation.
The primal variables in the new basis consist now of averages but we note that we
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might also have selected primal vertices as additional primal variables. The primal
variables belonging to Ωi are denoted by u(i)

Π and the remaining, dual displacement
variables by u(i)

∆ . By construction, the basis functions associated with the new dual
displacement variables have zero edge average over primal edges.

In the same manner the indices ∆E and ΠE indicate the dual and primal displace-
ment variables associated with the primal edges constraints. Denoting the transformed
matrices by an overline and ordering the primal edge variables last, we obtain

T (i)T K(i)T (i) =




K
(i)
II K

(i)

IΓ
K

(i)

I∆E
K

(i)

IΠE

K
(i)

ΓI
K

(i)

ΓΓ
K

(i)

Γ∆E
K

(i)

ΓΠE

K
(i)

∆EI K
(i)

∆EΓ K
(i)

∆E∆E
K

(i)

∆EΠE

K
(i)

ΠEI K
(i)

ΠEΓ K
(i)

ΠE∆E
K

(i)

ΠEΠE




.

Denoting the primal vertices by a subscript ΠV and the remaining dual displace-
ment variables by a subscript ∆, we can then write u(i)

Γ
= [u(i)T

∆ u(i)T
ΠV

]T . Using this
splitting for the local stiffness matrices K(i) accordingly, ordering the primal variables
u(i)

ΠV
and u(i)

ΠE
last, and combining them as primal variables u(i)

Π = [u(i)T
ΠV

,u(i)T
ΠE

]T , we
obtain

T (i)T K(i)T (i) =




K
(i)
II K

(i)T

∆I K
(i)T

ΠI

K
(i)

∆I K
(i)

∆∆ K
(i)T

Π∆

K
(i)

ΠI K
(i)

Π∆ K
(i)

ΠΠ


 .

Assembling the primal contributions of each transformed K(i) and ordering the primal
variables last, we obtain

K̃ :=




K
(1)
II K

(1)

I∆ K̃
(1)T
ΠI

K
(1)

∆I K
(1)

∆∆ K̃
(1)T
Π∆

. . .
...

K
(N)
II K

(N)

I∆ K̃
(N)T
ΠI

K
(N)

∆I K
(N)

∆∆ K̃
(N)T
Π∆

K̃
(1)
ΠI K̃

(1)
Π∆ · · · K̃

(N)
ΠI K̃

(N)
Π∆ K̃ΠΠ




=:

[
KBB K̃T

ΠB

K̃ΠB K̃ΠΠ

]
.

In our FETI-DP algorithm described in Section 3, we always assume that we have
performed an appropriate change of basis. If there is no danger of confusion, we
will drop the overline notation which indicates the dual displacement variables in the
transformed basis.

Using the transformation of basis, we again obtain



KBB K̃T
ΠB BT

K̃ΠB K̃ΠΠ O
B O O







uB

ũΠ

λ


 =




fB
f̃Π
0


 .

We note that, after the change of basis has been carried out, we can always use
the same implementation as for Algorithm A since the algorithmic description in
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Section 3 does not depend on a specific choice of primal and dual variables. Note
that the explicit transformation of basis introduces small dense blocks into the system
matrix but the local problems as well as the Schur complement S̃ΠΠ remain symmetric
positive definite.

The following condition number estimate for FETI-DP algorithms using edge av-
erages on selected edges and/or selected vertices as primal constraints can be deduced
from Klawonn and Widlund [15, Theorem 1].

Theorem 4.1. The condition number satisfies

κ(M−1F ) ≤ C (1 + log(H/h))2,

where H denotes the subdomain diameter and h the finite element mesh size. The
positive constant C is independent of h and H.

For homogeneous materials or problems with discontinuities of the material coef-
ficients which are not very large, it follows from the results in Klawonn and Widlund
[15] that primal vertices are not needed to obtain a good condition number bound.
We thus introduce a new notation and denote the algorithm using edge averages on
selected primal edges as the only primal constraints by Algorithm DE .

We note that in [15] a variant of Algorithm DE is considered which in addition uses
first order moments on selected edges and possibly selected primal vertices. In this
case, a condition number estimate is shown which is also independent of discontinuities
of the material coefficients across the interface.

5. Numerical results. We apply our new implementation of FETI-DP using
a basis transformation to different problems. First, we consider the standard bench-
mark problem of an elastic cube divided into smaller regular cubes as subdomains,
as a second example we consider three different mechanical parts from an industrial
application, and finally, we apply our algorithm to a cancellous bone geometry; see
Subsections 5.1, 5.2, 5.3. The domains considered in the second and third subsection
are decomposed in irregularly shaped substructures by using ParMetis [12]. In all
problems, we use linear tetrahedral finite elements and, for simplicity, a Young mod-
ulus of E = 210 and a Poisson ratio of ν = 0.29 throughout. In all of our experiments
we use Algorithm DE , i.e., our choice of primal constraints is given by edge averages
on selected edges, without any primal vertices. Here, we always constrain all three
averages on a primal edge. In all of our computations, we make all edges obtained
by Definition 2.1 primal; additionally, in Subsections 5.2 and 5.3, we add some edges
obtained by Definition 2.2. All computations of Subsections 5.1 and 5.2 were carried
out on Jazz, a 350 node computing cluster operated by the Mathematics and Com-
puter Science Division at Argonne National Laboratory, USA. The cluster consists
of 2.4 GHz Xeon processors with 1 or 2 GByte of memory each and uses a Myrinet
connection. The numerical results given in Table 5.1, Figure 5.6 and in Subsection
5.3 have been carried out on a 16 processor computing cluster in Essen with eight
dual 2.2 GHz Opteron nodes and 4 GByte of memory for each processor. This cluster
uses a Gigabit ethernet connection.

5.1. Model problem. In this section, as a benchmark model problem, we con-
sider a homogeneous, isotropic, linearly elastic cube which is clamped at one side,
while all other parts of the boundary have homogeneous natural boundary condi-
tions. A volume force is applied which defines the right hand side.

In order to analyze the numerical and parallel scalability of our FETI-DP algo-
rithm we report on two different series of experiments. In our first set of runs, we
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keep the dimension of the local problems, and H/h, fixed and increase the number N
of subdomains and thus the overall problem size; see Tables 5.1 and 5.2. In a second
series of experiments, we keep a fixed number N of subdomains and increase the size
of the local problems, and H/h, resulting in a smaller h and thus a larger overall
problem size. The results of these experiments are given in Table 5.3 and Figure 5.1.
In all sets of experiments, we use as a stopping criterion the relative reduction of the
preconditioned dual residual by 10−7.

In the numerical results obtained for a fixed subdomain size, reported in Tables
5.1 and 5.2, the cube is partitioned into smaller cubes with H/h = 14 which results
in 8 332 d.o.f. for each subdomain. In Tables 5.1 and 5.2, we denote the degrees of
freedom of the original, assembled problem by “d.o.f.” and those of the coarse problem
by “Coarse”. We first present results using the sparse direct solver built into PETSc
[3], [2], [4] for solving the coarse problem and the local problems; cf. Table 5.1. Next,

Proc. N 1/h d.o.f. Coarse λmin λmax Iter Time

1 8 27 59 049 18 1.03 12.94 18 137s

8 64 53 446 631 324 1.03 10.45 23 171s

27 216 79 1 479 117 1 350 1.04 10.32 23 188s

64 512 105 3 472 875 3 528 1.04 10.31 23 192s

125 1 000 131 6 744 273 7 290 1.04 10.30 23 226s

Table 5.1
Results for a cube divided into smaller cubes with a fixed subdomain size of 8 332 d.o.f. using

PETSc as subdomain and coarse grid sparse direct solver.

we present a set of experiments using the sparse direct solver package MUMPS 4.3.2
[1] together with the optimized BLAS libraries for the Xeon architecture to solve the
coarse problem and the local problems; cf. Table 5.2. Both set of experiments show

Proc. N 1/h d.o.f. Coarse λmin λmax Iter Time

4 64 53 446 631 324 1.03 10.45 23 60.3s

32 512 105 3 472 875 3 528 1.04 10.31 23 69.2s

108 1 728 157 11 609 679 13 068 1.04 10.30 23 78.8s

Table 5.2
Results for a cube divided into smaller cubes with a fixed subdomain size of 8 332 d.o.f. using

MUMPS as subdomain and coarse grid sparse direct solver.

that our FETI-DP algorithm using only edge averages as primal constraints yields a
numerical and parallel scalable domain decomposition method. As a further result of
this comparison, we see that using MUMPS as a direct solver accelerates our method
by almost a factor of three in terms of CPU time.

The numerical results for a fixed number of subdomains with increasing size are
obtained for the unit cube divided into N = 4 × 4 × 4 = 64 subdomains. We keep
H = 1/4 fixed and vary H/h between 4 and 24. Algorithm DE has a coarse problem
size of 324. The growth of the number of iterations and of the largest eigenvalue of
Algorithms DE is shown in Figure 5.1.
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d.o.f. H/h Iter λmin λmax

6 591 4 14 1.03 4.11
27 783 6 17 1.03 5.70
73 167 8 18 1.03 7.10

273 375 12 22 1.03 9.45
680 943 16 24 1.03 11.36

1 369 599 20 25 1.04 12.97
2 413 071 24 26 1.04 14.35

Table 5.3
Results for 4× 4× 4 subdomains of increasing size. The iteration count is given for a relative

reduction of the preconditioned dual residual by 10−7
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Fig. 5.1. Growth of number of iterations (left) and λmax (right) of Algorithm DE for the unit
cube with variable H/h and 4× 4× 4 subdomains. .

All of the numerical results in this subsection confirm the theoretical condition
number estimate given in Theorem 4.1; cf. also [15, Theorem 1].

5.2. Industrial applications. In this section, we apply our FETI-DP algorithm
to three different industrial finite element problems, denoted by mechanical parts A,
B, and C.

The direct subdomain solves as well as the coarse problem solve are performed
by using again the sparse direct solver MUMPS and the optimized BLAS libraries for
the Xeon architecture. To compare the parallel performance of our dual-primal FETI
domain decomposition method Algorithm DE to that of the parallel sparse direct
solver provided by MUMPS, we also provide CPU timings for MUMPS applied to the
assembled and undecomposed problem on the same machine.

The first problem, mechanical part A, cf. Figure 5.2, has been discretized by
208 536 linear tetrahedral finite elements yielding a global number of 187 539 d.o.f.
In the reported experiments the mechanical part A is partioned into N = 16 subdo-
mains using ParMetis. The FETI-DP algorithm using only edge averages as primal
constraints needed 29 iterations for a relative reduction of the preconditioned dual
residual by 10−7. The size of the coarse problem is 393 d.o.f. The smallest and largest
eigenvalue are λmin = 1.02 and λmax = 19.63, respectively. The parallel scalability
results on 2 to 16 processors are given in Table 5.4.

The second problem in this subsection, mechanical part B, cf. Figure 5.3, is dis-
cretized by 581 394 linear tetrahedral finite elements resulting in a global number of
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Fig. 5.2. Mechanical part A; courtesy of GETRAG FORD Transmissions GmbH, Cologne,
Germany

Proc. 2 4 8 16

FETI-DP DE/MUMPS 62s 33s 20s 11s
MUMPS 47s 27s 26s 19s

Table 5.4
Parallel scalability results for mechanical part A: CPU times for FETI-DP using MUMPS as

local and coarse sparse direct solver and for MUMPS applied to the undecomposed problem.

380 709 d.o.f. It is partioned into N = 64 subdomains using ParMetis. In all of the
experiments reported in Table 5.5, our FETI-DP algorithm using only edge averages
as primal constraints needed 29 iterations for a relative reduction of the precondi-
tioned dual residual by 10−7. The size of the coarse problem is 1 020. The smallest
and largest eigenvalues are λmin = 1.03 and λmax = 33.85, respectively. The parallel
scalability results on 4 to 64 processors are given in Table 5.5.

The third problem in this subsection, mechanical part C, cf. Figure 5.4, is dis-
cretized by 1 291 933 linear tetrahedral finite elements yielding a global number of
841 836 d.o.f. It is partioned into N = 64 subdomains using ParMetis. In all of the
experiments reported in Table 5.6, the number of iterations is 32 for a relative re-
duction of the preconditioned dual residual by 10−7. The size of the coarse problem
is 957 d.o.f. The smallest and largest eigenvalue are λmin = 1.03 and λmax = 27.77,
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Fig. 5.3. Mechanical part B; courtesy of GETRAG FORD Transmissions GmbH, Cologne,
Germany

Proc. 4 8 16 32 64

FETI-DP DE/MUMPS 60s 33s 18s 11s 6s
MUMPS 113s 156s 103s 86s 90s

Table 5.5
Parallel scalability results for mechanical part B: CPU times for FETI-DP using MUMPS as

local and coarse sparse direct solver and for MUMPS applied to the undecomposed problem.

Fig. 5.4. Mechanical part C; courtesy of GETRAG FORD Transmissions GmbH, Cologne,
Germany

respectively. The parallel scalability results on 16 to 64 processors are given in Table
5.6.

Proc. 16 32 64

FETI-DP DE/MUMPS 49s 26s 17s
MUMPS failed 1 177s 889s

Table 5.6
Parallel scalability results for mechanical part C: CPU times for FETI-DP with 64 subdomains

using MUMPS as local and coarse sparse direct solver and for MUMPS applied to the undecomposed
problem.
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In Table 5.7 we also report results for mechanical part C decomposed into 512
subdomains. In these experiments the largest eigenvalue is λmax = 21.36 and the
smallest eigenvalue λmin = 1.03. The coarse problem size was chosen as 7 500 d.o.f.
The number of iterations is 32 for a relative reduction of the preconditioned dual
residual of 10−7.

Proc. 8 16 32 64

Time 58s 29s 15.4s 9.3s

Table 5.7
Parallel scalability results for mechanical part C: CPU times for FETI-DP with 512 subdomains

using MUMPS as local and coarse sparse direct solver.

From our numerical experiments we see that the FETI-DP algorithms using edge
averages only as primal constraints yields a parallel scalable domain decomposition
method also for problems from industrial applications using irregularly shaped sub-
structures. The FETI-DP algorithm is, in terms of CPU time, always faster than the
sparse direct solver applied to the undecomposed problem, except for the smallest
problem, mechanical part A, and there only for 2 and 4 processors.

5.3. A cancellous bone geometry. In this subsection, we present results of
our FETI-DP algorithm applied to a linearly elastic domain which has a cancellous
bone geometry. We show that our method is robust also for complicated geometries
with many holes and thin structures as they usually appear in cancellous/trabecular
bone. For simplicity, we only consider isotropic linear elasticity. For a full study of
cancellous bone, we should use linearly elastic orthotropic or even nonlinear material
models; this will be considered in forthcoming work. The bone geometry is discretized
by 907 609 linear tetrahedral finite elements resulting in a global number of 620 730
d.o.f. The mesh is obtained using a marching cubes algorithm to generate a surface
mesh and Netgen [25] to produce a volume mesh from it. It is partitioned into N = 96
subdomains using ParMetis. In all of our experiments reported in Table 5.8, the
number of iterations is 51 for a relative reduction of the preconditioned dual residual
by 10−10. The size of the coarse problem is 1 602 d.o.f. The smallest and largest
eigenvalue are λmin = 1.02 and λmax = 43.57, respectively. The parallel scalability
results on 1 to 16 processors are given in Table 5.8. As sparse direct solvers for the
coarse and the local problems, we use UMFPACK 4.3 [7].

In Figure 5.6 we show the convergence history for the cancellous bone geometry
as well as for mechanical part A, mechanical part B, and for the cube benchmark
problem with H/h = 14 and h = 1/105. We compute the true relative residual
‖Fλn − d‖2/‖Fλ0 − d‖2 explicitly in each step; cf. Figure 5.6. Let us note that
the true residual is only used in the experiments for the results shown in Figure 5.6.
Here, we use the true residual for the computation of the results to avoid possible
inaccuracies in the recursive computation used in the conjugate gradient algorithm
when the residual is approaching machine precision.
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Fig. 5.5. Cancellous bone. Upper left: Cross section of X-ray Computer Tomography; Upper
right: Finite element discretization with 907 609 tetrahedrons and 620 730 d.o.f. Lower left and
right: Different views of a decomposition of the bone into subdomains by ParMetis.

Proc. 1 2 4 8 16

Time 524s 312s 170s 90s 46s

Table 5.8
Parallel scalability of FETI-DP for cancellous bone geometry.
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