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Abstract. Iterative substructuring methods with Lagrange multipliers are considered for heteroge-
neous linear elasticity problems with large discontinuities in the material stiffnesses. In particular,
results for algorithms belonging to the family of dual-primal FETI methods are presented. The core
issue of these algorithms is the construction of an appropriate global problem, in order to obtain a
robust method which converges independently of the material discontinuities. In this article, several
necessary and sufficient conditions arising from the theory are numerically tested and confirmed.
Furthermore, results of numerical experiments are presented for situation which are not covered by
the theory, such as curved edges and material discontinuities not aligned with the interface, and an
attempt is made to develop rules for these cases.
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1. Introduction. Domain decomposition methods provide a good approach to
obtaining robust and parallel scalable solvers for the large systems of equations arising
from the discretization of elasticity problems. Here, we will consider algorithms which
belong to the family of dual-primal FETI (finite element tearing and interconnecting)
methods, see, e.g., [7], [8], [11], [9], or [18]. Dual-primal FETI (FETI-DP) methods
are iterative substructuring algorithms with Lagrange multipliers where some conti-
nuity constraints on primal displacement variables are required to hold throughout
the iterations, as in standard iterative substructuring methods, while most of the con-
straints are enforced by the use of dual Lagrange multipliers. The primal constraints
should be chosen so that the local problems become invertible. They also provide a
coarse problem and should be selected so that the iterative method converges rapidly.
Recently, the family of algorithms for linear elasticity problems in three dimensions
was extended and a theory was provided in [11]. It was shown that the condition
number of the dual-primal FETI methods can be bounded polylogarithmically as a
function of the dimension of the individual subregion problems and that the bounds
can otherwise be made independent of the number of subdomains, the mesh size, and
jumps in the coefficients. Special emphasis was given in [11] on developing robust
condition number estimates with bounds which are independent of arbitrarily large
jumps of the material coefficients. For benign coefficients, without large jumps, it is
sufficient to select an appropriate set of edge averages as primal constraints to obtain
good bounds, whereas for arbitrary coefficient distributions, additional primal first
order moments and constraints at some of the vertices are also required. Extensive
experimental work on dual-primal FETI methods for homogeneous linear elasticity
problems is reported on in Klawonn and Rheinbach [9]. The results given in [9] con-
firm the theoretical analysis in [11] and show the good scalability properties of our
algorithms for model problems as well as for industrial applications.

In the present article, we will instead focus on heterogeneous elasticity problems
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with large discontinuities in the material stiffnesses. In [11], it was shown that se-
lecting certain edge averages and first order moments and, in some very hard cases,
certain vertices as primal constraints, yields a robust condition number estimate. The
central assumption is that on every face, we can control the rigid body modes and
additionally, certain theoretical estimates are satisfied; cf. [11, Section 5]. We now
provide numerical results which confirm the theoretical findings in [11] and show that
in some cases, first order moments are indeed necessary to obtain a good convergence
rate. In the theory of [11], it is assumed that the edges of the subdomains are straight
and that large material discontinuities are aligned with the subdomain boundaries.
We relax these assumptions and provide numerical results for decompositions with
curved edges and with material discontinuities which are not aligned with the inter-
face. We note that a short conference paper [10] prepared previously, provides some
preliminary results on FETI-DP algorithms applied to heterogeneous problems.

We expect that our numerical results also provide insight into the performance of
the more recently developed Neumann-Neumann methods with constraints, known as
the BDDC algorithms, cf. [6, 15, 16, 14], since Mandel, Dohrmann, and Tezaur [16]
have shown that, for any given set of constraints, the BDDC and FETI-DP methods
have almost all their eigenvalues in common; see also Li and Widlund [14] for an
alternative proof.

The remainder of this article is organized as follows. In Section 2, we introduce
the problem of linear elasticity, its discretization by finite elements, and the basic
assumptions on our domain decomposition. In the following Section 3, we introduce
our FETI-DP algorithm and provide a theoretical condition number estimate from
[11]. In Section 4, we present results of computational experiments, which help to
identify necessary and sufficient constraint conditions in order to obtain robust algo-
rithms. In Section 5, we consider a model problem with curved edges, to identify the
effect on condition and iteration numbers numerically, since it cannot be captured
by the standard theoretical arguments. In Section 6, we show the effects of mate-
rial inhomogeneities which are not aligned with the interface and consider different
model situations together with possible remedies. Finally, we present our conclusions
in Section 7.

2. Linear elasticity and finite elements. The equations of linear elasticity
model the displacement of a linear elastic material under the action of external and
internal forces. The elastic body occupies a domain Ω ⊂ IR3. We denote its boundary
by ∂Ω and assume that one part of it, ∂ΩD, is clamped, i.e., with homogeneous
Dirichlet boundary conditions, and that the rest, ∂ΩN := ∂Ω \ ∂ΩD, is subject to
a surface force g, i.e., a natural boundary condition. We can also introduce a body
force f , e.g., gravity. With H1(Ω) := (H1(Ω))3, the appropriate space for a variational
formulation is the Sobolev space H1

0(Ω, ∂ΩD) := {v ∈ H1(Ω) : v = 0 on ∂ΩD}. The
linear elasticity problem consists in finding the displacement u ∈ H1

0(Ω, ∂ΩD) of the
elastic body Ω, such that

∫

Ω

G(x)ε(u) : ε(v)dx +
∫

Ω

G(x)β(x) divu divv dx = 〈F,v〉 ∀v ∈ H1
0(Ω, ∂ΩD). (2.1)

Here G and β are material parameters which depend on the Young modulus E > 0
and the Poisson ratio ν ∈ (0, 1/2]; we have G = E/(1 + ν) and β = ν/(1 − 2ν). In
this article, we only consider the case of compressible elasticity, which means that the
Poisson ratio ν is bounded away from 1/2. Furthermore, εij(u) := 1

2 ( ∂ui

∂xj
+ ∂uj

∂xi
) is



3

the linearized strain tensor, and

ε(u) : ε(v) =
3∑

i,j=1

εij(u)εij(v), 〈F,v〉 :=
∫

Ω

fT v dx +
∫

∂ΩN

gT v dσ.

For convenience, we also introduce the notation

(ε(u), ε(v))L2(Ω) :=
∫

Ω

ε(u) : ε(v)dx.

The bilinear form associated with linear elasticity is then

a(u,v) = (Gε(u), ε(v))L2(Ω) + (G β divu, divv)L2(Ω).

The wellposedness of the linear system (2.1) follows immediately from the continuity
and ellipticity of the bilinear form a(·, ·), where the first follows from elementary
inequalities and the latter from Korn’s first inequality; see, e.g., [4]. The null space
ker (ε) of ε is the space of the six rigid body motions, which is spanned by the three
translations ri := ei, i = 1, 2, 3, where the ei are the three standard unit vectors, and
the three rotations

r4 :=




x2 − x̂2

−x1 + x̂1

0


 , r5 :=



−x3 + x̂3

0
x1 − x̂1


 , r6 :=




0
x3 − x̂3

−x2 + x̂2


 . (2.2)

Here, we have x̂ ∈ Ω to shift the origin to a point in Ω.
We will only consider compressible elastic materials. It is therefore sufficient to

discretize our elliptic problem of linear elasticity (2.1) by low order, conforming finite
elements, e.g., linear or trilinear elements.

Let us assume that a triangulation τh of Ω is given which is shape regular and has
a typical diameter of h. We denote by Wh := Wh(Ω) the corresponding conforming
finite element space of finite element functions. The associated discrete problem is
then

a(uh,vh) = 〈F,vh〉 ∀vh ∈ Wh. (2.3)

When there is no risk of confusion, we will drop the subscript h.
Let the domain Ω ⊂ IR3 be decomposed into nonoverlapping subdomains Ωi, i =

1, . . . , N , each of which is the union of finite elements with matching finite element
nodes on the boundaries of neighboring subdomains across the interface Γ. The in-
terface Γ is the union of three different types of open sets, namely, subdomain faces,
edges, and vertices. We denote individual faces, edges, and vertices by F , E , and V,
respectively. For the case of regular substructures such as cubes or tetrahedrons, we
can use the standard geometric definition of faces, edges, and vertices. To define faces,
edges, and vertices more generally, we introduce certain equivalence classes; cf. [11]
or [9]. Let us denote the sets of nodes on ∂Ω, ∂Ωi, and Γ by ∂Ωh, ∂Ωi,h, and Γh,
respectively. For any interface nodal point x ∈ Γh, we define

Nx := {j ∈ {1, . . . , N} : x ∈ ∂Ωj},

i.e., Nx is the set of indices of all subdomains with x in the closure of the subdomain.
For a node x we define the multiplicity as |Nx|.
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Associated with the nodes of the finite element mesh, we have a graph, the nodal
graph, which represents the node-to-node adjacency. For a given node x ∈ Γh, we
denote by Ccon(x) the connected component of the nodal subgraph, defined by Nx,
to which x belongs. For two interface points x, y ∈ Γh, we introduce an equivalence
relation by

x ∼ y :⇐⇒ Nx = Ny and y ∈ Ccon(x).

We can now describe faces, edges, and vertices using their equivalence classes. Here,
|G| denotes the cardinality of the set G. We define

Definition 2.1.

x ∈ F :⇐⇒ |Nx| = 2
x ∈ E :⇐⇒ |Nx| ≥ 3 and ∃y ∈ Γh, y 6= x, such that y ∼ x
x ∈ V :⇐⇒ |Nx| ≥ 3 and 6 ∃y ∈ Γh, such that x ∼ y.

In the case of a decomposition into regular substructures, e.g., cubes or tetrahe-
dra, our definition of faces, edges, and vertices is conform with our basic geometric
intuition; see also Figure 6.1.

In the definition of dual-primal FETI methods, we need the notion of edge aver-
ages, and in the case of heterogeneous materials, also of edge first order moments. We
note that the rigid body modes r1, . . . , r6, restricted to a straight edge provide only
five linearly independent vectors, since one rotation is always linearly dependent on
other rigid body modes. For the following definition, we assume that we have used an
appropriate change of coordinates such that the edge under consideration coincides
with the x1-axis and the special rotation is then r6. The edge averages and first order
moments over this specific edge E are of the form

∫
E rT

k udx∫
E rT rdx

, k ∈ {1, . . . , 5},u = (uT
1 , uT

2 , uT
3 )T ∈ Wh. (2.4)

We note that on edges which are not straight, we can use all six rigid body modes to
construct six average and first order moment constraints.

3. The FETI-DP algorithm. For each subdomain Ωi, i = 1, . . . , N , we assem-
ble local stiffness matrices K(i) and local load vectors f (i). By u(i) we denote the local
solution vectors of nodal values.

In the dual-primal FETI methods, we distinguish between dual and primal dis-
placement variables by the way the continuity of the solution in those variables is
established. Dual displacement variables are those, for which the continuity is en-
forced by a continuity constraint and Lagrange multipliers λ and thus, continuity is
not established until convergence of the iterative method is reached, as in the classical
one-level FETI methods; see, e.g., [12]. On the other hand, continuity of the primal
displacement variables is enforced explicitly in each iteration step by subassembly of
the local stiffness matrices K(i) at the primal displacement variables. This subassem-
bly yields a symmetric, positive definite stiffness matrix K̃ which is coupled at the
primal displacement variables but block diagonal otherwise. Let us note that this
coupling yields a global problem which is necessary to obtain a numerically scalable
algorithm.

We will use subscripts I, ∆, and Π, to denote the interior, dual, and primal
displacement variables, respectively, and obtain for the local stiffness matrices, load
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vectors, and solution vectors of nodal values

K(i) =




K
(i)
II K

(i)T
∆I K

(i)T
ΠI

K
(i)
∆I K

(i)
∆∆ K

(i)T
Π∆

K
(i)
ΠI K

(i)
Π∆ K

(i)
ΠΠ


 ,u(i) =




u(i)
I

u(i)
∆

u(i)
Π


 , f (i) =




f (i)
I

f (i)
∆

f (i)
Π


 .

We also introduce the notation

uB = [uT
I uT

∆]T , fB = [fT
I fT

∆]T ,u(i)
B = [u(i) T

I u(i) T
∆ ]T , and f (i)

B = [f (i) T
I f (i) T

∆ ]T .

Accordingly, we define

KBB = diagN
i=1(K

(i)
BB), K

(i)
BB =

[
K

(i)
II K

(i)T
∆I

K
(i)
∆I K

(i)
∆∆

]
, KΠB = [K(1)

ΠB , . . . , K
(N)
ΠB ].

We note that KBB is a block diagonal matrix. By subassembly in the primal dis-
placement variables, we obtain

K̃ =

[
KBB K̃T

ΠB

K̃ΠB K̃ΠΠ

]
,

where a tilde indicates the subassembled matrices and where

K̃ΠB = [K̃(1)
ΠB , . . . , K̃

(N)
ΠB ].

Introducing local assembly operators R
(i)
Π which map from the local primal displace-

ment variables u(i)
Π to the global, assembled ũΠ, we have

K̃
(i)
ΠB = R

(i)
Π K

(i)
ΠB , ũΠ =

N∑

i=1

R
(i)
Π u(i)

Π , K̃ΠΠ =
N∑

i=1

R
(i)
Π K

(i)
ΠΠR

(i)T
Π ,

for i = 1, . . . , N. Due to the subassembly of the primal displacement variables, La-
grange multipliers have to be used to enforce continuity only for the dual displacement
variables u∆. We introduce a discrete jump operator B = [O B∆] such that the solu-
tion u∆, associated with more than one subdomain, coincides when BuB = B∆u∆ = 0
with uB = [uT

I ,uT
∆]T . Since we assume pointwise matching grids across the interface

Γ, the entries of the matrix B can be chosen as 0, 1, and −1. However, we will other-
wise use all possible constraints and thus work with a fully redundant set of Lagrange
multipliers as in [12, Section 5]; cf. also [17]. Thus, for an edge node common to four
subdomains, we will use six constraints rather than choosing as few as three.

We can now reformulate the finite element discretization of (2.3) as



KBB K̃T
ΠB BT

K̃ΠB K̃ΠΠ O

B O O







uB

ũΠ

λ


 =




fB
f̃Π
0


 . (3.1)

Elimination of the primal variables ũΠ and of the interior and dual displacement
variables uB leads to a a reduced linear system of the form

Fλ = d,
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where the matrix F and the right hand side d are formally obtained by block Gauss
elimination, i.e., we have

S̃ΠΠ = K̃ΠΠ − K̃ΠBK−1
BBK̃T

ΠB ,

F = BK−1
BBBT + BK−1

BBK̃T
ΠBS̃−1

ΠΠK̃ΠBK−1
BBBT ,

d = BK−1
BBfB + BK−1

BBK̃T
ΠBS̃−1

ΠΠ

(
f̃Π − K̃ΠBK−1

BBfB
)

.

Let us note that the matrix F is never built explicitly but that in every iteration
appropriate linear systems are solved, that the first term of the sum on the right hand
side of the representation of F applied to a vector can be computed completely in
parallel since KBB is a block-diagonal matrix, and that the second term in that sum
contains our global problem needed for scalability; see [11] or [9] for further details.

To define the FETI-DP Dirichlet preconditioner M−1, we introduce a scaled jump
operator BD; this is done by scaling the contributions of B associated with the dual
displacement variables from individual subdomains. We define

BD = [B(1)
D , . . . , B

(N)
D ],

where the B
(i)
D are defined as follows: each row of B(i) with a nonzero entry cor-

responds to a Lagrange multiplier connecting the subdomain Ωi with a neighboring
subdomain Ωj at a point x ∈ ∂Ωi,h ∩ ∂Ωj,h. We obtain B

(i)
D by multiplying each such

element of B(i) with

δ†j (x) :=
Gj(x)∑

k∈Nx

Gk(x)
, (3.2)

where Nx is the set of indices of subdomains which have x on its boundary. Our
preconditioner is then given in matrix form by

M−1 = BDRT
ΓSRΓBT

D =
N∑

i=1

B
(i)
D R

(i)T
Γ S(i)R

(i)
Γ B

(i)T
D . (3.3)

Here, R
(i)
Γ are restriction matrices that restrict the degrees of freedom of a subdomain

to its interface and RΓ = diagi(R
(i)
Γ ).

We have to decide how to choose the primal displacement variables. The simplest
choice is to select them as certain primal vertices of the subdomains; see [7], where
this approach was first considered; this version has been denoted by Algorithm A;
see [13]. Unfortunately, this choice does not always lead to good convergence results
in three dimensions. To obtain better convergence for three dimensional problems, a
different coarse problem was suggested by introducing additional constraints. These
constraints are averages or first order moments over selected edges or faces, cf. (2.4)
for edges, which are enforced to have the same values across the interface. For further
details, see [8], [11], or [9]. To obtain robust condition number bounds for highly
heterogeneous materials, additional first order moments over selected edges have to
be used; cf. [11].

An edge where at least one edge average of one displacement component is im-
posed as a primal constraint will be denoted as a primal edge. At most three average
constraints can be imposed on such an edge. Furthermore, an edge, where three edge
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averages over all three displacement components and additionally two or three edge
first order moments are imposed as primal constraints will be denoted as a fully primal
edge.

There are different ways of implementing these additional primal constraints. One
is to use additional, optional Lagrange multipliers, see [8] or [11], another one is to
apply a transformation of basis, see [11] and [9]. In our work, we use a transformation
of basis. Let us note that this approach leads again to a mixed linear system of the
form (3.1) and that the same algorithmic form as for Algorithm A can be used; see
[11], [9], and [10] for further details.

From the inner products of uE with the translational and the rotational rigid body
modes, we obtain three averages and two or three first order moments, respectively;
cf. (2.4). These averages and moments are explicitly introduced as new variables into
the new basis and will form a part of the set of primal displacement variables. The
dual displacement vectors in the new basis will have a zero edge average and will be
orthogonal to the rotations on the fully primal edge under consideration; this can also
be seen as having certain first order moments to be zero.

We now describe how the transformation matrix for such a change of basis can be
constructed. Here, we restrict ourselves to the construction of the basis transformation
for a single, fully primal edge; see [11] or [9] for a detailed, algorithmic description. We
consider the six rigid body modes ri, i = 1, . . . , 6; cf. Section 2. Next, we orthogonalize
the rigid body modes on the edge against each other using a stable formulation of the
Gram-Schmidt process, e.g., modified Gram-Schmidt. We note that the translational
rigid body modes are already orthogonal to each other and thus, we only have to
start with the rotations in order to obtain an orthogonal basis of rigid body modes on
the edge E . We denote the orthogonal basis obtained by this process by (r̂j)j=1,...,`,
with ` ∈ {5, 6}. When restricted to a straight edge E , one of the rotations is linearly
dependent on the others and should vanish when modified Gram-Schmidt is used; cf.
also the discussion at the end of Section 2. Then, we only have a five dimensional
basis.

Let us assume that the vector of nodal unknowns uE has length n. We then
consider the set of vectors {(r̂j)j=1,...,`, (ei)i=1,...,n}, where ei is the unit vector with
one at the i-th component and zero otherwise, which is associated with the i-th
d.o.f. on the fully primal edge. Starting with the orthogonalized rigid body modes
(r̂j)j=1,...,`, we orthogonalize the set of n + ` vectors, using modified Gram-Schmidt.
We discard the ` linearly dependent vectors and use the remaining n orthogonal
vectors to define the column vectors of our transformation matrix TE .

The transformation matrix TE performs the desired change of basis from the new
basis to the original nodal basis. Denoting the edge unknowns in the new basis by
ûE , we have

uE = TEûE .

A similar construction can be carried out for an edge where only averages are used as
primal constraints. Only edge averages are then introduced as new variables and the
remaining new variables will have zero edge average. We note that in this case, we
can also explicitly set up a transformation matrix for the basis transformation; see,
e.g., [9].

In the theory presented in Klawonn and Widlund [11], it is assumed that the
subdomains are polytopes with good aspect ratios and that the edges are straight.
Furthermore, large material discontinuities should be aligned with the interface. For
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our FETI-DP algorithm, using a well selected set of primal constraints of edge averages
or first order moments and in some very difficult cases also primal vertices, we have
the estimate, cf. [11],

Theorem 3.1. The condition number satisfies

κ(M−1F ) ≤ C (1 + log(H/h))2.

Here, C > 0 is independent of h,H, and the values of the coefficients Gi.
Let us give some assumptions from [11] which are sufficient to obtain a condition

number estimate as in Theorem 3.1. In [11, Section 5], the definition of a fully primal
face is introduced as a face which has six edge constraints, averages or first order
moments, on edges which belong to the boundary of that face, such that the rigid
body modes on that face are controlled. A sufficient condition for Theorem 3.1, cf.
[11, Section 8.2], is to assume that every face is fully primal, every edge which belongs
to more than three subdomains is fully primal, and every vertex is primal. In fact,
not every such edge and every face has to be fully primal as long as for every pair of
subdomains {Ωi, Ωj} which has a (not fully primal) face or edge in common, there is
a path connecting them, possibly through several other subdomains Ωk, passing only
through fully primal faces, such that the stiffnesses Gk associated with Ωk, are never
smaller than the minimum of the stiffnesses associated with Ωi and Ωj .

Also typically not all vertices, have to be primal. A similar path concept as for
shared edges and faces can be used; see [11, Section 5]. Here, we can be a bit more
lenient. It is sufficient for an arbitrary pair of subdomains {Ωi, Ωj} which have a (non
primal) vertex in common, to have a connecting path of the same nature as before.
The only difference is that we replace Gk by H

h Gk in the definition of the path above.
A slightly more general result can be shown if a tolerance is introduced in the

concept of acceptable paths; cf. [11] for more details.

4. Necessary and sufficient constraints. In order to control the rigid body
motions of a subregion, we need at least six constraints. In [11, Section 5], two
model problems are considered to develop an understanding of the type and number
of necessary and sufficient constraints needed in order to obtain a robust and scalable
domain decomposition method. Here, we present numerical results which support the
theoretical findings in [11].

In both model problems, we consider the unit cube in IR3, decomposed into a
set of smaller, cubic subdomains with sidelength H. The unit cube is only fixed at
one face and a volume force is applied. In all of our experiments, we use four node,
tetrahedral finite elements. The Poisson ratio in our linear elasticity problem is always
ν = 0.29 and the Young modulus will be given separately for the different problems.

All computations were carried out using PETSc, see [3, 1, 2], on a 16 processor
(2.2 Ghz dual Opteron 248; Gigabit Ethernet; 4 GB memory for each processor)
computing cluster in Essen. On this hardware we use UMFPACK 4.3 [5] as local
subdomain and coarse problem direct solver.

We first consider a decomposition of the unit cube into 3 × 3 × 4 subdomains
of 1 536 d.o.f. each, where we have two interior cubic subdomains made of the same
material having a face in common and being surrounded by cubic subdomains made
of a material with much smaller Young modulus; cf. Figure 4.1.

Here, we check if six constraints for a face are necessary. We start with making
all edges of the decomposition primal, using all three edge averages, one for each
displacement component, on each edge. Then, we successively reduce the number of
constraints at that common face until no constraints are imposed anymore. Since we
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Fig. 4.1
Two stiff cubic subdomains sharing a face surrounded by softer material. Left: Unit
cube; Middle: Unit cube cut open with two stiff subdomains inside; Right: Two stiff
subdomains shown without surrounding softer material.

Fig. 4.2: Edges in a U-shaped, L-shaped, and parallel distribution.

always impose three average constraints on a primal edge, we first choose 12 = 4× 3
averages, followed by 9 = 3 × 3, 6 = 2 × 3, 3 = 1 × 3, and 0 averages. From the
numerical results presented in Table 4.1, we see that, for this constellation, six lin-
early independent constraints are necessary to obtain a robust domain decomposition
method. We note that in the two cases of two primal edges considered here, we always
have one linearly dependent constraint.

# primal edges
E1/E2 4 3 (U) 2 (L) 2 (II) 1 0

1 9.75 10.11 12.77 10.86 13.37 15.67
103 9.24 24.28 1.74× 103 1.11× 103 2.16× 103 4.31× 103

106 9.24 24.64 1.73× 106 1.11× 106 2.14× 106 4.25× 106

Table 4.1
Two stiff subdomains sharing a face F . Condition number estimates for different
numbers of edge average constraints. The notation U, L, and II denote a U-shaped,
an L-shaped, and a parallel distribution of the primal edges of the face F , cf. Figure
4.2. Young modulus: E2 = 210; Stopping criterion: relative residual reduction by
10−10. Primal constraints: Edge averages.

In the general theory developed in [11], we do not have to make every face fully
primal but it is sufficient to have an acceptable path. Since we are not considering
any experiments where the concept of an acceptable path is involved, we only refer
to [11] for further details.

We next consider a model problem, where two subdomains are again surrounded
by subdomains with much smaller stiffnesses, i.e., Young moduli. Furthermore, we
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Fig. 4.3
Two stiff cubic subdomains sharing an edge surrounded by softer material. Unit cube
Ω cut open in front and on top.

assume that these two special subdomains share only an edge; cf. Figure 4.3. In
[11] it was shown that a well selected set of primal constraints, which has five lin-
early independent primal constraints related to that special edge shared by the two
stiffer subdomains and otherwise six linearly independent edge constraints for each
face, is sufficient to prove a condition number bound as in Theorem 3.1. In [11],
the five linearly independent constraints are chosen as three edge averages and two
properly chosen first order moments; cf. also (2.4). Here, the six linearly indepen-
dent constraints for each face can be chosen as edge averages (and moments) over
appropriately chosen edges of the considered face. In a set of experiments, we have
tested different combinations of edge constraints on the specific edge shared by the two
stiffer subdomains; cf. Table 4.2. In the case of three constraints only edge averages
are used, in the case of five, additionally two first order moments are applied. On all
other edges, an edge average over each displacement component is used to define the
primal constraints. We see that using no constraints or only edge average constraints
on the specific edge leads to a large condition number. Applying all five constraints
leads to a good condition number which is bounded independently of the jump in the
Young moduli.

From the theory in Klawonn and Widlund [11], it is expected that for the problem
with just one bad edge, we only have two large eigenvalues which are outliers in an
otherwise nicely clustered spectrum; this also explains the good iteration counts in
Table 4.2. To confirm this numerically, we compute all eigenvalues for a small model
problem. Here, the unit cube is decomposed into 2×2×2 = 8 regular cubic subdomains
with 1 029 d.o.f. each, resulting in 6 591 global d.o.f. We assume again that we have two
stiff subdomains sharing an edge surrounded by softer material; cf. Figure 4.5. The
ratio of the different Young moduli is E1/E2 = 106 with E2 = 210. As constraints we
impose three edge averages, one for each displacement component, on each edge but no
primal vertices. In this case, we have a large condition number due to two outliers in
the spectrum, related to the two rotations which are not controlled due to the missing
first order moments; cf. Figure 4.4. If we remove those two outlying eigenvalues from
the diagram, we see that the remaining spectrum is still nicely clustered, cf. the
diagram on the right hand side in Figure 4.4. Next, we consider the case when two
additional first order moments are imposed on the bad edge shared by the two stiffer
subdomains. Here, the spectrum is nicely clustered and the ratio of the two extreme
non-zero eigenvalues is bounded by a small number; cf. Figure 4.5.

Next, we analyze a more involved example with several bad edges, where we will
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−3 +0 +2

E1/E2 It. λmax λmin It. λmax λmin It. λmax λmin

100 29 9.31 1.0111 28 9.20 1.0115 28 9.19 1.0113
101 31 12.13 1.0105 30 9.14 1.0099 30 9.14 1.0098
102 36 51.15 1.0115 31 10.61 1.0096 30 9.11 1.0094
103 47 4.41× 102 1.0113 37 75.72 1.0081 30 9.11 1.0084
104 48 4.34× 103 1.0191 41 7.27× 102 1.0080 30 9.10 1.0080
105 65 4.33× 104 1.0156 48 7.24× 103 1.0080 30 9.10 1.0080
106 70 4.33× 105 1.0215 47 7.24× 104 1.0116 30 9.10 1.0080

Table 4.2
Straight edge: Unit cube decomposed into 3 × 4 × 4 = 48 brick-shaped subdomains
of 1 536 d.o.f. each, 55 506 total d.o.f., 75 edges, edges use three edge averages; one
special edge: −3: no constraints on this edge, 0: only averages, +2: averages and,
additionally, two first order moments; Stopping criterion: Relative residual reduction
by 10−10.
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Fig. 4.4
Eigenvalues for FETI-DP using only edge averages, no primal vertices. Left: All eigenvalues.
Right: All but the two largest eigenvalues.

see that additional first order moments not only improve the condition number but
can be absolutely necessary to obtain convergence. We consider a linear elasticity
model problem with a material consisting of different layers as shown in Figure 4.6,
where the homogeneous layer is made of the softer material. The ratio of the different
Young moduli is E1/E2 = 106 with E2 = 210. Here, in addition to three edge averages
on each edge, we have also used two first order moments as primal constraints on all
edges. The results in Table 4 clearly show that the additional first order moments help
to improve the convergence significantly; see [11] for theoretical results. In Table 4.4
the parallel scalability is shown for a cube of eight layers with a material distribution
as in Figure 4.6.

Finally, we numerically check if primal vertex constraints are necessary at all.
So far, all of our experiments were carried out without any primal vertices. In the
theoretical analysis given in [11], it is shown that in some special situations, primal
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Fig. 4.5
Left: Two stiff cubic subdomains sharing a straight edge surrounded by softer material.
Right: All eigenvalues for FETI-DP using edge averages and two first order moments on the
shared edge, no primal vertices.

Fig. 4.6
Alternating layers of a heterogeneous material distributed in a checkerboard pattern
and a homogeneous, softer material.

edge averages edge averages + first order moments
Cond. It. Time Cond. It. Time

2.14× 105 >1 000 > 6 686s 5.19 24 629s

Table 4.3
Heterogeneous linear elasticity: Comparison of FETI-DP algorithm using edge aver-
ages vs. edge averages and first order moments; Decomposition into 12 × 12 × 12 =
1 728 cubic subdomains of 5 184 d.o.f. each, resulting in 7 057 911 total d.o.f. Stopping
criterion: Relative residual reduction of 10−10.

vertices have to be introduced. We now construct such a model problem, following the
theoretical considerations given in [11, Section 8.3]. We decompose the unit cube into
27 = 3×3×3 cubic subdomains. The subdomains are made of two different materials,
distributed such that subdomains of the same material type are only connected at
the subdomain vertices; cf. Figure 4.7. From the results presented in Table 4.5, we
conclude that there exist very hard cases of material distributions where we have to
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Proc. Subdomains/Proc. It. Cond. Time

1 512 17 5.18 1 828s
2 256 17 5.18 842s
4 128 17 5.18 428s
8 64 17 5.18 215s
16 32 17 5.18 122s

Table 4.4
FETI-DP: Parallel scalability using edge averages and first order moments. 512 sub-
domains with 5 184 d.o.f. each, yielding 2 114 907 global d.o.f. Stopping criterion:
Relative residual reduction of 10−7.

Fig. 4.7
Unit cube decomposed into 9 stiff subdomains, sharing only vertices, and 18 soft sub-
domains. Left: Deformation showing stiff and soft subdomains. Right: Deformation,
showing only stiff subdomains.

introduce primal vertices. This confirms the theoretical findings given in Klawonn and
Widlund [11]. The problem considered in the present example is of course somewhat
artificial. If primal vertices have to be introduced in real, industrial engineering
applications in order to obtain a robust algorithm, still has to be numerically tested
with such problems.

5. Curved edges. In this section, we present numerical results for decomposi-
tions with curved edges. The theory in [11] is only for straight edges. We will see
from the following numerical results that first order moments are still necessary in
the case of large coefficient jumps.

In order to study the effect of slightly bent edges we start from the same configu-
ration as in Table 4.2, i.e., with two stiff subdomains sharing an edge, surrounded by
softer material with a Young modulus E2 = 210. We note that in all of our experi-
ments, the Poisson ratio is ν = 0.29. We then consider a slightly bent cross section,
cf. Figure 5.1, according to an inner radius of curvature of 1/

√
2, 1,

√
2. We thus have

a bent critical edge shared by the two stiff subdomains.
We start with a slightly bent configuration, corresponding to a radius of curvature

of 1/
√

2, as depicted in the leftmost picture of Figure 5.2. In Table 5.1 the effect is
shown as we increase E1 and the two subdomains become increasingly stiffer. We see
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edge averages only
+ primal vertices edge averages

E1/E2 It. Cond. It. Cond.

1 26 7.22 26 7.56
103 23 8.03 49 89.58
106 24 7.98 113 8.38 ×104

Table 4.5
Comparison of FETI-DP using edge averages and vertices as primal constraints vs.
a variant using only edge averages as primal constraints. Decomposition into 27 =
3 × 3 × 3 subdomains, cf. Fig. 4.7, with 1 536 d.o.f. each, resulting in 31 944 global
d.o.f. Stopping criterion: Relative residual reduction by 10−10.

that starting from a certain point we cannot control the condition number anymore
by using only two first order moments on the edge. Nevertheless, if we choose the
right two moments, denoted as “good choice” in Table 5.1, the condition number is
controlled much longer than in the case where we make the wrong choice, captioned
“bad choice”. If we introduce all three moments as constraints for a bent edge then
the condition number stays small independently of the ratio E1/E2.

We then study the effect of different curvatures on the condition number and on
the necessity to add all three moments to the constraints. In Table 5.2 we only consider
three values for E1/E2, namely unity, 103 and 106. We include the case E1/E2 = 1,
i.e., the case of homogeneous material, to verify that the deformation of the unit cube
only has a minor effect on the condition number and iteration count. This is the case
whether we use two moments or three as long as we have a homogeneous material.

We also find that for E1/E2 = 103 we do not see any difference between using
two and three constraints even if we bent the edge to a radius of curvature of 1/

√
2

as depicted in the rightmost picture of Figure 5.2.
Only for E1/E2 = 106, we see that two constraints are not sufficient anymore and

we have to introduce the third linearly independent moment as additional constraint
in order to control the condition number and iteration count.

The fact that the iteration count is smaller in the case where only two moments are
introduced as constraints and E1/E2 = 106, cf. Table 5.2, is an artifact of our stopping
criterion. This is also the reason for some of the low iteration counts in Table 5.1 in
the cases where we have very high condition numbers. We have a residual reduction
of 10−10 but the starting residual is exceptionally high in these cases. Note that this
effect only occurs when the condition number of the problem becomes very large.

From these numerical results, we conclude that discontinuities in the material
stiffnesses of the order of 103 can still be treated using three edge averages and two
first order moments. To obtain an unconditionally robust method, our experiments
seem to indicate that, in the case of edges which are not straight, three edge averages
and three first order moments are needed.

6. Material heterogeneities not aligned with the interface. In the the-
oretical estimates presented in [11], it is assumed, as it is standard in theoretical
analyses of this type, that the coefficient jumps of the Young moduli are aligned with
the interface, i.e., discontinuities can only occur across the subdomain boundaries. In
practice, satisfying such an assumption can lead to a decomposition with very bad
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+2 (bad choice) +2 (good choice) +3

E1/E2 It. λmax λmin It. λmax λmin It. λmax λmin

100 35 13.03 1.0103 35 13.03 1.0103 35 13.03 1.0103
101 34 12.70 1.0098 34 12.70 1.0098 34 12.70 1.0098
102 35 12.60 1.0091 34 12.57 1.0093 34 12.57 1.0094
103 38 61.55 1.0083 35 12.53 1.0077 35 12.53 1.0078
104 43 5.71× 102 1.0072 34 12.54 1.0082 34 12.52 1.0082
105 49 5.67× 103 1.0064 35 43.67 1.0104 37 12.51 1.0069
106 54 5.67× 104 1.0060 33 4.02× 102 1.0156 39 12.51 1.0061

Table 5.1
Curved edge: Deformed unit cube decomposed into 3× 4× 4 = 48 brick-shaped sub-
domains of 1 536 d.o.f. each, radius of curvature 1/

√
2, special edge is curved, 55 506

total d.o.f., relative tolerance 10−10; 75 edges, edges use three edge averages; one
special edge: +2: averages and, additionally, two first order moments, +3: averages
and, additionally, three first order moments; Young modulus E2 = 210.

Radius of +2 +3

E1/E2 curvature It. λmax λmin It. λmax λmin

straight 28 9.19 1.0113
√

2 31 9.99 1.0106 31 9.99 1.0106
100 1 32 10.66 1.0105 32 10.66 1.0105

1/
√

2 35 13.03 1.0103 35 13.03 1.0103

straight 30 9.11 1.0084
√

2 32 9.80 1.0075 31 9.80 1.0082
103 1 33 10.45 1.0074 32 10.45 1.0080

1/
√

2 35 12.53 1.0077 35 12.53 1.0078

straight 30 9.10 1.0080
√

2 28 1.01× 102 1.0153 35 9.79 1.0065
106 1 30 2.00× 102 1.0150 35 10.45 1.0063

1/
√

2 33 4.02× 102 1.0156 39 12.51 1.0061

Table 5.2
Curved edge: Deformed unit cube decomposed into 3× 4× 4 = 48 brick-shaped sub-
domains of 1 536 d.o.f. each, radius of curvature 1/

√
2, special edge is curved, 55 506

total d.o.f., relative tolerance 10−10; 75 edges, edges use three edge averages; one
special edge: +2: averages and, additionally, two first order moments, +3: averages
and, additionally, three first order moments; Young modulus E2 = 210.

aspect ratios which usually spoil the convergence rate. In this section, we numer-
ically analyze the effect of material heterogeneities which are not aligned with the
interface. We first apply our algorithm with edge averages, but without first order
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Fig. 5.1
Deformed unit cube (radius of curvature = 1) with two deformed stiff subdomains
sharing a curved edge surrounded by softer material.

Fig. 5.2
Curved configurations seen from bottom, radius of curvature =

√
2, 1, 1/

√
2.

moments and primal vertices, to four different model problems. We always consider
a unit cube which is fixed at one face. In our experiments we always compare the
case of a homogeneous material to different distributions of materials with different
stiffness. We assume that the softer material has a Young modulus of E2 = 210 and
a Poisson ratio of ν = 0.29. The Young modulus of the stiffer material is denoted by
E1 and the ratio of both is E1/E2 = 106. We use four node tetrahedral elements, a
decomposition into 2× 2× 2 = 8 cubic subdomains with 89 373 d.o.f. each, resulting
in 680 943 global d.o.f. As stopping criterion, we use the relative residual reduction
by 10−10. In the first three experiments, the parts of Ω which consist of the stiffer
material, do not intersect any interior edges; cf. Figures 6.1, 6.2, 6.3, 6.4. We note
that these examples are constructed such that the material cannot be treated by the
standard scaling, see (3.2), since the material discontinuity is not across the interface.
From the results given in Tables 6.1, 6.2, and 6.3, we see that such a jump in the
Young modulus seems not to affect severely the condition and iteration number.

Next, we consider an example, where a stiff cube is located at the center of a
larger cube made out of a softer material; cf. Figure 6.5. The essential difference in
comparison to the previous examples is that the stiffer subcube now intersects the
interior edges; see also Figure 6.1. From the results given in the mid-column of Table
6.4, we see that this severely affects the iteration and condition number. As a remedy,
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Fig. 6.1
For 2 × 2 × 2 = 8 subdomains, the 6 edges in the interior of Ω are shown (two
subdomains in front of the cube are not displayed).

Fig. 6.2
Material heterogeneities not aligned with
the interface. Soft cube (Young modu-
lus E2 = 210) with a stiff beam (Young
modulus E1 = 106 · E2), with square
cross section, at the upper right edge.

Homogeneous Heterogeneous
It. Cond. It. Cond.
31 18.62 42 32.59

Table 6.1
Iteration counts and condition number
estimates for problem given in Figure
6.2. Homogeneous: E1 = E2 = 210.
Heterogeneous: E2 = 210, E1 = 106 ·E2.

Fig. 6.3
Material heterogeneities not aligned with
the interface. Soft cube (Young modu-
lus E2 = 210) with a stiff beam (Young
modulus E1 = 106 · E2), with square
cross section and a jagged interface, at
the upper right edge.

Homogeneous Heterogeneous
It. Cond. It. Cond.
31 18.62 43 34.16

Table 6.2
Iteration counts and condition number
estimates for problem given in Figure
6.3. Homogeneous: E1 = E2 = 210.
Heterogeneous: E2 = 210, E1 = 106 ·E2.
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Fig. 6.4
Material heterogeneities not aligned with
the interface. Soft cube (Young modu-
lus E2 = 210) with a stiff beam (Young
modulus E1 = 106 ·E2), with rectangular
cross section, at the upper right edge.

Homogeneous Heterogeneous
It. Cond. It. Cond.
31 18.62 40 22.99

Table 6.3
Iteration counts and condition number
estimates for problem given in Figure
6.4. Homogeneous: E1 = E2 = 210.
Heterogeneous: E2 = 210, E1 = 106 ·E2.

Fig. 6.5
Material heterogeneities not aligned with the interface. Soft material (Young modulus
E2 = 210) surrounding a stiffer cube (Young modulus E1 = 106 ·E2), centered at the
origin of the cube. The stiffer, interior cube intersects with all interior edges.

we introduce a weighted edge average of the form
∑

xi∈Eh

ρ(xi)uj(xi)

∑

xi∈Eh

ρ(xi)
, j = 1, 2, 3, (6.1)

with weights ρ(xi) defined pointwise by the maximum material stiffness at that point
and u = [uT

1 , uT
2 , uT

3 ]T . We note that this weighted edge average is reduced to the
standard edge average in the case of material jumps aligned with the interface. The
results given in the column on the right hand side of Table 6.4 indicate that this
weighted edge average could be helpful in cases where the material discontinuities
do not align with the interface. This should be further analyzed for more difficult
problems coming from real-world, engineering examples.

7. Conclusions. We have presented a FETI-DP algorithm for elasticity prob-
lems with large jumps in the material stiffness. This method was introduced and
theoretically analyzed in [11] and the results shown in Section 4 for straight edges
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Edge average (hom.) Edge average (het.) Weighted average (het.)
It. Cond. It. Cond. It. Cond.

31 18.62 179 4.11×106 37 16.57

Table 6.4
Comparison of standard and weighted edge averages for the problem given in Figure
6.5. Decomposition into 8 = 2 × 2 × 2 cubic subdomains with 89 373 d.o.f. each,
yielding 680 943 global d.o.f. Stopping criterion: Relative residual reduction by 10−10.
Primal constraints: edge averages.

confirm the theoretical findings in [11]. We also considered curved edges in Section 5
and the results show that for moderate jumps in the Young modulus and slightly bent
edges, it is sufficient to use two first order moments. For arbitrarily large jumps, we
advocate the use of all three first order moments. Another important situation, which
can usually not be covered by theoretical investigations, is the case when the mate-
rial discontinuities are not aligned with the interface. Our numerical results indicate
that such a material distribution seems not to affect the condition number and the
iteration count, if the discontinuity does not appear on an interior edge. On the other
hand, if the discontinuity appears on an interior edge, in the experiment considered
in this paper, a weighted edge average was a remedy. Since this weighted average can
be implemented without additional cost, we suggest it as the default setting. Further,
extensive numerical tests for real-world, industrial engineering problems should be
pursued.
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