Computational Mechanics
Campus Essen
Dr. S. Vanis
18. November 2010

Introduction to Numerical Methods
 Tutorial 6

Exercise 1:

In this exercise we will compare the Trapezoidal rule with the Gaussian quadrature.
Therefore you should determine the approximation to the integral

$$
I(f):=\int_{0}^{1} \frac{1}{\sqrt{x}} d x
$$

(i) using the composite Trapezoidal rule with $n=k-1$ intervals for

$$
I_{k}:=\int_{\frac{1}{k}}^{1} \frac{1}{\sqrt{x}} d x \quad k=3,4,5,6
$$

(ii) using Gauß-Legendre integration with $n=4$. Therefore you need the values of the nodes x_{i} and the weights A_{i} for the Gauß-Legendre integration given in the table below for $n=1,2,3$, and 4 .

n	i	$x_{i}^{(n)}$	$A_{i}^{(n)}$
1	1	0	2
2	1	$\sqrt{\frac{1}{3}} \approx 0.5773503$	1
	2	$-\sqrt{\frac{1}{3}} \approx-0.5773503$	1
3	1	$\sqrt{\frac{3}{5}} \approx 0.7745967$	$\frac{5}{9} \approx 0.5555556$
	2	0	$\frac{8}{9} \approx 0.8888889$
	3	$-\sqrt{\frac{3}{5}} \approx-0.7745967$	$\frac{5}{9} \approx 0.5555556$
4	1	$\sqrt{\frac{3}{7}+\frac{2}{7} \sqrt{\frac{6}{5}}} \approx 0.8611363$	$\frac{18-\sqrt{30}}{36} \approx 0.3478548$
	2	$\sqrt{\frac{3}{7}-\frac{2}{7} \sqrt{\frac{6}{5}}} \approx 0.3399810$	$\frac{18+\sqrt{30}}{36} \approx 0.6521455$
	3	$-\sqrt{\frac{3}{7}-\frac{2}{7} \sqrt{\frac{6}{5}}} \approx-0.3399810$	$\frac{18+\sqrt{30}}{36} \approx 0.6521455$
	4	$-\sqrt{\frac{3}{7}+\frac{2}{7} \sqrt{\frac{6}{5}}} \approx-0.8611363$	$\frac{18-\sqrt{30}}{36} \approx 0.3478548$

Compare both results with the actual result if you can analytically determine it.

Exercise 2:

Compute the inverse of the matrix

$$
\left(\begin{array}{ccc}
2 & 1 & -2 \\
3 & 2 & 2 \\
5 & 4 & 3
\end{array}\right)
$$

by computing the columns of the inverse as the solutions of the linear equation systems

$$
A x=e_{i} \text { with } \quad e_{i}=(0, \ldots, 0, \underbrace{1}_{\text {i-th entry }}, 0, \ldots 0)^{T}
$$

for $i=1,2,3$. Solve the linear equation systems using the Gaussian elimination with column pivot search.

Exercise 3:

Compute the number of flops (floating point operations) needed to solve a linear system using Gaussian elimination without column pivot search with a real valued $(n \times n)$-matrix A and a right hand side $b \in \mathbb{R}^{n}$. (A flop was defined in the lectur in paragraph 2.2.)
You will need the following two formulas

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n-1)}{6}
$$

(*)-Exercise 4: (5 $+5=10$ points $)$

The linear equation system

$$
\left(\begin{array}{cc}
0.001 & -2.3 \\
-1.35 & 0.03
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{-2.295}{-6.72}
$$

has the solution $x_{1}=5$ and $x_{2}=1$.
To see the influence of errors occuring when a system is solved without column pivot search you should now solve the system yourself. But you are only allowed to use 3 digits, i.e., each number can be displayed in exponential form by

$$
\pm 0 . y_{1} y_{2} y_{3} \cdot 10^{E} \quad\left(y_{1}, y_{2}, y_{2} \in\{0,1, \ldots, 9\}, y_{1} \neq 0, E \in \mathbb{Z}\right)
$$

If you would need more digits for a number it is cut without rounding, e.g., 12.45 becomes $0.124 \cdot 10^{2}$.
Compute the solution of the system with this representation of numbers using Gaussian elimination
(i) without using column pivot search,
(ii) using column pivot search.

Do you recognize a difference in the solutions?

Delivery: 25. November 2010

