Introduction to Numerical Methods
 Tutorial 3

Exercise 1:

Interpolate the function $f(x)=e^{x}$ on the interval $[-1,1]$ by a natural cubic spline function using the interpolating nodes $x_{0}=-1, x_{1}=0$, and $x_{2}=1$.
Take your favorite plot program and plot your solution as well as the original function $f(x)$ into one diagram on the interval $[-1,1]$.

Exercise 2:

Show that for the interpolating polynomial $p(x)$ of $f(x)=\frac{2}{(3+x)}$ using the interpolation nodes $x_{0}=-2, x_{1}=-1, x_{2}=1$, and $x_{3}=2$ the following estimate holds

$$
\|f-p\|_{\infty}:=\max _{x \in[-2,2]}|f(x)-p(x)| \leq 8
$$

(*)-Exercise 3: $(6+4=10$ points $)$
(i) Show that the $(n+1)$ st derivative of $\omega(x)$ in Theorem 2.3 holds

$$
\frac{d^{n+1} w(x)}{d x^{n+1}}=\frac{d^{n+1}}{d x^{n+1}}\left(\prod_{i=0}^{n}\left(x-x_{i}\right)\right)=(n+1)!
$$

(ii) Show that the expression

$$
\|f\|:=\left(\int_{a}^{b}\left(f^{\prime \prime}(x)\right)^{2} d x\right)^{\frac{1}{2}}, f \in \mathcal{C}^{2}([a, b])
$$

is a seminorm, i.e., show that it is a norm except for the property

$$
\|f\|=0 \Rightarrow f \equiv 0 .
$$

Delivery: Thursday, 4. November 2010

