Figures concerning the example of Gauss for the least-squares method

Notations

$$
\begin{aligned}
& \mathrm{S}=\text { Ammensen } \\
& \mathrm{T}=\text { Brocken } \\
& \mathrm{Q}=\text { meridian mark (Wehnder paper mill) } \\
& \mathrm{R}=\text { Hohenhagen } \\
& \mathrm{P}=\text { observatory in Göttingen }
\end{aligned}
$$

heigth measurements carried out by Gauß: 1. measured heigth-differences
Relative measurements

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{P}+66.334 \\
& \mathrm{R}=\mathrm{P}+349.366 \\
& \mathrm{R}=\mathrm{Q}+283.596 \\
& \mathrm{~S}=\mathrm{Q}+206.580 \\
& \mathrm{~S}=\mathrm{R}-76.108 \\
& \mathrm{~T}=\mathrm{R}+648.427 \\
& \mathrm{~T}=\mathrm{S}+719.612
\end{aligned}
$$

heigth measurements carried out by Gauß: 2. heigth-differences with reference P Taking the observatory as reference point and defining the relative height differences

$$
q:=Q-P, r:=R-P, s:=S-P, t:=T-P
$$

gives

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 1 & 0 \\
0 & -1 & 0 & 1 \\
0 & 0 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
q \\
r \\
s \\
t
\end{array}\right)=\left(\begin{array}{r}
64.334 \\
349.366 \\
283.596 \\
206.580 \\
-76.108 \\
648.427 \\
719.612
\end{array}\right)
$$

