
Complex Numbers

The numbers everybody knows are the natural numbers and the integers.

Z = {. . . ,−2,−1, 0, 1, 2, . . .}
But people learn in mathematic classes that it is not enough to have these numbers be-
cause they may solve equations like 4x = 20. However when the solution of 4x = 3 is
required integers are no longer sufficient. Thus the fraction numbers are introduced, e.g.,
3
4 solves the equation. These numbers are then called rational numbers.
But as before the rational numbers are limited. The equations x2 = 4 or x2 = 9

4 can
be solved but x2 = 2 cannot. Thus the irrational numbers as squareroot of 2 (

√
2) are

introduced and together with the rational numbers we obtain the real numbers. For most
computations the real numbers are enough to find solutions.
However if we are faced with an equation like x2 = −1 we again can not find a solution
within the real numbers, since all even powers of real numbers are positive. Thus the
imaginary unit i is defined as the squareroot of (−1).
The astonishing thing is that after introducing the imaginary unit i all polynomials can
be decomposed into linear factors, i.e., all polynomial equations can be solved. This fact
is one of the main theorems of (linear) algebra.

Here, the complex numbers will be introduced as a twodimensional real vector space
with a element-with-element multiplication, which gives a vector in the twodimensional
real vector space R2 and with which R2 becomes a field.

Definition 1
A field F is a set on which an addition ’+’ and a multiplication ’·’ are defined such that
the following properties hold

C) F is a closed set with respect to the defined addition and multiplication, i.e.,

∀a, b ∈ F : a+ b ∈ F and a · b ∈ F.

Id) There exist identity elements e+ and e· for the addition and the multiplication, i.e.,

∀a ∈ F : a+ e+ = a = e+ + a and a · e· = a = e· · a.

In) There exist inverse elements with respect to the addition and the multiplication for
all elements of F , i.e.,

∀a ∈ F ∃b = −a : a+ b = e+ and ∀a ∈ F ∃b = 1/a = a−1 : a · b = e·

These operations indirectly define the subtraction and the division in the field.

A) Addition and multiplication in F are associativ, i.e.,

∀a, b, c ∈ F : a+ (b+ c) = (a+ b) + c and a · (b · c) = (a · b) · c.
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Co) Addition and multiplication in F are commutative, i.e.,

∀a, b ∈ F : a+ b = b+ a and a · b = b · a.

D) The multiplication is distributive over the addition, i.e.,

∀a, b, c ∈ F : a · (b+ c) = (a · b) + (a · c).

The twodimensional real vector space is defined as

R2 = {(x, y)T : x, y ∈ R} .

R2 becomes a field with the component-by-component defined addition, i.e.,

∀
(
x1

y1

)
,

(
x2

y2

)
∈ R2 :

(
x1

y1

)
+

(
x2

y2

)
:=

(
x1 + x2

y1 + y2

)

and the multiplication defined by Definition 2.

Definition 2

∀
(
x1

y1

)
,

(
x2

y2

)
∈ R2 :

(
x1

y1

)
·
(
x2

y2

)
:=

(
x1x2 − y1y2

x1y2 + x2y1

)

Lemma 1
For the mapping defined in Definition 2 the following properties hold

1. ∀z1 := (x1, y1)T , z2 := (x2, y2)T : z1 · z2 = z2 · z1 (commutativity)

2. ∀z1, z2, z3 := (x3, y3)T : z1 · (z2 · z3) = (z1 · z2) · z3 (associativity)

3. ∃ e· := (1, 0)∀z := (x, y)T : e· · z = z · e· = z (identity element)

4. ∀z = (x, y) 6= (0, 0) ∃ z−1 :=
(

x

x2 + y2
,− y

x2 + y2

)
such that z · z−1 = z−1 · z = e·

(inverse element)

5. ∀z1, z2, z3 : z1 · (z2 + z3) = (z1 · z2) + (z1 · z3) (distributivity)

Proof:

ad 1.

z1 · z2 =
(
x1

y1

)
·
(
x2

y2

)
=

(
x1x2 − y1y2

x1y2 + x2y1

)

=
(
x2x1 − y2y1

x2y1 + x1y2

)
=

(
x2

y2

)
·
(
x1

y1

)
= z2 · z1

2



ad 2.

z1 · (z2 · z3) =
(
x1

y1

)
·
(
x2x3 − y2y3

x2y3 + x3y2

)

=
(
x1(x2x3 − y2y3)− y1(x2y3 + x3y2)
x1(x2y3 + x3y2) + (x2x3 − y2y3)y1

)

=
(

(x1x2 − y1y2)x3 − (x1y2 + x2y1)y3

(x1x2 − y1y2)y3 + x3(x1y2 + x2y1)

)

=
(
x1x2 − y1y2

x1y2 + x2y1

)
·
(
x3

y3

)
= (z1 · z2) · z3

ad 3.

e· · z =
(

1
0

)
·
(
x
y

)
=

(
1 · x
1 · y

)

=
(
x · 1
y · 1

)
=

(
x
y

)
·
(

1
0

)
= z · e·

ad 4. For the corresponding inverse element to z holds z−1 · z = e· = z · z−1. Since the
commutativity was already shown we can determine z−1 := (x̃, ỹ) using the first
equality from above.

z−1 · z = e·

⇔
(
x̃x− ỹy
x̃y + xỹ

)
=

(
1
0

)

⇔
{
x̃x− ỹy
x̃y + xỹ

=
=

1
0

⇒ ỹ = − x̃y
x

⇒ x̃x+
x̃y

x
y = 1

⇔ x̃(x2 + y2) = x

⇔ x̃ =
x

x2 + y2

⇒ ỹ = − y

x2 + y2

ad 5.

z1 · (z2 + z3) =
(
x1(x2 + x3)− y1(y2 + y3)
x1(y2 + y3) + (x2 + x3)y1

)

=
(
x1x2 − y1y2

x1y2 + x2y1

)
+

(
x1x3 − y1y3

x1y3 + x3y1

)
= (z1 · z2) + (z1 · z3) ¤
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Theorem 1
The real vector space R2 equipped with the component-by-component addition and the mul-
tiplication defined in Definition 2 is a field. This field is called the field of complex numbers:
C.

The proof is left to the reader since it is very easy.

On R2 the multiplication with a scalar is defined

∀α ∈ R,
(
x
y

)
∈ R2 : α

(
x
y

)
=

(
αx
αy

)
=

(
α
0

)(
x
y

)

= α

(
1
0

)(
x
y

)
= αe·

(
x
y

)

It can be shown with algebraic tools that the only n dimensional vector space which is a
field is C, i.e., it can be shown that for n ≥ 3 no multiplication exists to obtain a field.

Euler introduced the imaginary unit as i := (0, 1)T . This leads to

i2 = (0, 1)T · (0, 1)T = (−1, 0)T

Furthermore e = 1 is written instead of e := (1, 0)T .
Thus every complex number can be written in the following form

∀z =
(
x
y

)
∈ C : z = x+ iy

For the multiplication in C one can now proceed as in the real numbers R. Bearing in
mind that i2 = −1, this gives

(x1 + iy1)(x2 + iy2) = x1x2 + iy1x2 + ix1y2 + i2y1y2 = (x1x2 − y1y2) + i(y1x2 + x1y2)

as defined in Definition 2.

Definition 3
For z = (x, y)T = x+ iy ∈ C with x, y ∈ R, the real and imaginary part are defined by

• Re(z) := x as the real part of z,

• Im(z) := y as the imaginary part of z.

If Re(z) := x = 0, z is called purely imaginary, and
if Im(z) := y = 0, z is called real.

To define the length of a vector in C which is then defined as its absolute value the complex
conjugation is needed.
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Figure 1: A complex number z and its complex conjugated number.

Definition 4
The mapping : C→ C defined by

z = x+ iy 7→ z := x− iy ∀x, y ∈ R

defines the complex conjugation.

Remark 1
The complex conjugation defined in Definition 4 is an automorphism and an involution,
i.e., it is an isomorphism from C to C and the squared mapping gives the identity.

For z := x+ iy we obtain

zz = (x+ iy)(x− iy) = x2 − ixy + ixy − i2y2 = x2 + y2 ∈ R+
0 ,

with R+
0 := {x ∈ R : x ≥ 0}.

Definition 5
The absolute value of a complex number is defined as the Euclidean length of the twodi-
mensional vector, i.e., the distance to origin.

∀z := x+ iy ∈ C : |z| :=
√
zz =

√
x2 + y2

Some properties of the absolute value of complex numbers are given in Theorem 2.

Theorem 2
The absolute value has the following properties

1. ∀z ∈ C : |z| = |z| and |z| = 0 ⇔ z = 0 = (0, 0)
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2. ∀z1, z2 ∈ C : |z1z2| = |z1| |z2| and if z2 6= 0 we also obtain
∣∣∣∣
z1
z2

∣∣∣∣ =
|z1|
|z2|

3. ∀z ∈ C : −|z| ≤ Re(z) ≤ |z| and −|z| ≤ Im(z) ≤ |z|
4. ∀z1, z2 ∈ C : |z1 + z2| ≤ |z1|+ |z2| (triangle inequality)

Proof:

ad 1. |z| =
√
x2 + y2 =

√
x2 + (−y)2 = |x+ i(−y)| = |z|

zz = 0 ⇔ z = 0 ∨ z = 0 ⇔ x = 0 ∧ y = 0

ad 2. |z1z2|2 = (z1z2)(z1z2) = z1z2z1z2 = (z1z1)(z2z2) = |z1| |z2|
ad 3. The proof will be given only for the real part since the imaginary part can be

treated analogously.
First assume that x ≥ 0, then

Re(z) = x =
√
x2 ≤

√
x2 + y2 = |z| since x2 ≤ x2 + y2 ∀y ∈ R

and −|z| ≤ 0 ≤ x.
If x ≤ 0 it follows that x ≤ 0 ≤ |z| and

Re(z) = x = −
√
x2 ≥ −

√
x2 + y2 = −|z| since x2 ≤ x2 + y2 ∀y ∈ R.

ad 4.

|z1 + z2|2 = (z1 + z2)(z1 + z2) = (z1 + z2)(z1 + z2)
= (z1z1) + (z1z2) + (z2z1) + (z2z2)
= (z1z1) + (z1z2) + (z2z1) + (z2z2)
= |z1|2 + 2Re(z1z2) + |z2|2
3.≤ |z1|2 + 2|z1z2|+ |z2|2

2.,1.
≤ |z1|2 + 2|z1| |z2|+ |z2|2
= (|z1|+ |z2|)2 ¤

There may be the question why the complex space is not introduced in the beginning. It
is because on the real numbers there exists an orderrelation. But the complex numbers
do not have such a relation.

One can also represent complex numbers in so-called polar coordinates.

Let z := x+ iy 6= 0 = 0 + i0 with x, y ∈ R, then

∃! ϕ ∈ (−π, π] ∃! r ∈ (0,∞) : z = r(cos(ϕ) + i sin(ϕ)).
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Here r = |z|, x = Re(z) = r cos(ϕ) and y = Im(z) = r sin(ϕ), and the ! stands for uniquely
defined.

Obviously ϕ may not always be uniquely defined on a larger interval since cosine and
sine are alternating functions with period 2π.
Every ϕ which satisfies z = r(cos(ϕ) + i sin(ϕ)), r > 0 is called argument of z

ϕ = arg(z).

If ϕ is limited to (−π, π], ϕ is called the uniquely defined main value of the argument of
z 6= 0.

This representation leads to a geometrical interpretation of the multiplication of two com-
plex numbers. Furthermore it is helpfully when the division, n-th power and n-th root of
a complex number should be defined.

Geometrical interpretation of Definition 2:

With z1 = |z1|(cos(ϕ1) + i sin(ϕ1)) 6= 0 and z2 = |z2|(cos(ϕ2) + i sin(ϕ2)) 6= 0 we have

z1z2 = |z1| |z2| [cos(ϕ1) cos(ϕ2)− sin(ϕ1) sin(ϕ2) + i (cos(ϕ1) sin(ϕ2) + cos(ϕ2) sin(ϕ1))]
= |z1| |z2| (cos(ϕ1 + ϕ2) + i sin(ϕ1 + ϕ2)) .

Here the angle sum identities for sine and cosine were used.

Example given approximately in Figure 2

z1 = (3 + 2i) =
√

13(cos(0.19π) + i sin(0.19π)) ⇒ ϕ1 = 0.19π, |z1| =
√

13
z2 = (4 + i) =

√
17(cos(0.08π) + i sin(0.08π)) ⇒ ϕ2 = 0.08π, |z2| =

√
17

z1z2 = (3 + 2i)(4 + i) = 10 + 11i

⇒ 10√
221

= cos(φ) ⇒ φ = 0.27π

z1z2 =
√

13(cos(0.19π) + i sin(0.19π))
√

17(cos(0.08π) + i sin(0.08π))
=

√
221(cos(0.27π) + i sin(0.27π))

Thus the multiplication of complex numbers can be interpreted as the multiplication of
the absolute values (lengths) and the addition of the arguments.

Division of complex numbers:

For z = |z|(cos(ϕ) + i sin(ϕ)) 6= 0 one obtains

z−1 =
1
z

=
1

|z|(cos(ϕ) + i sin(ϕ))
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Figure 2: Geometrical interpretation of the multiplication of two complex numbers.

=
1
|z|

cos(ϕ)− i sin(ϕ)
cos2(ϕ) + sin2(ϕ)︸ ︷︷ ︸

=1

=
cos(ϕ)− i sin(ϕ)

|z|
=

1
|z| (cos(−ϕ) + i sin(−ϕ)) ,

using an expansion with cos(ϕ)−i sin(ϕ)
cos(ϕ)−i sin(ϕ) in the first step and using that cosine is symmetric

and sine antisymmetric, i.e., cos(x) = cos(−x) and − sin(x) = sin(−x).

⇒ z1
z2

= z1z
−1
2 =

|z1|
|z2| (cos(ϕ1 − ϕ2) + i sin(ϕ1 − ϕ2))

Thus the division is the division of the absolute values and the subtraction of the argu-
ments.

From the interpretation of the multiplication a formula for the n-th power can now easily
obtained in polar coordinates.
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n-th power of a complex number:

By induction the de Moivre formula is obtained

zn = |z|n (cos(nϕ) + i sin(nϕ))

The de Moivre formula can be used to obtain the n-th root of a complex number.

n-th root of a complex number:

w ∈ C is called the n-th root of z :⇔ wn = z.
With w = |w| (cos(ψ) + i sin(ψ)) this gives

|w|n (cos(nψ) + i sin(nψ)) = |z| (cos(ϕ) + i sin(ϕ))
= |z| (cos(ϕ+ 2π) + i sin(ϕ+ 2π))

...
= |z| (cos(ϕ+ 2(n− 1)π) + i sin(ϕ+ 2(n− 1)π))

Since for factors greater or equal n results equivalent to the ones for i = 0, . . . , n − 1 are
achieved only the ones up to n− 1 are considered.

Thus |w|n = |z| and nψ = ϕ + 2kπ ⇔ ψ = ϕ
n + 2k

n π k = 0, . . . , n. From this it
is clear that for k = n the same results for cos(ψ) as for k = 0 and so on are obtained.

For every complex number z = |z| (cos(ϕ) + i sin(ϕ)) 6= 0 exist n n-th roots w0, . . . , wn−1

with

wk = n
√
|z|

(
cos(

ϕ+ 2kπ
n

) + i sin(
ϕ+ 2kπ

n
)
)

k = 0, . . . n− 1

An example is given by, cf. Figure 3 for an approximate picture,

z = 4 + 4
√

3i ⇒ |z| = 8 , ϕ =
π

3
= 60◦

⇒ w
(2)
0 = 2

√
2(cos(

π

6
) + i sin(

π

6
)) = 2

√
2(cos(30◦) + i sin(30◦))

w
(2)
1 = 2

√
2(cos(

7π
6

) + i sin(
7π
6

)) = 2
√

2(cos(210◦) + i sin(210◦))

⇒ w
(3)
0 = 2(cos(

π

9
) + i sin(

π

9
)) = 2(cos(20◦) + i sin(20◦))

w
(3)
1 = 2(cos(

7π
9

) + i sin(
7π
9

)) = 2(cos(140◦) + i sin(140◦))

w
(3)
2 = 2(cos(

13π
9

) + i sin(
13π
9

)) = 2(cos(260◦) + i sin(260◦))

The example shown in Figure 4 is for a real number. It shows approximately that there
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Figure 3: 2nd and 3rd root of a complex number a z.
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Figure 4: 2nd and 3rd root of a real number interpreted as a complex number z.
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only exists one real third root but two more complex ones.

z = 9 ⇒ |z| = 9 , ϕ = 0 = 0◦

⇒ w
(2)
0 = 3(cos(0) + i sin(0)) = 3

w
(2)
1 = 3(cos(π) + i sin(π)) = −3

⇒ w
(3)
0 = 3

√
9(cos(0) + i sin(0)) = 3

√
9

w
(3)
1 = 3

√
9(cos(

2π
3

) + i sin(
2π
3

)) = 3
√

9(cos(120◦) + i sin(120◦))

w
(3)
2 = 3

√
9(cos(

4π
3

) + i sin(
4π
3

)) = 3
√

9(cos(240◦) + i sin(240◦))
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