Introduction to Numerical Methods
 Tutorial 8

Exercise 1:

(i) Proof the norm properties for induced norms, i.e., proof 1. from Corollary 4.2 in the lecture.
(ii) Show that the "column-sum-norm" $\|A\|_{1}=\max _{j=1, \ldots, n} \sum_{i=1}^{n}\left|a_{i j}\right|$ is induced by the " 1 -vector-norm" $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$.
Hint: Show that $\max _{j=1, \ldots, n} \sum_{i=1}^{n}\left|a_{i j}\right| \leq\|A\|_{1} \leq \max _{j=1, \ldots, n} \sum_{i=1}^{n}\left|a_{i j}\right|$ which then implies equality.

Exercise 2:

Let the linear equation system $A x=b$ with

$$
A:=\left(\begin{array}{ll}
1.00 & 0.99 \\
0.99 & 0.98
\end{array}\right) \text { and } b:=\binom{1.99}{1.97}
$$

be given. Furthermore assume that there exists a disturbed right hand side

$$
b+\Delta b=\binom{1.989903}{1.970106}
$$

(i) Compute manually the solutions
(1) x of $A x=b$ and
(2) $x+\Delta x$ of $A(x+\Delta x)=(b+\Delta b)$.
(ii) Compute the relative errors $\frac{\|\Delta x\|_{\infty}}{\|x\|_{\infty}}, \frac{\|\Delta b\|_{\infty}}{\|b\|_{\infty}}$ and the condition number of A, i.e., $\kappa_{\infty}=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}$, with an accuracy of at most 8 digits.
(iii) Insert your result in the estimate

$$
\frac{\|\Delta x\|_{\infty}}{\|x\|_{\infty}} \leq \kappa_{\infty} \frac{\|\Delta b\|_{\infty}}{\|b\|_{\infty}} .
$$

(*)-Exercise 3: $(4+2+4+4=14$ points)
In this exercise you will develop the algorithm for the Cholesky decomposition. Furthermore you will show some technical details of this decomposition and use your results to compute the solution of a linear equation system.
(i) Assume that $A \in \mathbb{R}^{n \times n}$ with $n \in \mathbb{N}$ has a Cholesky decomposition, i.e., there exists a lower triangluar matrix with positive diagonal entries such that $A=L L^{T}$. Show how you can compute the entries of L under the assumption that L exists.
(ii) Show: If A has a Cholesky decomposition, than A is symmetric, i.e., $A=$ A^{T}, and A is positive definit, i.e., for all $x \in \mathbb{R}^{n} \backslash\{0\}$ holds $x^{T} A x>0$.
(iii) Assume that $n \in \mathbb{N}$ and $n \geq 3$. Show for the first three diagonal entries of L, i.e., l_{11}, l_{22}, and l_{33}, that they exist since A is symmetric positive definit.
(iv) Compute using your Cholesky decomposition from point (i) manually the solution $x \in \mathbb{R}^{n}$ of the linear equation system

$$
\left(\begin{array}{rrrr}
4 & -2 & 0 & 2 \\
-2 & 5 & 6 & 3 \\
0 & 6 & 10 & 3 \\
2 & 3 & 3 & 30
\end{array}\right) x=\left(\begin{array}{r}
6 \\
-9 \\
-2 \\
-56
\end{array}\right)
$$

Delivery: 9. December 2010

