Universität Duisburg-Essen Computational Mechanics Campus Essen

Dr. S. Vanis

Fall Term 2010/11

21. October 2010

Introduction to Numerical Methods Tutorial 2

Exercise 1:

Let the following table of measurements be given.

i	x_i	y_i
0	-2	31
1	-1	5
2	1	1
3	2	11

Calculate the interpolating polynomial $p_3 \in \mathcal{P}_3$ using

- (i) the method of Lagrange,
- (ii) the method of Newton,
- (iii) the standard form of the interpolation problem.

(*)-Exercise 2: (10 points)

Show that the linear system of equations arising from the standard form of the interpolation problem, cf. (2.1) in the lecture notes, can be solved uniquely for every $n \in \mathbb{N}$ when the nodes x_i are distinct, i.e., $x_i \neq x_j$ if $i \neq j \quad \forall i, j = 0, \ldots n$. This is to show that

$\begin{pmatrix} 1 \end{pmatrix}$	1			1	$\left(\begin{array}{c}a_{0}\end{array}\right)$		$\langle y_0 \rangle$	1
x_0	x_1			x_n	a_1		y_1	
x_0^2	x_{1}^{2}	·		x_n^2	÷	=	÷	
÷	÷		·	:	:		÷	
$\int x_0^n$	x_1^n			x_n^n	$\langle a_n \rangle$		$\langle y_n \rangle$	

is uniquely solvable for all ordered sets of distinct nodes $(x_i)_{i=0,\dots,n}$ and associated values $(y_i)_{i=0,\dots,n}$.

Hint: You need some knowledge from Linear Algebra to show that.

Start with the special cases n = 1, 2, 3 and then generalize it to $n \in \mathbb{N}$.

Programming-Exercise 1: (delivery date: 4. November 2010, 15 points) Program the method of Newton to solve

- (i) the problem given in exercise 1,
- (ii) the example of Runge, i.e., $f(x) = \frac{1}{1+25x^2}$, $x \in [-1,1] \subset \mathbb{R}$, with equidistant nodes for any arbitrary $n \in \mathbb{N}$. To test your source code try n = 2, 4, 8, 10 and compare the results with those presented in the lecture.

Your program should compute the **coefficients** b_i of the polynomial

$$p_n(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1) + \dots + b_n(x - x_0) \dots + (x - x_{n-1})$$

=
$$\sum_{i=0}^n \left(b_i \prod_{j=0}^{i-1} (x - x_j) \right)$$

and plot the solution on the interval $[-3,3] \subset \mathbb{R}$ for (i) and $[-1,1] \subset \mathbb{R}$ for (ii).

In both cases the **nodes** have to be **marked in the plots**.

For the example of Runge, the **original function** f(x) has to be plotted in the diagram together with the approximation and the nodes.

Hint: For the example of Runge it would be best to write an m-file taking n as input variable.

Use the first part to see how to program the method of Newton and then generalize it for the second part.

Important: The **source code** which you have to send by e-Mail for all programming exercises has to be an **executable m-file**.

You have to send in a source code for **every programming exercise**. 50% of the points will not be sufficient if you have not worked on all of the programming exercises, cf. revised requirements on the homepage.

Delivery: Thursday, 28. October 2010, before the tutorial, for Exercise 1 and (*)-Exercise 2.