
SCHRIFTENREIHE DES FACHBEREICHS MATHEMATIK

Inexact FETI-DP Methods

by

Axel Klawonn and Oliver Rheinbach

SM-E-609 2005

Universität Duisburg-Essen



Eingegangen am 28.07.2005



INEXACT FETI-DP METHODS

AXEL KLAWONN∗ AND OLIVER RHEINBACH∗

July 2005
Abstract. Inexact FETI-DP domain decomposition methods are considered. Preconditioners based
on formulations of FETI-DP as a saddle point problem are used which allow for an inexact solution
of the coarse problem. A positive definite reformulation of the preconditioned saddle point problem,
which also allows for approximate solvers, is considered as well. In the formulation that iterates on
the original FETI-DP saddle point system, it is also possible to solve the local Neumann subdomain
problems inexactly. Given good approximate solvers for the local and coarse problems, convergence
bounds of the same quality as for the standard FETI-DP methods are obtained. Numerical experi-
ments which compare the performance of the method to FETI-DP are shown for 2D and 3D elasticity
using GMRES and CG as Krylov space methods.
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1. Introduction. Domain decomposition methods are preconditioned iterative
algorithms for the solution of the large systems obtained from the discretization of
partial differential equations. In domain decomposition methods, the domain associ-
ated with the partial differential equation is decomposed into a, possibly large, number
of subdomains. On these subdomains, local problems are defined which are solved in
each iteration step in order to define an approximate inverse of the system matrix.
In order to obtain a numerical and parallel scalable algorithm, also a small coarse
problem has to be introduced and solved in each iteration step.

In this article, we consider nonoverlapping domain decomposition methods be-
longing to the family of Dual-Primal Finite Element Tearing and Interconnecting
(FETI-DP) methods; see [10, 20, 16]. In FETI-DP methods the continuity of the
solution across the subdomain boundaries is enforced by Lagrange multipliers. This
results in a mixed linear system with primal variables and Lagrange multipliers as
unknowns. The basic idea of FETI-DP domain decomposition methods is to elimi-
nate the primal variables and iterate, usually in combination with a preconditioner,
on the resulting Schur complement and the Lagrange multiplier variables. Special
attention has to be given to the elimination process of the primal variables since the
associated matrix usually is only semidefinite although the overall mixed linear system
is uniquely solvable; this is due to local stiffness matrices belonging to subdomains
lacking sufficient essential boundary conditions. In FETI-DP methods, a sufficient
number of constraints, e.g., continuity across the interface at selected nodes on the
subdomain boundaries, is chosen such that the local stiffness matrices become in-
vertible; we note that nodal constraints are only sufficient in two dimensions, more
elaborate choices, e.g., averages over edges, are used in three dimensions in order to
obtain a good convergence estimate. These additional primal constraints introduce a
certain coupling between the otherwise completely decoupled local subdomain prob-
lems but this coupling also builds our coarse problem needed for scalability of the
algorithm. In standard FETI-DP methods, an inexact solution of the coarse prob-
lem is not straightforward, since the coarse problem is, by means of the elimination
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2 A. Klawonn and O. Rheinbach

process, built into the FETI-DP system matrix. Thus, an inexact solution in the
elimination process of the primal variables, would lead to a different linear system to
be solved and thus to a perturbed solution, different to that of the original problem.
FETI-DP methods obtain their numerical and parallel scalability from the use of a
coarse problem which is very small compared to the overall problem. This coarse
problem traditionally is solved exactly by the use of a direct solver. Nevertheless, if a
very large number of subdomains is used or if the problem requires the use of a larger
coarse space the cost of solving the coarse problem directly may become high.

Here, we present a family of methods, based on different versions of the FETI-DP
saddle point formulation, which allow for the use of inexact solvers for the FETI-DP
coarse problem. In one variant, which iterates on the complete saddle point system,
it is also possible to solve the local Neumann problems inexactly; see also Klawonn
and Widlund [18] for a related approach for the classical, onelevel FETI method;
we note that in the approach in [18], the coarse problem has to be solved exactly.
The resulting preconditioned systems in our article are based on appropriate block
triangular preconditioners and can either be solved by GMRES or by any other Krylov
space method suitable for nonsymmetric linear systems, e.g., BiCGSTAB or QMR.
We also discuss a positive definite reformulation which can be solved by the method of
conjugate gradients. This approach dates back to work on preconditioners for saddle
point problems by Bramble and Pasciak [4]; see also Klawonn [15] and Dohrmann and
Lehoucq [8]. The inexact solution of the local Dirichlet problems is always possible
with FETI methods, e.g., by the use of the non optimal, lumped preconditioner. Let
us note that the algorithms presented here also allow for optimal, inexact Dirichlet
subdomain solvers.

Another class of nonoverlapping domain decomposition methods which is closely
related to the FETI-DP algorithms, are the Balancing Domain Decomposition meth-
ods by Constraints (BDDC); see Cros [6], Dohrmann [9], Mandel and Dohrmann [24],
Mandel, Dohrmann, and Tezaur [25], or Li and Widlund [22]. An approach to solve
the BDDC coarse problem inexactly has successfully been suggested and analyzed
by Tu [35, 36]. Such an approach is more straightforward for BDDC methods, since
the coarse problem is built into the preconditioner and not into the system matrix.
For very recent work on approximate subdomain solvers for BDDC methods, see Li
and Widlund [23]. In Gosselet [12] a hybrid domain decomposition method is consid-
ered and applied to multi-field problems that iterates on a linear system consisting of
primal and dual variables at the same time.

The remainder of this paper is organized as follows. In Section 2, we introduce as
an elliptic model problem the system of linear elasticity. In Section 3, we introduce
the FETI-DP method and derive it from a saddle point formulation which is the basis
for our inexact FETI-DP methods. In Section 4, we present the different, exact and
inexact, FETI-DP preconditioners and in Section 5, we review a general convergence
theory for block triangular preconditioners applied to symmetric saddle point prob-
lems. In Section 6, we apply that theory to our inexact preconditioners, which are
of block triangular form. In Section 7, we discuss some performance considerations
and in Section 8, we present numerical results for our inexact FETI-DP methods. In
Section 9, we conclude this paper with some annotations on solvers and hardware
used in our work.

2. Model problem. In this section, we consider the system of linear elasticity
as a model problem. We note that other elliptic partial differential equations could
be treated as well using the methods provided in this paper.
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The equations of linear elasticity model the displacement of a linear elastic mate-
rial under the action of external and internal forces. The elastic body occupies a do-
main Ω ⊂ IRd, d = 2, 3, which is assumed to be polygonal or polyhedral, respectively.
We denote its boundary by ∂Ω and assume that one part of it, ∂ΩD, is clamped, i.e.,
with homogeneous Dirichlet boundary conditions, and that the rest, ∂ΩN := ∂Ω\∂ΩD,
is subject to a surface force g, i.e., a natural boundary condition. We can also intro-
duce a body force f , e.g., gravity. The appropriate space for a variational formulation
is the Sobolev space H1

0 (Ω, ∂ΩD) := {v ∈ (H1(Ω))d : v = 0 on ∂ΩD}. The linear
elasticity problem consists in finding the displacement u ∈ H1

0 (Ω, ∂ΩD) of the elastic
body Ω, such that

∫

Ω

G(x)ε(u) : ε(v)dx +
∫

Ω

G(x) β(x) divu divv dx = 〈F, v〉 ∀v ∈ H1
0 (Ω, ∂ΩD). (2.1)

Here G and β are material parameters which depend on the Young modulus E > 0
and the Poisson ratio ν ∈ (0, 1/2]; we have G = E/(1 + ν) and β = ν/(1 − 2ν). In
this article, we only consider the case of compressible elasticity, which means that the
Poisson ratio ν is bounded away from 1/2. Furthermore, εij(u) := 1

2 ( ∂ui

∂xj
+ ∂uj

∂xi
) is

the linearized strain tensor, and

ε(u) : ε(v) =
3∑

i,j=1

εij(u)εij(v), 〈F, v〉 :=
∫

Ω

fT v dx +
∫

∂ΩN

gT v dσ.

For convenience, we also introduce the notation

(ε(u), ε(v))L2(Ω) :=
∫

Ω

ε(u) : ε(v)dx.

The bilinear form associated with linear elasticity is then

a(u, v) = (Gε(u), ε(v))L2(Ω) + (G β divu, divv)L2(Ω).

The wellposedness of the linear system (2.1) follows immediately from the continuity
and ellipticity of the bilinear form a(·, ·), where the first follows from elementary
inequalities and the latter from Korn’s first inequality; see, e.g., [5].

We will only consider compressible elastic materials. It is therefore sufficient to
discretize our elliptic problem of linear elasticity (2.1) by low order, conforming finite
elements, e.g., linear or trilinear elements. Let us assume that a triangulation τh of
Ω is given which is shape regular and has a typical diameter of h. We denote by
Wh := Wh(Ω) the corresponding conforming finite element space of finite element
functions. The associated discrete problem is then to find uh ∈ Wh, such that

a(uh, vh) = 〈F, vh〉 ∀vh ∈ Wh. (2.2)

When there is no risk of confusion, we will drop the subscript h.

3. The FETI-DP saddle point formulation. Let a domain Ω ⊂ Rd, d = 2, 3
be decomposed into N nonoverlapping subdomains Ωi of diameter H, each of which
is the union of finite elements with matching finite element nodes on the boundaries
of neighboring subdomains across the interface Γ :=

⋃
i6=j ∂Ωi ∩ ∂Ωj , where ∂Ωi, ∂Ωj

are the boundaries of Ωi, Ωj , respectively. The interface Γ is the union of edges and
vertices (in 2D) and faces, edges, and vertices (in 3D). Here, for simplicity, we regard
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edges in 2D and faces in 3D as open sets, that are shared by two subdomains, edges
in 3D as open sets that are shared by more than two subdomains, and vertices, in 2D
and 3D, as endpoints of edges; see, e.g., Toselli and Widlund [33, Chapter 4.2]. For a
more detailed definition of faces, edges, and vertices; see Klawonn and Widlund [20,
Section 3] and Klawonn and Rheinbach [16, Section 2].

For each subdomain Ωi, i = 1, . . . , N we assemble the local stiffness matrices
K(i) and load vectors f (i). We denote the unknowns on each subdomain, e.g., the
displacements in the case of elasticity, by u(i).

In order to obtain again the solution of the original finite element problem (2.2),
we need to enforce the continuity of the u(i) across the subdomain interfaces. Each
nodal vector u(i) can be divided into a set of interior unknowns, u

(i)
I , associated with

nodes in the interior of Ωi, and interface variables, u
(i)
Γ , associated with nodes on the

interface Γ. A subset of the interface variables, denoted by u
(i)
Π or primal variables, we

will enforce the continuity by global subassembly of the subdomain stiffness matrices
K(i). For all other interface variables, denoted by u

(i)
∆ or dual displacement variables,

we will introduce Lagrange multipliers to enforce continuity. We denote the variables
that are not primal by u

(i)
B = [u(i)T

I , u
(i)T
∆ ]T and partition the local stiffness matrices

accordingly,

K(i) =

[
K

(i)
BB K

(i) T
ΠB

K
(i)
ΠB K

(i)
ΠΠ

]
, K

(i)
BB =

[
K

(i)
II K

(i)T
∆I

K
(i)
∆I K

(i)
∆∆

]
, K

(i)
ΠB = [K(i)

ΠI ,K
(i)
Π∆].

Next, we subassemble the primal variables u
(i)
Π , i = 1, . . . , N . Denoting by R

(i)
Π the

standard prolongation matrices, which map from the local subdomain variables u
(i)
Π

to the global variables ũΠ, we obtain

K̃ΠΠ =
N∑

i=1

R
(i)
Π K

(i)
ΠΠR

(i) T
Π , K̃

(i)
ΠB = R

(i)
Π K

(i)
ΠB , ũΠ =

N∑

i=1

R
(i)
Π u

(i)
Π , f̃Π =

N∑

i=1

R
(i)
Π f

(i)
Π .

Defining the block matrices

KBB = diagN
i=1(K

(i)
BB), K̃ΠB = [ K̃(1)

ΠB , . . . , K̃
(N)
ΠB ],

we obtain the partially assembled matrix K̃ and corresponding right hand side f̃ , i.e.,

K̃ =

[
KBB K̃T

ΠB

K̃ΠB K̃ΠΠ

]
, f̃ =

[
fB

f̃Π

]
,

where fB = [ f (i) T
B , . . . , f

(i) T
B ]T . Choosing a sufficient number of primal variables u

(i)
Π

to constrain our solution, results in a symmetric positive definite matrix K̃; see [20].
We introduce a jump operator B with entries 0,−1 or 1 and Lagrange multipliers

λ to enforce continuity on the remaining interface variables u
(i)
∆ . For convenience, we

always use the full set of (redundant) Lagrange multipliers wherever more than two
subdomains share a single node. We introduce the notation

uB = [u(1) T
B , . . . , u

(N) T
B ]T , u = [ uT

B , ũT
Π ]T .

Now, we can formulate the FETI-DP saddle point problem,
[

K̃ BT

B 0

] [
u
λ

]
=

[
f̃
0

]
, u ∈ Rn, λ ∈ Rm, (3.1)
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from which the solution of the original finite element problem (2.2) can be obtained
by subassembling the solution u in the interface variables u

(i)
∆ . We will also use the

notation

Ax = F ,

where

A :=
[

K̃ BT

B 0

]
, x :=

[
u
λ

]
, F :=

[
f̃
0

]
.

So far, we have not discussed how to choose the decomposition of the local interface
vectors u

(i)
Γ into primal variables u

(i)
Π and remaining (dual) interface vectors u

(i)
∆ . One

immediate possibility is to choose selected vertices (or corners) of Ωi as nodes where
the variables u

(i)
Γ are assembled; cf. Farhat et al. [10] or Mandel and Tezaur [26]. This

yields good convergence bounds of the order of (1+log(H/h))2 in two dimensions, see
[26], but not in three dimensions, see Klawonn, Widlund, and Dryja [21]. Numerical
evidence for this deterioration in three dimensions was first given in Farhat, Lesoinne,
and Pierson [11]; cf. also Klawonn, Rheinbach, and Widlund [17, Table 5, Figure 2].

To obtain scalable algorithms with condition number bounds of the order of (1 +
log(H/h))2 in three dimensions, Klawonn, Widlund, and Dryja [21] for scalar, second
order elliptic equations, introduced averages over selected subdomain edges or faces to
be continuous across the interface. For linear elasticity in three dimensions, Klawonn
and Widlund [20] introduced averages and first order moments over selected edges as
primal variables. For some very hard cases with large coefficient jumps, e.g., in the
diffusion coefficient or the stiffness of the material, some vertices have to be selected as
primal variables as well, in order to obtain a condition number bound of the order of
(1+log(H/h))2 which is robust with respect to the coefficient jumps. Numerical results
with vertex and face average constraints for three dimensional elasticity problems
were already presented in Farhat, Lesoinne, and Pierson [11]; see also the doctoral
dissertation of Pierson [27]. There are two different possibilities to implement the
average and moment constraints over faces or edges. The first is the introduction of
optional Lagrange multipliers; see Farhat, Lesionne, and Pierson [11], Pierson [27], or
Klawonn and Widlund [20]. The second is to apply a transformation of basis,

K
(i)

= TT K(i)T,

introducing the averages and moments explicitly as new variables. Then, the dual
interface variables u

(i)
∆ have zero average or first order moment on the selected edges

or faces; see Klawonn and Widlund [20] and, for numerical results and a parallel
implementation, Klawonn and Rheinbach [16]. In this article, we will always use
a transformation of basis when edge averages are used as primal constraints; for a
detailed algorithmic description of applying the transformation of basis, see [16] or
[20]. The choice of a good coarse problem, i.e., the selection of vertex, edge, and
face constraints, is of vital importance to the convergence and scalability of FETI-DP
methods. A detailed description is beyond the scope of this paper; for details see, e.g.,
[20] or [16]. In our experiments, in two dimensions, we will always use continuity at all
vertices and continuity of all edge averages. This version will be denoted Algorithm
B; see [21], where an analogous notation was introduced for three dimensions. In
three dimensions, in our experiments, we will always use continuous edge averages at
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all edges and no vertex or face constraints. This version is denoted Algorithm DE ;
see [16]. For further details on the implementation and other algorithmic choices, see
[21], [20], [16], or [11].

With the notation introduced before, we can rewrite (3.1) as




KBB K̃T
ΠB BT

B

K̃ΠB K̃ΠΠ 0
BB 0 0







uB

ũΠ

λ


 =




fB

f̃Π

0


 . (3.2)

Eliminating uB by one step of block Gaussian elimination, we obtain the reduced
system

[
S̃ΠΠ −K̃ΠBK−1

BBBT
B

−BBK−1
BBK̃T

ΠB −BBK−1
BBBT

B

] [
ũΠ

λ

]
=

[
f̃Π − K̃ΠBK−1

BBfB

−BBK−1
BBfB

]
, (3.3)

where S̃ΠΠ = K̃ΠΠ − K̃ΠBK−1
BBK̃T

ΠB . Here, we will also use the notation

Arxr = Fr,

where

Ar =

[
S̃ΠΠ −K̃ΠBK−1

BBBT
B

−BBK−1
BBK̃T

ΠB −BBK−1
BBBT

B

]
, xr :=

[
ũΠ

λ

]
,

and

Fr :=
[

f̃Π − K̃ΠBK−1
BBfB

−BBK−1
BBfB

]
.

By also eliminating the primal variables ũΠ, we obtain the reduced system

Fλ = d, (3.4)

where

F := BBK−1
BBBT

B + BBK−1
BBK̃BΠS̃−1

ΠΠK̃ΠBK−1
BBBT

B = BK̃−1BT ,

d := BBK−1
BBfB + BBK−1

BBK̃T
ΠBS̃−1

ΠΠ(f̃Π − K̃ΠBK−1
BBfB) = BK̃−1f̃ .

The linear system (3.4) is the standard, exact FETI-DP system which is solved us-
ing preconditioned conjugate gradients and an appropriate preconditioner M−1; cf.
Section 4.

4. Exact and inexact FETI-DP methods. In the standard, exact FETI-DP
methods two different preconditioners are commonly used, the theoretically optimal
Dirichlet preconditioner MD and the lumped preconditioner ML. To define these
preconditioners, we partition the local matrices according to interior and interface
variables, u

(i)
I and u

(i)
Γ , and obtain

K(i) =

[
K

(i)
II K

(i) T
ΓI

K
(i)
ΓI K

(i)
ΓΓ

]
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with

KII = diagN
i=1(K

(i)
II ), KΓI = diagN

i=1(K
(i)
ΓI ), KΓΓ = diagN

i=1(K
(i)
ΓΓ).

The Dirichlet preconditioner MD is defined by

M−1
D = BDRT

Γ (KΓΓ −KΓIK
−1
II KT

ΓI)RΓBT
D

and the lumped preconditioner ML by

M−1
L = BDRT

ΓKΓΓRΓBT
D

where

RΓ = diagN
i=1(R

(i)
Γ ).

Here, the matrices R
(i)
Γ are restriction matrices which restrict the degrees of freedom

of a subdomain to the interface. The matrices BD are scaled variants of the jump
operator B where the contribution from and to each interface node is scaled by the
inverse of the multiplicity of the node. The multiplicity of a node is defined as the
number of subdomains it belongs to. It is well known that for heterogeneous problems
a more elaborate scaling is necessary, see, e.g., [20].

The original or standard, exact FETI-DP method is the method of conjugate
gradients applied to the symmetric positive definite system

Fλ = d

with the preconditioners M−1
D or M−1

L . We note that only for the Dirichlet precondi-
tioner, we have the polylogarithmic condition number bounds mentioned before; see
[26], [21], [20]. The term “exact” refers here to the exact solution of the coarse prob-
lem given by S̃ΠΠ and the exact solution of the local Neumann subdomain problems
K

(i)
BB . When the Dirichlet preconditioner is used, we of course also have to solve the

local Dirichlet problems K
(i)
II exactly.

Now, we are going to present new, inexact FETI-DP methods by solving the sad-
dle point problems (3.1) and (3.3) iteratively, using block triangular preconditioners
and a suitable Krylov space method.

For the saddle point problems (3.1) and (3.3), we introduce the block triangular
preconditioners B̂L and B̂r,L, respectively, as

B̂−1
L =

[
K̂−1 0

M−1BK̂−1 −M−1

]
, B̂−1

r,L =
[

Ŝ−1
ΠΠ 0

−M−1BBK−1
BBK̃T

ΠBŜ−1
ΠΠ −M−1

]
.

where K̂−1 and Ŝ−1
ΠΠ are assumed to be spectrally equivalent preconditioners for K̃

and S̃ΠΠ, respectively, with bounds independent of the discretization parameters h,H.
The matrix block M−1 is assumed to be a good preconditioner for the FETI-DP
system matrix F and can be chosen as the Dirichlet or the lumped preconditioners
M−1

D and M−1
L , respectively. We will denote the corresponding right preconditioners

by the subscript R, i.e., we have B̂R = B̂T
L and B̂r,R = B̂T

r,L.
We note that K̂−1 can also be defined using the following exact factorization of

K̃−1, i.e.,
[

KBB K̃T
ΠB

K̃ΠB K̃ΠΠ

]−1

=
[

I −K−1
BBK̃T

ΠB

0 I

] [
K−1

BB 0
0 S̃−1

ΠΠ

] [
I 0

−K̃ΠBK−1
BB I

]
.
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We note that K̃ΠBK−1
BB =: KΠB is always built explicitly in a preprocessing step,

since we need it to form S̃ΠΠ. To obtain a preconditioner K̂−1, we can now replace
K−1

BB and S̃−1
ΠΠ by good preconditioners K̂−1

BB and Ŝ−1
ΠΠ. This yields the preconditioner

K̂−1 =

[
I −K

T

ΠB

0 I

] [
K̂−1

BB 0
0 Ŝ−1

ΠΠ

] [
I 0

−KΠB I

]
. (4.1)

We note that the application of K̂−1 to a vector only involves one application of K̂−1
BB

and Ŝ−1
ΠΠ each. Such a factorization was also the basis for iterative substructuring

methods with inexact Dirichlet solvers; see, e.g., Smith, Bjørstad, and Gropp [29,
Chapter 4.4] or Toselli and Widlund [33, Chapter 4.3] and the references given therein.

It is also possible to use exact local solvers, i.e., K̂−1
BB = K−1

BB , and to solve only
the coarse problem inexactly. This variant is closely related to preconditioning the
reduced system (3.3) by an appropriate block triangular preconditioner.

Our inexact FETI-DP methods are now given by using a Krylov space method
for nonsymmetric systems, e.g., GMRES, to solve the preconditioned systems

B̂−1
L Ax = B̂−1

L F
and

B̂−1
r,LArxr = B̂−1

L Fr,

respectively.
Let us note that we can also use a positive definite reformulation of the two

preconditioned systems, which allows the use of conjugate gradients. For this refor-
mulation, a special inner product and a scaling of the preconditioners K̂ and ŜΠΠ

have to be used; see Sections 5 and 6 for further details.

5. A review of block triangular preconditioners for symmetric saddle
point problems. In this section, we review some theoretical convergence results for
block triangular preconditioners applied to symmetric saddle point problems. This
theory will then be used in the next section to derive convergence estimates for the
full and the reduced preconditioned system. In general, using block triangular pre-
conditioners leads to nonsymmetric preconditioned systems, even when the original
saddle point problem is symmetric. Thus, Krylov space methods which are well suited
for nonsymmetric linear systems have to be chosen, e.g., GMRES, BiCGSTAB, QMR
or variants of these methods. In some cases, the preconditioned system is symmetric
positive definite in a certain inner product; then, a conjugate gradient method can be
used; see Bramble and Pasciak [4]. Let us note that the theory for deriving a priori
GMRES convergence bounds for block triangular preconditioners is not complete and
still an area of research. In contrast to conjugate gradient methods, eigenvalue bounds
are in general not sufficient for convergence estimates of GMRES. Our presentation
in this section is based on Klawonn [15].

We consider a mixed linear system of the form

Ax = F , (5.1)

where we have

A =
[

A BT

B −C

]
, x =

[
u
λ

]
, F =

[
f
g

]
.
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We assume that A ∈ IRn×n is a symmetric positiv definite matrix, C ∈ IRm×m a
symmetric positive semi definite matrix, and B ∈ IRm×n a matrix with full rank.
Furthermore, we define left and right block triangular preconditioners

B̂L =
[

Â 0
B −Ĉ

]
, B̂R =

[
Â BT

0 −Ĉ

]
.

Here, we assume that there exist constants α0, α1 > 0, such that

α0 uT Âu ≤ uT Au ≤ α1 uT Âu ∀u ∈ IRn (5.2)

and constants γ0, γ1 > 0 such that

γ0 λT Ĉλ ≤ λT SCλ ≤ γ1 λT Ĉλ ∀λ ∈ IRm, (5.3)

where the Schur complement SC is defined as SC := C + BA−1BT .
In our analysis, we only consider the case of inexact preconditioners Â, i.e., we

exclude the case Â = A. In our application on FETI-DP methods, the exact case
relates to the standard, exact FETI-DP method and therefore, we do not have to
analyze it here. Nevertheless, an exact solver for A can be applied with GMRES; see
Klawonn [15] and Simoncini [28] for numerical results and eigenvalue bounds.

To the best of our knowledge, the first GMRES convergence analysis for block
triangular preconditioners applied to symmetric saddle point problems was given in
Klawonn [14, 15], where the following assumption was made for the preconditioner Â,

1 < α0 ≤ a1, (5.4)

which can be always obtained by an appropriate scaling. We will briefly review those
results using our notation. We first introduce the symmetric positive definite matrices
H and H̃,

H =
[

A− Â 0
0 Ĉ

]
, H̃ =

[
A 0
0 SC

]
.

From a direct calculation, we obtain the symmetric matrix

HB̂−1
L A =

[
AÂ−1A−A (A− Â)Â−1BT

BÂ−1(A− Â) C + BÂ−1BT

]
.

To apply the theory proven in [15], we note that the equality HB̂−1
L A = AB̂−1

R H
holds; see also [15, Remark 2]. The next lemma is proven in [15, Lemma 3.3].

Lemma 5.1. There exist positive constants C̃0, C̃1, such that

C̃0 xT H̃x ≤ xTHB̂−1
L Ax ≤ C̃1 xT H̃x ∀x ∈ IRn+m,

where C̃0 = min{(α0 − 1), 1}/3 and C̃1 = 3 max{(α1 − 1), 1}.
Using (5.2), (5.3), and (5.4), we obviously have the following spectral equivalence:

min{ α1

α1 − 1
, γ0} xTHx ≤ xT H̃x ≤ max{ α0

α0 − 1
, γ1} xTHx ∀x ∈ IRn+m. (5.5)

Combining Lemma 5.1 and (5.5), we obtain, see also [15, Lemma 3.4],
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Lemma 5.2. We have

C0 xTHx ≤ xTHB̂−1
L Ax ≤ C1 xTHx ∀x ∈ IRn+m

with positive constants C0 =
(

1
3 min{(α0 − 1), 1}min{ α1

α1−1 , γ0}
)

and

C1 =
(
3max{(α1 − 1), 1}max{ α0

α0−1 , γ1}
)
.

From this lemma immediately follows that the eigenvalues of B̂−1
L A are real, pos-

itive, and contained in the intervall [C0, C1]; cf. also [15, Theorem 3.5]. We can now
use the bounds given in Lemma 5.2 to provide a convergence bound for GMRES min-
imizing the residual in an arbitrary norm equivalent to the H-norm; see [15, Theorem
3.7], where this result is given for right preconditioning with B̂−1

U and the H−1-inner
product. The result is based on the fact that the method of conjugate residuals and
GMRES both minimize the same residual in the norm used and that the for sym-
metric positive definite matrices, a convergence bound for the method of conjugate
residuals can be given in terms of the condition number of the preconditioned system;
see [15, Theorem 3.7] for further details.

Theorem 5.1. Let Ĥ be a symmetric positive definite matrix, such that C̄0H ≤
Ĥ ≤ C̄1H with positive constants C̄0, C̄1. Then, we have

‖r(k)‖Ĥ
‖r(0)‖Ĥ

≤ C̄1

C̄0
2

(√
κ− 1√
κ + 1

)k

,

where r(0) and r(k) are the initial and k-th residual of GMRES, respectively, and
κ := κ(B̂−1

L A) ≤ C1
C0

is the condition number of B̂−1
L A in the H-inner product.

Let us note that for the block triangular preconditioner, to the best of our knowl-
edge, no complete theory exists for a priori GMRES convergence bounds in the Eu-
clidean norm. Nevertheless, the Euclidean inner product is usually used to implement
this preconditioning approach with GMRES. Let us note that recently Simoncini [28]
has given an eigenvalue analysis of block triangular preconditioners with right precon-
ditioning without the scaling assumption (5.4). The bounds given in [28] also depend
on α0, α1, γ0, and γ1. It is shown that the eigenvalues of AB̂−1

R become complex when
the smallest eigenvalue λmin of AÂ−1 is smaller than one. In that case, the eigenvalues
lie in a disk centered at unity with radius

√
1− λmin.

Since B̂−1
L A is symmetric positive definite in the H-inner product, we can also

apply the method of conjugate gradients using this special inner product; see Bram-
ble and Pasciak [4] or Dohrmann and Lehoucq [8]. Since this is a non standard
implementation of the cg-method, we provide a version of this algorithm to solve
B̂−1

L Ax = B̂−1
L F in Figure 5.1. Here, xstart is our initial guess. We note that due to

this special implementation, no application of Ĉ or Â are needed. This is important
since in our applications, we are usually only able to apply Ĉ−1 and Â−1 to a vector.

It is well-known that a convergence bound for conjugate gradients can be given
in terms of the square root of the spectral condition number of the preconditioned
system. From Lemma 5.2, we immediately obtain an upper bound for the spectral
condition number of B̂−1

L A.

6. Analysis of the preconditioners. In this section, we will apply the general
theory for block triangular preconditioners presented in Section 5 to our inexact FETI-
DP methods given in Section 4. We only have to identify the matrix blocks in our
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z = B̂−1
L (f −A xstart)

Hz = HB̂−1
L (f −A xstart)

p = z

zHz = 〈z, Hz〉
lzl = ‖z‖

Until ‖z‖ / lzl < 10−7

Ap = A p

HBAp = HB̂−1
L Ap

α = zHz/ 〈HBAp, p〉
x = x + α p

z = z− αB̂−1
L Ap

Hz = Hz− α HBAp

zHzo = zHz

zHz = 〈z, Hz〉
β = zHz/zHzo

p = z + β p

Fig. 5.1. Conjugate gradient algorithm in the H-inner product.

inexact FETI-DP methods with those in the general presentation and provide concrete
estimates for the constants α0, α1 in (5.2) and γ0, γ1 in (5.3) in order to obtain our
convergence estimates.

6.1. Preconditioning the original system. We first consider the original
FETI-DP system (3.1). Here, we have

A =
[

K̃ BT

B 0

]
, B̂−1

L =

[
K̂−1 0

M−1BK̂−1 −M−1

]
.

Hence, we also have

A := K̃, Â := K̂, C := 0, Ĉ := M, SC := F,

and B is the same matrix as in the original FETI-DP method.
We assume that K̂ is a good preconditioner for K̃ with optimal spectral bounds α0

and α1 which are independent of the discretization parameters h, H. Good examples
for such preconditioners are based on geometric and algebraic multigrid methods. Let
us note that in some of our experiments incomplete Cholesky decompositions are used
although the bounds then will not be optimal.

The spectral bounds γ0 and γ1 in (5.3) are given by the eigenvalue bounds of the
standard, exact FETI-DP method. There exists a constant C > 0, independent of
h, H, such that

λT Mλ ≤ λT Fλ ≤ C (1 + log(H/h))2λT Mλ ∀λ ∈ range (B);
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see Mandel and Tezaur [26] for second and fourth order, scalar elliptic equations in
two dimensions, Klawonn, Widlund, and Dryja [21] for second order, scalar elliptic
equations with large coefficient jumps in three dimensions, and Klawonn and Widlund
[20] for linear elasticity problems with large coefficient jumps in three dimensions.
Thus, we have

γ0 := 1, γ1 := C (1 + log(H/h))2.

From these estimates we see that, asymptotically, for our inexact FETI-DP method
operating on the original system (3.1), we obtain convergence bounds of the same
quality as for the standard, exact FETI-DP methods. This holds for GMRES as well
as for conjugate gradients.

6.2. Preconditioning the reduced system. We now consider the reduced
FETI-DP system (3.3). Therefore, we have

Ar =

[
S̃ΠΠ −K̃ΠBK−1

BBBT
B

−BBK−1
BBK̃T

ΠB −BBK−1
BBBT

B

]
,

B̂−1
r,L =

[
Ŝ−1

ΠΠ 0
−M−1BBK−1

BBK̃T
ΠBŜ−1

ΠΠ −M−1

]

and identify A and B̂L from Section 5 with Ar and B̂r,L, respectively. Hence, we also
have

A := S̃ΠΠ, Â := ŜΠΠ, C := BBK−1
BBBT

B , Ĉ := M, B := −BBK−1
BBK̃T

ΠB .

As before, we also assume here that ŜΠΠ is a good preconditioner for S̃ΠΠ with optimal
spectral bounds α0 and α1 which are independent of the discretization parameters
h,H.

For the Schur complement SC we have again

SC = C + BA−1BT = BBK−1
BBBT

B + BBK−1
BBK̃T

ΠBS̃−1
ΠΠK̃ΠBK−1

BBBT
B = F.

Since Ĉ = M , we have

γ0 := 1, γ1 := C (1 + log(H/h))2.

From these estimates, we see that asymptotically, we again obtain convergence bounds
of the same quality as for the standard, exact FETI-DP methods and the inexact
FETI-DP methods operating on the original system (3.1). As for the latter method,
these bounds hold for GMRES as well as for conjugate gradients.

7. Performance considerations. We will use GMRES or CG to solve the sys-
tems (3.1) and (3.2) iteratively using the preconditioners B̂−1

L and B̂−1
r,L, respectively.

We restrict our rough cost estimate to the use of GMRES. The method for the
reduced system (3.2) iterates simultaneously on ũΠ and λ. Since the dimension of ũΠ

is small, the computational cost spent in the inner products of the Krylov method is
comparable to that of the original, exact FETI-DP method. In fact, the dimension of
[ ũT

Π, λT ]T is smaller than or equal the number of Lagrange multipliers in the original
(one-level) FETI method; see, e.g., Klawonn and Widlund [19] or Toselli and Widlund
[33]. This is a first indication that the communication cost is also comparable to the
original FETI method.
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A more careful analysis, also considering the reuse of the results of gather opera-
tions in the different blocks, shows that our method operating on the reduced system,
needs one more scatter operation with ũΠ in the application of the system matrix
compared to FETI-DP, although this may vary in concrete implementations.

Note that the significant computational cost in applying the system matrix Ar

to a vector is the same as in applying F except for the matrix-vector product with
S̃−1

ΠΠ which is now shifted to the preconditioner and replaced by Ŝ−1
ΠΠ. Although Ŝ−1

ΠΠ

appears in two blocks of the preconditioner, in the implementation, the product with
a vector has to be carried out only once in each iteration.

We repeat that in all methods considered in this paper the matrix-matrix product
K−1

BBK̃T
ΠB is built explicitly in a preprocessing step, as is done generally in standard,

exact FETI-DP.
The computational effort for the methods that iterate on displacement variables

u and Lagrange multipliers λ simultaneously seems to be considerably higher, at least
at first glance, because of the higher computation cost in the inner products of the
Krylov subspace method. But, fortunately, the inner products uT

BvB are perfectly
parallel and can be calculated by each processor seperately. Only the scalar results
of u

(i) T
B v

(i)
B have to be communicated among the processors.

8. Numerical results. In this section we present numerical results for the pre-
conditioners analyzed in the previous sections. We apply the preconditioners to 2D
and 3D linear elasticity problems. In the tables of this section we denote the iterative
substructuring method using the preconditioner B̂−1

L for the system (3.1) by inexact
FETI-DP or iFETI-DP. The method using the preconditioner B̂−1

r,L for the system
(3.2) iterating on the variables [ ũT

Π, λT ]T , is denoted as inexact reduced FETI-DP or
irFETI-DP. We always state the Krylov subspace method which is used as accelerator,
either GMRES or CG, and which part of the preconditioner is solved inexactly and
by which method. We generally use left preconditioning with GMRES so that we can
use the same implementation for the preconditioner as for CG.

8.1. Direct solvers. We use the modified FETI-DP formulations for structured
benchmark problems in 2D and 3D using exact solvers (Cholesky or LU decomposi-
tion) for the coarse grid problem and the local subdomain problems to verify that the
methods perform well in the best case. We use GMRES with left preconditioning and
CG to solve the preconditioned problem. In order to fulfill assumption (5.4), we scale
the results obtained from the direct solver forward backward substitutions for the
decomposition of S̃ΠΠ by a factor of 0.99992 when using CG with irFETI-DP. When
using CG with iFETI-DP we scale with 0.999992, i.e, we have Ŝ−1

ΠΠ = 0.999992 · S̃−1
ΠΠ

and K̂−1
BB = 0.999992 ·K−1

BB .
For the 2D problems in Table 8.1 we have chosen a larger coarse grid problem

than would be necessary for a compressible elasticity problem in two dimensions. It
is well known that vertex constraints are sufficient for this case to ensure scalability.

We see from Table 8.1 that the algorithms perform as expected and converge in-
dependently of the number of subdomains. The iteration count and estimated eigen-
values are almost identical to the numbers that we get from the original FETI-DP
method.

The eigenvalue estimates are obtained from the Lanczos process in the conjugate
gradient method. Note that the accuracy of these estimates is much lower than the
number of given digits suggests. Nevertheless, we can see that the considered FETI-
DP algorithms lead to Lanczos eigenvalue estimates which are very close to each
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other.

8.2. Inexact solvers for the coarse problem. We first investigate the effect
of an approximate solver for the coarse grid problem on the iteration count and the
estimated eigenvalues of the preconditioned operators.

We use cycles of the Fraunhofer SCAI parallel algebraic multigrid package SAMG
[32, 31, 30, 34] by Stüben and Clees to precondition S̃ΠΠ . In the experiments in
Table 8.2 we use V-cycles and ILU(0)-smoothing within SAMG. We see that the
method performs remarkably well in 2D and 3D for the structured benchmark prob-
lems. The iteration count is comparable to that of the original FETI-DP method,
cf. Table 8.1, and the estimated condition number is only slightly higher. A higher
condition number is, of course, expected. If we increase the number of SAMG cycles
we get closer to the eigenvalues of the original FETI-DP method.

Whenever scaling is used (“sc.”) it is calculated using three digits of an eigen-
value estimate obtained from a few, typically less than ten, CG iterations with S̃ΠΠ

preconditioned by SAMG. From the experiments we do not see the necessity of scaling
when using GMRES.

In Table 8.3 we present a larger test problem with 13 824 subdomains which
we are unable to solve with our current FETI-DP implementation since the direct
factorization of S̃ΠΠ requires too much memory (> 2 GB); see Section 9 for further
details.

Next, we consider a larger and unstructured mesh. The mechanical part shown
in Figure 8.1, is discretized using 1 291 933 linear, tetrahedral elements. The resulting
problem has 841 836 degrees of freedom; see [16]. We have partitioned the mechanical
part into 1 024 and 2 048 very small subdomains in order to obtain a coarse problem
of reasonable size. For this we use the graph partitioning software ParMetis [13].
Typically, it is more efficient to partition this mechanical part into a considerably
smaller number of subdomains; see [16]. From Table 8.6 we see that even for this
industrial benchmark problem the GMRES iteration count remains acceptable and
compares well with standard FETI-DP using CG.

8.3. Inexact solvers for the local problems. We only present preliminary
results for the inexact solution of the local Neumann problems. For a first set of
experiments, presented in Table 8.4, we use incomplete Cholesky decompositions with
a threshold of 10−4 for a structured 3D elasticity problem. We use renumbering [7]
before the incomplete factorization. For these calculations the incomplete Cholesky
factorization (ICC) uses on average about 50% of the memory required for an exact
factorization. Here, we only present results for GMRES. From these results we see
that the GMRES iteration count is still comparable to standard FETI-DP using CG.
Here, we do not use any scaling to satisfy (5.4) and we also note that ICC is not an
optimal preconditioner.

In another set of experiments, presented in Table 8.5, we consider a larger number
of smaller subdomains in 2D and use incomplete Cholesky decompositions for the local
Neumann problems with a threshold of 10−2. The local subdomain sizes remain fixed.
In these experiments the incomplete Cholesky factorizations use less than 65% of the
memory required for the exact factorizations. We see that the number of iterations
remains bounded as the number of subdomains increases from 16 to 1 024.

9. Annotations. In general, we use a sequential direct solver in our FETI-DP
production code for the factorization of S̃ΠΠ. In this production code and on the
specific hardware used in this paper our application calls UMFPACK 4.3 [7] in the
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Direct Solvers

2D 3D
N 64 256 1 024 4 096 64 512 4 096

1/H 8 64 32 64 4 8 16
H/h 8 8 8 8 4 4 4

dim(S̃ΠΠ) 322 1 410 5 890 24 066 324 3 528 32 400

FETI-DP
CG

It. 10 11 11 10 14 15 15
λmin 1.008 1.011 1.007 1.007 1.029 1.026 1.022
λmax 2.219 2.344 2.348 2.342 4.107 4.064 4.062

iFETI-DP
GMRES

It. 8 8 7 6 14 13 12
CG (sc.)

It. 10 10 9 9 15 14 13
λmin 1.001 1.001 1.004 1.002 1.020 1.025 1.026
λmax 2.219 2.341 2.342 2.341 4.107 4.065 4.063

irFETI-DP
GMRES

It. 8 8 7 6 14 13 12
CG (sc.)

It. 10 10 9 9 14 13 12
λmin 1.001 1.004 1.001 1.001 1.029 1.029 1.030
λmax 2.220 2.341 2.344 2.333 4.107 4.066 4.064

Table 8.1
Exact solvers: Comparison of standard FETI-DP with the inexact variants, denoted inexact

FETI-DP (iFETI-DP) and inexact FETI-DP on the reduced system (irFETI-DP). Here we use
direct solvers for the local subdomain problems and the coarse grid problem. The GMRES iteration
count is given for left preconditioning. For the CG accelerated method we use scaling (irFETI-DP:

Ŝ−1
ΠΠ = 0.99992 · eS−1

ΠΠ; iFETI-DP: Ŝ−1
ΠΠ = 0.999992 · eS−1

ΠΠ, K̂−1
BB = 0.999992 ·K−1

BB). The dual Schur

complement F is always preconditioned by the Dirichlet preconditioner M−1
D .

— 2D linear elasticity on the unit square for N = 64 to N = 4096 subdomains, Q1-elements,
E = 1, ν = 0.4, GMRES restart: 50 iterations, Algorithm B (vertex and edge averages), relative
residual reduction of 10−7.
— 3D linear elasticity on the unit cube for N = 64 to N = 4096 subdomains, P1-elements,
E = 210, ν = 0.29, GMRES restart: 50 iterations, Algorithm DE (only edge averages, no vertices),
relative residual reduction of 10−7.
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Inexact solver for the coarse problem

SAMG

2D 3D
N 64 256 1 024 4 096 64 512 4 096

1/H 8 64 32 64 4 8 16
H/h 8 8 8 8 4 4 4

dim(S̃ΠΠ) 322 1 410 5 890 24 066 324 3 528 32 400

iFETI-DP
GMRES

It. 8 8 8 7 14 13 12

irFETI-DP
GMRES

It. 8 8 7 7 14 13 12
GMRES (sc.)

It. 8 8 7 7 14 14 13
CG (sc.)

It. 9 9 9 10 14 15 15
λmin 1.013 1.021 1.035 1.037 1.032 1.029 1.028
λmax 2.258 2.419 2.472 2.545 4.276 4.523 4.864

Table 8.2
Inexact solver for the coarse grid problem: Performance of the inexact variants of FETI-DP,

denoted inexact FETI-DP (iFETI-DP) and inexact FETI-DP on the reduced system (irFETI-DP).

We use direct solvers for the local problems and SAMG [32, 31, 30, 34] to precondition eSΠΠ using
two V-cycles per outer Krylov subspace iteration. The V-cycles use one sweep of ILU(0) as pre-
and post-smoother. For some of the calculations we use scaling (“sc.”).
— 2D linear elasticity on the unit square for N = 64 to N = 4 096 subdomains, Q1-elements,
E = 1, ν = 0.4, GMRES restart: 50 iterations, Algorithm B (vertex and edge averages), relative
residual reduction of 10−7.
— 3D linear elasticity on the unit cube for N = 64 to N = 4096 subdomains, P1-elements,
E = 210, ν = 0.29, GMRES restart: 50 iterations, Algorithm DE (only edge averages, no vertices),
relative residual reduction of 10−7.

Fig. 8.1. Mechanical part courtesy of GETRAG FORD Transmissions GmbH,
Cologne, Germany.
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Inexact solver for the coarse problem (3D)

irFETI-DP / SAMG

GMRES GMRES (sc.) CG (sc.)
N 1/H H/h dim(S̃ΠΠ) It. It. It. λmin λmax

13 824 24 4 114 264 12 12 14 1.0302 4.731

Table 8.3
A problem with a large number of subdomains: Inexact FETI-DP on the reduced system

(irFETI-DP). Exact solvers for the local problem and SAMG [32, 31, 30, 34] using two V-cycles

per outer Krylov subspace iteration to precondition eSΠΠ. The V-cycles use one sweep of ILU(0) as
pre- and post-smoother; scaling was used for two of the calculations (“sc.”).
— 3D linear elasticity on the unit cube, N = 13 824 (24×24×24) subdomains, 192 (43×3) d.o.f. per
subdomain, 1 167 051 total d.o.f.; P1-elements, E = 210, ν = 0.29, GMRES restart: 50 iterations,
Algorithm DE (edge averages), relative residual reduction of 10−7.

Inexact solvers for the local problems
3D, icc(1e-4)

N 8 64
1/H 2 4
H/h 14 14

FETI-DP
CG

It. 18 23
λmin 1.03 1.03
λmax 12.94 10.45

iFETI-DP
GMRES

It. 22 22

Table 8.4
Inexact solver for the local Neumann problems: Comparison of standard, exact FETI-DP with

inexact FETI-DP (iFETI-DP) using incomplete Cholesky with a threshold of 10−4 for the local Neu-
mann problems and a direct solver for the coarse grid problem. In these experiments the incomplete
Cholesky factorization uses about half of the memory that is required for the total factorization.
— 3D linear elasticity on the unit cube for N = 8 and N = 64 subdomains, 8 232 (=143 × 3)
d.o.f. per subdomain, 59 049 and 446 631 total d.o.f., respectively; P1-elements, E = 210, ν = 0.29,
GMRES restart: 50 iterations, Algorithm DE (edge averages), relative residual reduction of 10−7.
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Inexact solvers for the local problems
2D, icc(1e-2)

N 16 36 64 100 256 400 768 1 024

iFETI-DP
GMRES

It. 14 14 13 13 12 12 11 11

Table 8.5
Inexact solver for the local Neumann problems: Comparison of standard FETI-DP with inexact

FETI-DP (iFETI-DP) using incomplete Cholesky with a threshold of 10−2 for the local Neumann
problems and a direct solver for the coarse grid problem. In these experiments the incomplete
Cholesky factorization uses less than two thirds of the memory that is required for the total factor-
ization.
— 2D linear elasticity on the unit cube for N = 4 to N = 1024 subdomains, 128 (= 82 × 2) d.o.f.
per subdomain. Q1-elements, E = 1, ν = 0.4, GMRES restart: 50 iterations, Algorithm B (vertices
and edge averages), relative residual reduction of 10−7.

Mechanical Part
N 1 024 2 048

FETI-DP
CG

It. 41 48
λmin 1.04 1.04
λmax 33.31 44.63

irFETI-DP / SAMG
GMRES

It. 53 64

Table 8.6
Mechanical part, see Figure 8.1, 841 836 d.o.f., partitioned into 1 024 and 2 048 subdomains.

The coarse problem has a size of 10 380 and 19 515 d.o.f., respectively. We use 4 V cycles of SAMG
[32, 31, 30, 34] in each outer Krylov subspace iteration. Two Gauss-Seidel sweeps as pre- and two
as post-smoother are used. The Gauss-Seidel sweeps use CF-ordering for pre-smoothing and the
reverse for post-smoothing.
— 3D linear elasticity on the unit cube for N = 1 024 and N = 2048 subdomains, P1-elements,
E = 210, ν = 0.29, GMRES restart: 100 iterations, Algorithm DE (edge averages), relative residual
reduction of 10−7.
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(faster) 32 bit integer and 32 bit pointer mode. So even though on our 64 bit hardware
the application is not subject to the 2 GB limit the factors of every single matrix
cannot grow larger than 2 GB. This is typically not a limitation except for very large
subdomains or very large coarse matrices as one of coarse matrices considered for this
paper. The calculations were carried out on our 16 processer (8 dual Opteron 248, 2.2
Ghz) Opteron cluster in Essen. Some of the calculations were carried out in parallel
using PETSc; see [2], [1], [3]. The algebraic multigrid solver SAMG always ran in
parallel, using two threads.
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[31] Klaus Stüben. A review of algebraic multigrid. J. Comp. Appl. Math., 128:281–309, 2001. Also
available as GMD Report 69, November 1999.
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