Introduction to Numerical Methods
 Tutorial 4

Exercise 1:

Compute the weights $\tilde{\alpha}_{i}$ of the Newton-Cotes formula for $n=2$ and $n=3$ and write down the obtained formulas, e.g., for $n=1$ we have $\hat{I}(f)=\frac{b-a}{2}(f(a)+f(b))$.

Exercise 2:

All results should be given with 7 digits.
(i) Compute the following integral with the Trapezoidal rule, with the Simpson's rule and with Simpson's 3/8-rule, i.e., with the Newton-Cotes formulas for $n=1,2$, and 3 .

$$
\int_{-1}^{1} e^{x} d x
$$

(ii) Compute the error of the numerical integration.
(iii) Compare the values of the error estimates with the actual error you computed in (ii).
Use therefore the formulas from the table in the lecture notes, i.e., $\frac{h^{3}}{12} f^{\prime \prime}(\eta)$ for $n=1, \frac{h^{5}}{90} f^{(4)}(\eta)$ for $n=2$, and $\frac{3 h^{5}}{80} f^{(4)}(\eta)$ for $n=3$. Note, in an exam such formulas would not be given.
(*)-Exercise 3: ($4+4=8$ points)
(i) For the numerical approximation of

$$
I(f)=\int_{0}^{1} f(x) d x
$$

a quadrature rule of the form

$$
\tilde{I}(f)=b_{0} f\left(x_{0}\right)+b_{1} f\left(x_{1}\right) \quad \text { with } \quad x_{0}=\frac{1}{2}+\frac{\sqrt{3}}{6}, x_{1}=\frac{1}{2}-\frac{\sqrt{3}}{6}
$$

should be used.
Compute b_{1} and b_{2} such that the obtained quadrature rule is exact for polynomials of at least degree 2 .
(ii) Let $h>0$ be given and define

$$
T:=\left\{(x, y) \in \mathbb{R}^{2}: x \geq 0, y \geq 0, x+y \leq h\right\}
$$

Furthermore let $a_{0}:=(0,0), a_{1}:=(h, 0), a_{2}:=(0, h)$, and $s:=\left(\frac{h}{3}, \frac{h}{3}\right)$ be given.
a) Compute the weights ω_{0}, ω_{1}, and $\omega_{2} \in \mathbb{R}$ such that the quadrature rule

$$
\hat{I}(f):=\sum_{i=1}^{3} \omega_{i} f\left(a_{i}\right) \approx I(f):=\int_{T} f(x, y) d y d x
$$

integrate polynomials of degree one in two variables exactly.
b) Show that there exists a constant $\omega \in \mathbb{R}$ such that

$$
I(p)=w p(s)
$$

for all polynomials of degree 1 in two dimensions.

