Introduction to Numerical Methods
 Tutorial 9

Exercise 1:

In this exercise you have to develop linear equation systems and solve them with the least-squares method.
(i) Consider the following measurements

$$
\begin{array}{c|cccc}
x & 1 & 2 & 3 & 4 \\
\hline y & 0.5 & 1.5 & 5 & 7
\end{array} .
$$

Let us assume that these measurements describe a process which can be displayed using a exponential function $f(x)=a \cdot e^{b x}$, where a and b are unknown coefficients. Find a approximation for a and b using the leastsquares method.
Avoid using rounded numbers apart from the result.
Hint: Consider $\ln (f(x))$ to obtain a linear equation.
(ii) The water level due to the tides in the North Sea with respect to the time t (in hours) is given by

$$
H(t)=h+a \sin \left(\frac{2 \pi x}{12}\right)+b \cos \left(\frac{2 \pi x}{12}\right),
$$

where h, a, and b are unknown real constants. Let the following data be given

$$
\begin{array}{c|cccccc}
t & 0 & 2 & 4 & 6 & 8 & 10 \\
\hline H(t) & 1.0 & 1.6 & 1.4 & 0.6 & 0.2 & 0.8
\end{array}
$$

Compute a good solution to h, a, and b using the least-squares method.

Exercise 2: Use the Gram-Schmidt orthonomalization algorithm to compute manually a orthonormal basis for the space spanned by

$$
a_{1}:=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right), a_{2}:=\left(\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
0
\end{array}\right), a_{3}:=\left(\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
2
\end{array}\right), \text { and } a_{4}:=\left(\begin{array}{l}
2 \\
1 \\
0 \\
2 \\
3
\end{array}\right) .
$$

$\mathbf{(*)}^{*}$-Exercise 3: $((2+2+[3+2])+(1+1+1)=12$ points $)$
(i) Let $A \in \mathbb{R}^{n \times n}$, i.e., A is a real $(n \times n)$-matrix. Show that the following things hold
(1) If A is positive definite, i.e., $x^{T} A x>0$ for all $x \in \mathbb{R}^{n} \backslash\{0\}$, then $a_{i i}>0$ for all $i=1, \ldots, n$, i.e., all diagonal entries of A are positive.
(2) If A is skew symmetric, i.e., $A=-A^{T}$, then $a_{i i}=0$ for all $i=1, \ldots, n$, i.e., all diagonal entries are zero.
(3) The following two propositions are equivalent
(a) A is skew symmetric
(b) $x^{T} A x=0 \quad \forall x \in \mathbb{R}^{n} \backslash\{0\}$

Hint: Show first that (a) implies (b), i.e., if A is skew symmetric then $x^{T} A x=0 \forall x \in \mathbb{R}^{n} \backslash\{0\}$, and then that (b) implies (a).
(ii) Draw manually pictures of the following subsets of the twodimensional real vector space
(1) $\left\{x \in \mathbb{R}^{2}:\|x\|_{\infty}=1\right\}$,
(2) $\left\{x \in \mathbb{R}^{2}:\|x\|_{1} \leq 1\right\}$, and
(3) $\left\{x \in \mathbb{R}^{2}: 1<\|x\|_{2}<2\right\}$.

Draw one picture for each set, i.e., don't draw all sets into one picture.

Delivery: 16. December 2010

