SCHRIFTENREIHE DES FACHBEREICHS MATHEMATIK ## Dual-Primal Iterative Substructuring for Almost Incompressible Elasticity by A. Klawonn, O. Rheinbach, and B. I. Wohlmuth SM-E-603 2005 ## Universität Duisburg-Essen # Dual-primal iterative substructuring for almost incompressible elasticity April 2005 Axel Klawonn¹, Oliver Rheinbach¹, and Barbara Wohlmuth² - ¹ Fachbereich Mathematik, Universität Duisburg-Essen, Campus Essen, Universitätsstraße 3, 45117 Essen, Germany. axel.klawonn@uni-essen.de,oliver.rheinbach@uni-essen.de - ² Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart wohlmuth@ians.uni-stuttgart.de Summary. A dual-primal iterative substructuring method for almost incompressible elasticity problems is proposed. The elasticity problem is given in the displacement formulation. To avoid locking in the incompressible limit, the problem is discretized by using an underlying saddle point formulation with a discontinuous pressure variable which is eliminated a priori by static condensation. Numerical results illustrate the performance and scalability of our method in the incompressible limit. **Key words.** domain decomposition, Lagrange multipliers, preconditioners, FETI, elasticity, incompressible, finite elements. AMS subject classifications. 65F10, 65N30, 65N55 #### 1 Introduction There exists a large number of publications devoted to the construction and analysis of finite element approximations for problems in solid mechanics, in which it is necessary to circumvent volumetric locking. Of special interest are nearly incompressible materials where standard low order finite element discretizations do not ensure uniform convergence in the incompressible limit. Methods associated with the enrichment or enhancement of the strain or stress field by the addition of carefully chosen basis functions have proved to be highly effective and popular. The key work dealing with enhanced assumed strain formulations is that of Simo and Rifai [1990]. Of exclusive interest in our paper are situations corresponding to a pure displacement based formulation which is obtained by a local static condensation of a mixed problem satisfying a uniform inf-sup condition. We work with conforming bilinear approximations for the displacement and a pressure space of piecewise constants. Unfortunately, the standard Q1-P0 pairing does not satisfy a uniform inf-sup condition. To obtain a stable scheme, we have to extract from the pressure space the so-called checkerboard modes. For some earlier references on the construction of uniformly bounded domain decomposition and multigrid methods in the incompressible limit, see Goldfeld [2003] for Neumann-Neumann methods and Wieners [2000] and Schöberl [1999] for multigrid solvers. Let us note that there are also recent results on FETI-DP and BDDC domain decomposition methods for mixed finite element discretizations of Stokes' equations, see Li and Widlund [2005] and Li [2002], and almost incompressible elasticity, see Dohrmann [2004]. In this work, we propose a dual-primal iterative substructuring method for almost incompressible elasticity. Numerical results illustrate the performance and the scalability of our method in the incompressible limit. #### 2 Almost incompressible elasticity and finite elements The equations of linear elasticity model the displacement of a homogeneous linear elastic material under the action of external and internal forces. The elastic body occupies a domain $\Omega \subset \mathbb{R}^2$, which is assumed to be polyhedral and of diameter one. We denote its boundary by $\partial\Omega$ and assume that one part of it, $\partial\Omega_D$, is clamped, i.e., with homogeneous Dirichlet boundary conditions, and that the rest, $\partial\Omega_N := \partial\Omega \setminus \partial\Omega_D$, is subject to a surface force \mathbf{g} , i.e., a natural boundary condition. We can also introduce a body force \mathbf{f} , e.g., gravity. With $\mathbf{H}^1(\Omega) := (H^1(\Omega))^2$, the appropriate space for a variational formulation is the Sobolev space $\mathbf{H}^1_0(\Omega,\partial\Omega_D) := \{\mathbf{v} \in \mathbf{H}^1(\Omega) : \mathbf{v} = \mathbf{0} \text{ on } \partial\Omega_D\}$. The linear elasticity problem consists in finding the displacement $\mathbf{u} \in \mathbf{H}^1_0(\Omega,\partial\Omega_D)$ of the elastic body Ω , such that $$\int_{\Omega} 2\mu \varepsilon(\mathbf{u}) : \varepsilon(\mathbf{v}) d\mathbf{x} + \int_{\Omega} \lambda \operatorname{div} \mathbf{u} \operatorname{div} \mathbf{v} d\mathbf{x} = \langle \mathbf{F}, \mathbf{v} \rangle \ \forall \mathbf{v} \in \mathbf{H}_{\mathbf{0}}^{\mathbf{1}}(\Omega, \partial \Omega_{D}).$$ (1) Here μ and λ are the Lamé parameters, which are constant in view of the assumption of a homogeneous body, and which are assumed positive. Of particular interest is the incompressible limit, which corresponds to $\lambda \to \infty$. The Lamé parameters are related to the pair (E, ν) , where E is Young's modulus and ν is Poisson's ratio by $$E = \frac{\mu(2\mu + 3\lambda)}{\mu + \lambda}, \quad \nu = \frac{\lambda}{2(\mu + \lambda)}.$$ Furthermore, $\varepsilon_{ij}(\mathbf{u}) := \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$ is the linearized strain tensor, and $$\varepsilon(\mathbf{u}) : \varepsilon(\mathbf{v}) = \sum_{i,j=1}^{2} \varepsilon_{ij}(\mathbf{u}) \varepsilon_{ij}(\mathbf{v}), \quad \langle \mathbf{F}, \mathbf{v} \rangle := \int_{\Omega} \mathbf{f}^{T} \mathbf{v} \, d\mathbf{x} + \int_{\partial \Omega_{N}} \mathbf{g}^{T} \mathbf{v} \, d\mathbf{v}.$$ Our finite element discretization is based on the conforming space \mathbf{V}_h of continuous piecewise bilinear approximations on quadrilaterals. The quasiuniform mesh is denoted by \mathcal{T}_h , and we assume that it has a macro-element structure, i.e., \mathcal{T}_h is obtained from a coarser mesh \mathcal{T}_h^m by decomposing each element into four subelements. We first consider the abstract pair (\mathbf{V}_h, M_h) $$\begin{array}{ll} 2\mu(\varepsilon(\mathbf{u}_h),\varepsilon(\mathbf{v}_h))_0 + (\mathrm{div}\mathbf{v}_h,p_h)_0 = \langle \mathbf{F},\mathbf{v}_h \rangle & \forall \mathbf{v}_h \in \mathbf{V}_h \ , \\ (\mathrm{div}\mathbf{u}_h,q_h)_0 & -\frac{1}{\lambda}(p_h,q_h)_0 = 0 & \forall q_h \in M_h \ . \end{array}$$ In terms of static condensation, we can eliminate the pressure and obtain a displacement based formulation $$\int_{\Omega} 2\mu \varepsilon(\mathbf{u}) : \varepsilon(\mathbf{v}) d\mathbf{x} + \int_{\Omega} \lambda \, \Pi_{M_h} \text{div}\mathbf{u} \, \Pi_{M_h} \text{div}\mathbf{v} \, d\mathbf{x} = \langle \mathbf{F}, \mathbf{v} \rangle \ \forall \mathbf{v} \in \mathbf{V}_h, \quad (2)$$ where Π_{M_h} denotes the L^2 -projection onto M_h . It is well known that the choice $M_h = M_h^u$ $$M_h^u = \{ q \in L_0^2(\Omega) \mid q|_K \in P_0(K), K \in \mathcal{T}_h \},$$ does not yield a uniform inf-sup condition and checkerboard modes in the pressure might be observed, see, e.g., Girault and Raviart [1986]. Thus it is necessary to make M_h a proper subset of M_h^u . There exist different possibilities to overcome this difficulty. One option is to work with macro-elements and to extract from M_h^u the checkerboard mode on each macro-element, as in Girault and Raviart [1986]. The restrictions of functions in M_h^u to a macro-element are spanned by the four functions depicted in Figure 1. **Fig. 1.** Basis functions for the pressure space related to a single macro element. The function indicated in Figure 1 (d) is the local checkerboard modes p^c . To obtain a stable pairing, we have to work with $M_h = M_h^s$ $$M_h^s = \{ q \in M_h^u \mid (q, p^c)_{0;K} = 0, K \in \mathcal{T}_h^m \}.$$ From now on, we call the choice $M_h = M_h^u$ the unstable or the not stabilized Q1 - P0 formulation and the choice $M_h = M_h^s$ the stabilized Q1 - P0 formulation. The analysis and the implementation will be based on the reduced problem (2). We note that in both case the L^2 -projection Π_{M_h} can be carried out locally. #### 3 The FETI-DP algorithm Let the domain Ω be decomposed into nonoverlapping subdomains Ω_i , i = 1, ..., N, each of which is the union of finite elements with matching finite element nodes across the interface Γ . The interface Γ is the union of the interior subdomain edges and vertices. For each subdomain Ω_i , we assemble local stiffness matrices $K^{(i)}$ and local load vectors $\mathbf{f}^{(i)}$. By $\mathbf{u}^{(i)}$ we denote the local solution vectors of nodal values. In the dual-primal FETI methods, we distinguish between dual and primal displacement variables by the way the continuity of the solution in those variables is established. Dual displacement variables are those, for which the continuity is enforced by a continuity constraint and Lagrange multipliers λ and thus, continuity is not established until convergence of the iterative method is reached, as in the classical one-level FETI methods; see, e.g., Klawonn and Widlund [2001]. On the other hand, continuity of the primal displacement variables is enforced explicitly in each iteration step by subassembly of the local stiffness matrices $K^{(i)}$ at the primal displacement variables. This subassembly yields a symmetric, positive definite stiffness matrix \widetilde{K} which is not block diagonal anymore but is coupled at the primal displacement variables. Let us note that this coupling yields a global problem which is necessary to obtain a numerically scalable algorithm. We will use subscripts I, Δ , and Π , to denote the interior, dual, and primal displacement variables, respectively, and obtain for the local stiffness matrices, load vectors, and solution vectors of nodal values $$K^{(i)} = \begin{bmatrix} K_{II}^{(i)} & K_{\Delta I}^{(i)T} & K_{\Pi I}^{(i)T} \\ K_{\Delta I}^{(i)} & K_{\Delta \Delta}^{(i)} & K_{\Pi \Delta}^{(i)T} \\ K_{\Pi I}^{(i)} & K_{\Pi \Delta}^{(i)} & K_{\Pi \Pi}^{(i)} \end{bmatrix}, \mathbf{u}^{(i)} = \begin{bmatrix} \mathbf{u}_{I}^{(i)} \\ \mathbf{u}_{\Delta}^{(i)} \\ \mathbf{u}_{\Pi}^{(i)} \end{bmatrix}, \mathbf{f}^{(i)} = \begin{bmatrix} \mathbf{f}_{I}^{(i)} \\ \mathbf{f}_{\Delta}^{(i)} \\ \mathbf{f}_{\Pi}^{(i)} \end{bmatrix}.$$ We also introduce the notation $$\mathbf{u}_B = [\mathbf{u}_I \ \mathbf{u}_\Delta]^T, \mathbf{f}_B = [\mathbf{f}_I \ \mathbf{f}_\Delta]^T, \mathbf{u}_B^{(i)} = [\mathbf{u}_I^{(i)} \ \mathbf{u}_\Delta^{(i)}]^T, \text{ and } \mathbf{f}_B^{(i)} = [\mathbf{f}_I^{(i)} \ \mathbf{f}_\Delta^{(i)}]^T.$$ Accordingly, we define $$K_{BB} = \operatorname{diag}_{i=1}^{N}(K_{BB}^{(i)}), \quad K_{BB}^{(i)} = \begin{bmatrix} K_{II}^{(i)} & K_{\Delta I}^{(i)T} \\ K_{\Delta I}^{(i)} & K_{\Delta \Delta}^{(i)} \end{bmatrix}, \quad K_{\Pi B} = [K_{\Pi B}^{(1)} \dots K_{\Pi B}^{(N)}].$$ We note that K_{BB} is a block diagonal matrix. By subassembly in the primal displacement variables, we obtain $$\widetilde{K} = \begin{bmatrix} K_{BB} \ \widetilde{K}_{\Pi B}^T \\ \widetilde{K}_{\Pi B} \ \widetilde{K}_{\Pi \Pi} \end{bmatrix},$$ where a tilde indicates the subassembled matrices and where $$\widetilde{K}_{\Pi B} = [\widetilde{K}_{\Pi B}^{(1)} \cdots \widetilde{K}_{\Pi B}^{(N)}].$$ Introducing local assembly operators $R_{II}^{(i)}$ which map from the local primal displacement variables $\mathbf{u}_{II}^{(i)}$ to the global, assembled $\widetilde{\mathbf{u}}_{II}$, we have $$\widetilde{K}_{\Pi B}^{(i)} = R_{\Pi}^{(i)} K_{\Pi B}^{(i)}, \quad \ \widetilde{\mathbf{u}}_{\Pi} = \sum_{i=1}^{N} R_{\Pi}^{(i)} \mathbf{u}_{\Pi}^{(i)}, \quad \ \widetilde{K}_{\Pi \Pi} = \sum_{i=1}^{N} R_{\Pi}^{(i)} K_{\Pi \Pi}^{(i)} R_{\Pi}^{(i)T},$$ for i = 1, ..., N. Due to the subassembly of the primal displacement variables, Lagrange multipliers have to be used only for the dual displacement variables \mathbf{u}_{Δ} to enforce continuity. We introduce a discrete jump operator B such that the solution \mathbf{u}_{Δ} , associated with more than one subdomain, coincides when $B\mathbf{u}_B = 0$; the interior variables \mathbf{u}_I remain unchanged and thus the corresponding entries in B remain zero. Since we assume pointwise matching grids across the interface Γ , the entries of the matrix B are 0, 1, and -1. We can now reformulate the finite element discretization of (2) as $$\begin{bmatrix} K_{BB} & \widetilde{K}_{\Pi B}^{T} & B^{T} \\ \widetilde{K}_{\Pi B} & \widetilde{K}_{\Pi \Pi} & O \\ B & O & O \end{bmatrix} \begin{bmatrix} \mathbf{u}_{B} \\ \widetilde{\mathbf{u}}_{\Pi} \\ \boldsymbol{\lambda} \end{bmatrix} = \begin{bmatrix} \mathbf{f}_{B} \\ \widetilde{\mathbf{f}}_{\Pi} \\ \mathbf{0} \end{bmatrix}.$$ (3) Elimination of the primal variables $\widetilde{\mathbf{u}}_{\Pi}$ and the interior and dual displacement variables \mathbf{u}_{B} leads to a reduced linear system of the form $$F\lambda = \mathbf{d}$$. where the matrix F and the right hand side \mathbf{d} are formally obtained by block Gauss elimination. Let us note that the matrix F is never built explicitly but that in every iteration appropriate linear systems are solved; see Farhat et al. [2000], Klawonn and Widlund [2004] or Klawonn and Rheinbach [2005] for further details. To define the FETI-DP Dirichlet preconditioner M^{-1} , we introduce a scaled jump operator B_D ; this is done by scaling the contributions of B associated with the dual displacement variables from individual subdomains. We define $B_D = [B_D^{(1)}, \ldots, B_D^{(N)}]$, where the $B_D^{(i)}$ are defined as follows: each row of $B^{(i)}$ with a nonzero entry corresponds to a Lagrange multiplier connecting the subdomain Ω_i with a neighboring subdomain Ω_j at a point $x \in \partial \Omega_{i,h} \cap \partial \Omega_{j,h}$. We obtain $B_D^{(i)}$ by multiplying each such row of $B^{(i)}$ with $1/|\mathcal{N}_x|$, where $|\mathcal{N}_x|$ denotes the multiplicity of the interface point $x \in \Gamma$. This scaling is called the multiplicity scaling and is suitable for homogeneous problems; see Klawonn and Widlund [2004]. Our preconditioner is then given in matrix form by $$M^{-1} = B_D R_{\Gamma}^T S R_{\Gamma} B_D^T = \sum_{i=1}^N B_D^{(i)} R_{\Gamma}^{(i)T} S^{(i)} R_{\Gamma}^{(i)} B_D^{(i)T}.$$ (4) Here, $R_{\Gamma}^{(i)}$ are restriction matrices that restrict the degrees of freedom of a subdomain to its interface and $R_{\Gamma} = \operatorname{diag}_{i}(R_{\Gamma}^{(i)})$. We have to decide how to choose the primal displacement variables. The simplest choice is to choose them as certain selected vertices of the subdomains, see Farhat et al. [2001], where this approach was first considered. Following the notation introduced in Klawonn et al. [2002], we will denote the FETI-DP algorithm which uses exclusively selected vertices as primal displacement constraints as Algorithm A. Unfortunately, Algorithm A does not yield uniform bounds in the incompressible limit. To obtain better convergence properties, we have to introduce additional constraints. These constraints are averages over the edges, which are enforced to have the same values across the interface. This variant has been introduced in Klawonn et al. [2002] for scalar problems and is denoted by Algorithm B. For our FETI-DP algorithm B, we have the following condition number estimate, cf. Klawonn and Wohlmuth [2005], **Theorem 1.** The condition number for the choice $M_h = M_h^s$ satisfies $$\kappa(M^{-1}F) \le C \left(1 + \log(H/h)\right)^2.$$ Here, C > 0 is independent of h, H, and the values of the Poisson ratio ν . #### 4 Numerical results We apply Algorithms A and B to (2), where $\Omega = (0,1)^2$ and the Young modulus is defined as E=1. We will present results for different Poisson ratios ν . Algorithm A uses all subdomain vertices as primal constraints and Algorithm B, additionally, uses all edge averages as primal constraints. For the experiments in Table 1, we use a structured grid with 240×240 macro elements $(=480\times480 \text{ elements})$. In small portions of the boundary in all four corners of the unit square homogeneous Dirichlet boundary conditions were applied (see Figure 2) and the domain was subjected to a volume force directed towards $(1,1)^T$. The domain was decomposed into 64 square subdomains with 7 442 d.o.f. each; this results in an overall problem of 462722 d.o.f. The stopping criterion is a relative residual reduction of 10^{-10} . The experiments were carried out on two Opteron 248 (2.2 Ghz) 64-bit processors. The differences in computing time between the unstable and the stabilized Q1 - P0 element, e.g., for $\nu = 0.4$, are due to the different sparsity patterns of the stiffness matrices. The stabilized Q1 - P0 element leads up to 50% more nonzero entries in the corresponding stiffness matrix. For the experiments in Table 2, the unit square is decomposed into 4 to 1024 subdomains with 1250 d.o.f. each. Homogeneous Dirichlet boundary conditions are applied on the bottom and the left side. Again, a volume force directed towards $(1,1)^T$ is applied. The calculations were carried out on a single Opteron 144 (1.8 Ghz) 64-bit processor. We used as a stopping criterion the relative residual reduction of 10^{-14} . **Fig. 2.** Deformed configuration for the experiments in Table 1 (left) and for the experiments in Table 2 (right). In both cases a coarser grid than used in the calculations is depicted. | ν | It. | $\lambda_{ m max}$ | λ_{\min} | Time | It. | $\lambda_{ m max}$ | λ_{\min} | Time | | | |-----------|-------|----------------------|------------------|--------|------------------|----------------------|------------------|-------------|--|--| | Alg. B | | (stabil | ized) | | (not stabilized) | | | | | | | 0.4 | 23 | 6.98 | 1.0075 | 55s | 23 | 6.98 | 1.0075 | 47s | | | | 0.49 | 23 | 6.81 | 1.0079 | 55s | 23 | 6.86 | 1.0086 | 47s | | | | 0.499 | 24 | 6.79 | 1.0078 | 56s | 23 | 6.79 | 1.0090 | 47s | | | | 0.4999 | 24 | 6.79 | 1.0078 | 56s | 29 | 6.48 | 1.0087 | 53s | | | | 0.49999 | 24 | 6.79 | 1.0080 | 56s | 55 | 39.98 | 1.0088 | 80s | | | | 0.499999 | 25 | 6.79 | 1.0076 | 57s | 97 | 366 | 1.0086 | 124s | | | | 0.4999999 | 25 | 6.79 | 1.0078 | 57s | 131 | $\mathbf{3632}$ | 1.0096 | 159s | | | | Alg. A | | (stabilized) | | | | (not stabilized) | | | | | | 0.4 | 53 | 42.52 | 1.012 | 82s | 53 | 42.52 | 1.012 | 81 <i>s</i> | | | | 0.49 | 103 | 316 | 1.017 | 139s | 67 | 85.93 | 1.015 | 78s | | | | 0.499 | 192 | 3037 | 1.018 | 241s | 137 | 723 | 1.017 | 143s | | | | 0.4999 | 270 | 3.02×10^4 | 1.020 | 332s | 220 | 7069 | 1.020 | 221s | | | | 0.49999 | 368 | 3.02×10^{5} | 1.020 | 445s | 315 | 7.05×10^4 | 1.021 | 310s | | | | 0.499999 | 465 | 3.02×10^{6} | 1.022 | 558s | > 500 | 7.05×10^5 | 1.037 | > 486s | | | | 0.4999999 | > 500 | 3.02×10^{7} | 1.032 | > 599s | > 500 | 7.05×10^{6} | 1.159 | > 484s | | | Table 1. Algorithms B and A, $462\,722$ d.o.f. and 64 subdomains. Acknowledgement. The first and third author gratefully acknowledge the support of the "Research in Pairs" (RiP) program while being at the Mathematisches Forschungsinstitut Oberwolfach. | Algorithm B | | | | 0.49 | 99999 | $\nu = 0.4$ | | | |-------------|------------------|---------|-----|--------------------------|------------------|-------------|--------------------------|------------------| | N | Mesh | d.o.f. | It. | λ_{max} | λ_{\min} | It. | λ_{max} | λ_{\min} | | 4 | 48×48 | 4802 | 17 | 2.51 | 1.0011 | 13 | 2.19 | 1.0015 | | 9 | 72×72 | 10658 | 21 | 3.38 | 1.0020 | 19 | 3.47 | 1.0024 | | 16 | 96×96 | 18818 | 24 | 4.03 | 1.0023 | 22 | 4.13 | 1.0025 | | 36 | 144×144 | 42050 | 26 | 4.53 | 1.0024 | 24 | 4.64 | 1.0025 | | 64 | 192×192 | 74498 | 27 | 4.69 | 1.0024 | 25 | 4.80 | 1.0026 | | 100 | 240×240 | 116162 | 29 | 4.75 | 1.0022 | 26 | 4.86 | 1.0025 | | 144 | 288×288 | 167042 | 29 | 4.78 | 1.0023 | 27 | 4.88 | 1.0026 | | 256 | 384×384 | 296450 | 30 | 4.79 | 1.0022 | 30 | 4.91 | 1.0024 | | 576 | 576×576 | 665858 | 32 | 4.80 | 1.0021 | 32 | 4.77 | 1.0024 | | 1024 | 768×768 | 1182722 | 32 | 4.80 | 1.0021 | 33 | 4.81 | 1.0024 | | | | | | | | | | | **Table 2.** Numerical scalability of Algorithm B, $Q_1 - P_0$ (stabilized). #### References Clark R. Dohrmann. A substructuring preconditioner for nearly incompressible elasticity problems. Technical report, Sandia National Laboratories, Oct. 2004. Charbel Farhat, Michel Lesoinne, Patrick LeTallec, Kendall Pierson, and Daniel Rixen. FETI-DP: A dual-primal unified FETI method - part i: A faster alternative to the two-level FETI method. *Int. J. Numer. Meth. Engrg.*, 50:1523–1544, 2001. Charbel Farhat, Michel Lesoinne, and Kendall Pierson. A scalable dual-primal domain decomposition method. *Numer. Lin. Alg. Appl.*, 7:687–714, 2000. Vivette Girault and Pierre-Arnaud Raviart. Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin, 1986. Paulo Goldfeld. Balancing Neumann-Neumann Preconditioners for Mixed Formulation of Almost-Incompressible Linear Elasticity. PhD thesis, Courant Institute of Mathematical Sciences, September 2003. TR-847, Department of Computer Science. Axel Klawonn and Oliver Rheinbach. A parallel implementation of Dual-Primal FETI methods for three dimensional linear elasticity using a transformation of basis. Technical Report SM-E-601, Department of Mathematics, Universität Duisburg-Essen, Germany, February 2005. Axel Klawonn and Olof Widlund. Dual-Primal FETI methods for linear elasticity. Technical Report TR2004-855, Dept. of Computer Science, Courant Institute of Mathematical Sciences, New York University, USA, Sept. 2004. Axel Klawonn and Olof B. Widlund. FETI and Neumann–Neumann iterative substructuring methods: Connections and new results. *Comm. Pure Appl. Math.*, 54:57–90, January 2001. Axel Klawonn, Olof B. Widlund, and Maksymilian Dryja. Dual-Primal FETI methods for three-dimensional elliptic problems with heterogeneous coefficients. SIAM J.Numer.Anal., 40, 159-179 2002. - Axel Klawonn and Barbara I. Wohlmuth. FETI-DP for almost incompressible elasticity in the displacement formulation. Technical report, 2005. In preparation. - Jing Li. Dual-Primal FETI methods for stationary Stokes and Navier-Stokes equations. PhD thesis, Courant Institute of Mathematical Sciences, New York University, 2002. - Jing Li and Olof Widlund. BDDC algorithms for incompressible Stokes equations. Technical Report TR2004-861, Dept. of Computer Science, Courant Institute of Mathematical Sciences, New York University, USA, April 2005. - Joachim Schöberl. Multigrid methods for a parameter-dependent problem in primal variables. *Numer. Math.*, 84:97–119, 1999. - Juan C. Simo and M.S. Rifai. A class of assumed strain methods and the method of incompatible modes. Int. J. Numer. Meth. Engrg., 29:1595–1638, 1990. - Christian Wieners. Robust multigrid methods for nearly incompressible elasticity. *Computing*, 64:289–306, 2000.