Introduction to Numerical Methods
 Tutorial 14

All computations should be carried out using rational numbers or decimal numbers with 3 digits.

Exercise 1:

Let

$$
A:=\left(\begin{array}{cccc}
2 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \in \mathbb{R}^{4 \times 4}
$$

be a given matrix.
(i) Compute manually the eigenvalues of A.
(ii) Compute the eigenvectors for the maximum and the minimum eigenvalue. Normalize the vectors using the $\infty-$, $1-$, and 2 -norm, i.e., for $\|\cdot\|_{\infty},\|\cdot\|_{1}$, and $\|\cdot\|_{2}$.

Exercise 2:

Let A as in Exercise 1 be given and let $q^{(0)}=(0,0,1,0)^{T} \in \mathbb{R}^{4}$ be the given initial vector
(i) Compute 4 steps of the power iteration using $\|\cdot\|_{\infty}$ and $\|\cdot\|_{1}$ for the normalization.
(ii) Compute 3 steps of the inverse iteration to determine the smallest eigenvalue using $\|\cdot\|_{\infty}$ and $\|\cdot\|_{1}$ for the normalization.
(iii) What do you discover when you consider $\nu^{(k)}$?
(*)-Exercise 3: ($8+6+1=15$ points)
Let A as in Exercise 1 be given and let $q^{(0)}=(0,0,1,0)^{T} \in \mathbb{R}^{4}$ be the given initial vector
(i) Compute 4 steps of the power iteration using $\|\cdot\|_{2}$ for the normalization.
(ii) Compute 3 steps of the inverse iteration to determine the smallest eigenvalue using $\|\cdot\|_{2}$ for the normalization.
(iii) What is different to Exercise 2?

Programming Exercise 5: (delivery date: 7.02.2011, 8 points)
Program the power iteration for the example discussed in Exercise 3. Use the Euclidean-norm. Stop if the iterates for q or ν do not differ more than 10^{-7}, i.e., $\left\|q^{(k)}-q^{(k-1)}\right\|_{2}<10^{-7}$ or $\left\|\nu^{(k)}-\nu^{(k-1)}\right\|_{2}<10^{-7}$.

Delivery: 3. February 2011

The corrected exercises and programming exercises will be handed back after the written exam on the 14th of february.

I wish you all the best for your coming exams. Have a nice semester break.

