Lecture notes from the 23. December 2010

Please not that in the lecture it is section number 5 and not 0.

Bisection method

Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and with $f(a) f(b)<0$.
Find $x^{*} \in[a, b]$ such that $f\left(x^{*}\right)=0$.
$\stackrel{\text { intermediate value theorem }}{\Rightarrow}$ There exists at least one root of f in (a, b).

Algorithm 0.1 (Bisection)

$$
\begin{aligned}
x_{p}^{(0)} & :=\left\{\begin{array}{lll}
a & \text { if } & f(a)>0 \\
b & \text { if } & f(b)>0
\end{array}\right. \text { (i.e., otherwise) } \\
\text { and } x_{n}^{(0)} & :=\left\{\begin{array}{lll}
a & \text { if } & f(a)<0 \\
b & \text { if } & f(b)<0
\end{array}\right. \text { (i.e., otherwise) } \\
\text { for } k & =0, \ldots \\
x_{m}^{(k)} & :=\frac{x_{p}^{(k)}+x_{n}^{(k)}}{2} \quad \text { (midpoint) } \\
x_{p}^{(k+1)} & := \begin{cases}x_{m}^{(k)} & \text { if } f\left(x_{m}^{(k)}\right)>0 \\
x_{p}^{(k)} & \text { otherwise }\end{cases} \\
x_{n}^{(k+1)} & := \begin{cases}x_{m}^{(k)} & \text { if } f\left(x_{m}^{(k)}\right)<0 \\
x_{n}^{(k)} & \text { otherwise }\end{cases}
\end{aligned}
$$

For $k \geq 0$ we have

1. $\left|x_{p}^{(k)}-x_{n}^{(k)}\right|=2^{-k}(b-a) \Rightarrow$ the length of the intervals converges to zero without loss of generality, we may assume $f\left(x_{m}^{(0)}\right)>0$ which gives

$$
\begin{aligned}
\left|x_{p}^{(1)}-x_{n}^{(1)}\right|=\left|x_{m}^{(0)}-x_{n}^{(0)}\right| & =\left|\frac{x_{p}^{(0)}+x_{n}^{(0)}}{2}-x_{n}^{(0)}\right| \\
& =\left|\frac{x_{p}^{(0)}-x_{n}^{(0)}}{2}\right| \\
& =2^{-1}(b-a)
\end{aligned}
$$

Now we make an induction step $k \rightarrow k+1$, assuming again without restriction $f\left(x_{m}^{(k)}\right)>0$

$$
\left|x_{p}^{(k+1)}-x_{n}^{(k+1)}\right|=\left|x_{m}^{(k)}-x_{n}^{(k)}\right|=\left|\frac{x_{p}^{(k)}+x_{n}^{(k)}}{2}-x_{n}^{(k)}\right|
$$

$$
\begin{aligned}
& =\left|\frac{x_{p}^{(k)}-x_{n}^{(k)}}{2}\right| \\
& =2^{-1}\left|x_{p}^{(k)}-x_{n}^{(k)}\right| \\
& =2^{-1} 2^{-k}(b-a) \\
& =2^{-(k+1)}(b-a)
\end{aligned}
$$

2. We assume without limitation $x_{n}^{(l)}<x_{p}^{(l)}$ for all l. Then

$$
\left[x_{n}^{(k+1)}, x_{p}^{(k+1)}\right] \subset\left[x_{n}^{(k)}, x_{p}^{(k)}\right]
$$

3. $f\left(x_{p}^{(k)}\right) \geq 0, f\left(x_{n}^{(k)}\right) \leq 0$ for all $k \geq 0$

Fixed point iteration

Remember: \quad Find $x^{*} \in \mathbb{R}$ with $g\left(x^{*}\right)=x^{*}$

Algorithm 0.2 (Fixed point iteration)

Choose an initial guess $x^{(0)}$. For $k \geq 0$ compute

$$
x^{(k+1)}:=g\left(x^{(k)}\right)
$$

Question: When does the fixed point iteration converge?

Newton iteration

Find x^{*} such that $f\left(x^{*}\right)=0$.

Algorithm 0.3 (Newton iteration)

Choose an initial guess $x^{(0)}$. For $k \geq 0$ compute

$$
x^{(k+1)}:=x^{(k)}-\frac{f\left(x^{(k)}\right)}{f^{\prime}\left(x^{(k)}\right)}
$$

The convergence of the Newton iteration depends on the initial value.

Secant method

Find x^{*} such that $f\left(x^{*}\right)=0$.
Algorithm 0.4 (Secant method)
Let $x^{(0)}$ and $x^{(1)}$ be given. For $k \geq 1$ compute

$$
x^{(k+1)}:=x^{(k)}-f\left(x^{(k)}\right) \underbrace{\left(\frac{x^{(k)}-x^{(k-1)}}{f\left(x^{(k)}\right)-f\left(x^{(k-1)}\right)}\right)}_{\text {inverse of the slope of the secant }}
$$

0.1 Banach Fixed Point Theorem

Definition 0.1

A function $g: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called contractive in G with respect to the norm $\|\cdot\|$ if there exists a constant $q \in(0,1)$, i.e., $0<q<1$, such that

$$
\begin{equation*}
\|g(x)-g(y)\| \leq q\|x-y\| \quad \forall x, y \in D \tag{0.0}
\end{equation*}
$$

The constant q is called Lipschitz constant of g in D. A function g which satisfies (0.0), where the constant $q>0$ may not be bounded from above by 1, is called Lipschitz continuous.

Theorem 0.1

Let $D \subset \mathbb{R}^{n}$ be a convex set and the function $g: D \rightarrow \mathbb{R}^{n}$ differentiable. Furthermore, let $\boldsymbol{q}:=\sup _{\boldsymbol{x} \in \boldsymbol{D}}\|\boldsymbol{D} \boldsymbol{g}(\boldsymbol{x})\|<\mathbf{1}$, where $D g(x)$ is the Jacobi matrix

$$
D g(x)=\left(\begin{array}{ccc}
\frac{\partial g_{1}(x)}{\partial x_{1}} & \ldots & \frac{\partial g_{1}(x)}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial g_{n}(x)}{\partial x_{1}} & \ldots & \frac{\partial g_{n}(x)}{\partial x_{n}}
\end{array}\right) \quad \text { of } g(x)=\left(\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right)
$$

Then g is a contractive function.
Proof: Remember: $D \subset \mathbb{R}^{n}$ is convex means

$$
\forall a, b \in D \Rightarrow x=t a+(1-t) b \in D \quad \forall t \in[0,1]
$$

Assume:

$$
x, y \in D, t \in[0,1]
$$

Define:

$$
f(t):=g(t x+(1-t) y)
$$

Chain rule: $\quad \Rightarrow D f(t)=D g(t x+(1-t) y)(x-y)$

$$
\begin{aligned}
\|g(x)-g(y)\|=\|f(1)-f(0)\| & =\left\|\int_{0}^{1} D f(t) d t\right\| \\
& \leq \sup _{t \in[0,1]}\|D f(t)\| \\
& =\sup _{t \in[0,1]}\|D g(t x+(1-t) y)(x-y)\| \\
& \leq \underbrace{\left(\sup _{t \in[0,1]}\|D g(t x+(1-t) y)\|\right)\|(x-y)\|}_{<1} \\
& =\underbrace{\left.\sup _{z \in D}\|D g(z)\|\right)}_{z \in D}\|(x-y)\|
\end{aligned}
$$

$\Rightarrow g$ is contractive.

Definition 0.2 (Cauchy sequence)

A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is called a Cauchy sequence or Cauchy convergent if and only if (: \Leftrightarrow)

$$
\begin{aligned}
\forall \varepsilon>0 \quad \exists N \in \mathbb{N} \forall n \in \mathbb{N}, n \geq N \quad \forall k \in \mathbb{N} & :\left\|a_{n}-a_{n+k}\right\|<\varepsilon \\
\forall \varepsilon>0 \quad \exists N \in \mathbb{N} \forall n, m \in \mathbb{N}, n, m \geq N & :\left\|a_{n}-a_{m}\right\|<\varepsilon
\end{aligned}
$$

Theorem 0.2

For a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ in a complete space as \mathbb{R} the following two statements are equivalent

1. $\left(a_{n}\right)_{n \in \mathbb{N}}$ is convergent.
2. $\left(a_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence.
