Campus Essen

Dr. S. Vanis

20. January 2011

Introduction to Numerical Methods Tutorial 13

Exercise 1:

Let

$$A = \begin{pmatrix} 12 & 2 & -13 \\ -9 & 1 & 9 \\ 2 & 2 & -3 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$

be given.

- (i) Compute manually the eigenvalues of A.
- (ii) Compute manually the corresponding eigenvectors to the eigenvalues of A.
- (iii) Give the algebraic and geometric multiplicity of each eigenvalue of A.

(*)-Exercise 2: (4 + 2 + 5 + 2 + 1 + 2 = 16 points)

Let

$$A = \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} & 0\\ -\frac{1}{2} & \frac{3}{2} & i & 0\\ 0 & -\frac{i}{2} & 5 & \frac{i}{2}\\ -1 & 0 & 0 & 5i \end{pmatrix} \in \mathbb{C}^{4 \times 4}$$

be given.

- (i) Determine the Gerschgorin circles K_i for A and \tilde{K}_i for A^T .
- (ii) Plot the circles in one diagram. Mark which circle belongs to which matrix.
- (iii) Use the 2. and 3. theorem of Gerschgorin to determine an approximate solution of the eigenvalues, i.e., Theorem 6.2 and 6.3 from the lecture.
- (iv) Include the statement of the 2. theorem of Gerschgorin into your diagram.
- (v) Compute the eigenvalues of A using matlab.
- (vi) Display the eigenvalues you obtained from matlab in your diagram. Is this in accordance with the theorems?

Delivery: 27. January 2011

Explanatory notes regarding the written exam

- The written exam will take place on the 14. february 2011 in room T03 R02 D39 in the time of 10:00 12:00 o'clock.
- Don't forget to sign up at the examination office in time.
- Send an e-Mail to stefanie.vanis@uni-due.de until the 4th february (4.02.2011) if you take part in the exam. The subject should be "written exam" and it should include your name and your student id-number.
- You are allowed to bring your pocket calculator.
- You are allowed to bring one sheet of paper Din A4 with notes on front and back.
- You will get paper. You are not allowed to use your own paper.
- Don't forget to bring your student id-card.
- Mobile phones are not allowed on the desks during the exam. There will be a wall clock organized for you to know the time.
- You will not pass the course if the programming exercises are not submitted.