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L∞-ERROR ESTIMATES FOR THE OBSTACLE PROBLEM

REVISITED

C. CHRISTOF§

Abstract. In this paper, we present an alternative approach to a priori L∞-error estimates for
the piecewise linear �nite element approximation of the classical obstacle problem. Our approach is
based on stability results for discretized obstacle problems and on error estimates for the �nite element
approximation of functions under pointwise inequality constraints. As an outcome, we obtain the
same order of convergence proven in several works before. In contrast to prior results, our estimates
can, for example, also be used to study the situation where the function space is discretized but the
obstacle is not modi�ed at all.
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1. Introduction. This paper is concerned with a priori L∞-error estimates for
the piecewise linear �nite element approximation of the classical obstacle problem

(P )

min
1

2

∫
Ω

∇v · ∇v dx− 〈f, v〉

s.t. v ∈ K := {z ∈ H1
0 (Ω) : z ≥ ψ a.e. in Ω}.

Pointwise error estimates for the problem (P ) have been studied by various authors
before. They are typically derived by analyzing the error in mesh cells near the contact
set of the continuous solution (i.e., the set where the solution and the obstacle coincide)
and by subsequently applying the discrete maximum principle of Raviart-Ciarlet (cf.
[5]). We only mention [2,8,13,15] as references. In this paper, we take a more global
perspective and demonstrate that a priori L∞-error estimates for the problem (P )
can also be obtained as corollaries of a more general stability result for discretized
obstacle problems. Our method of proof has the advantage that the resulting error
estimates are more �exible than their classical counterparts. They can, for example,
also handle curved obstacles in the discrete setting. Moreover, our approach illustrates
that the problem of estimating the approximation error for (P ) is, in fact, a problem
of sensitivity analysis. This interpretation turns out to be very advantageous when it
comes to analyzing the behavior of the approximation error in lower Lp-norms and the
limitations of the piecewise linear �nite element method. The alternative viewpoint
provided by our analysis and the �exibility of our estimates were, for example, of
major importance for the construction of two counterexamples found in a companion
paper [4] which demonstrate that the convergence rates obtained for the L∞-error
are � at least in the one-dimensional setting � also optimal if the Lp-error, p > 1,
is considered. The latter implies in particular that the Aubin-Nitsche trick does not
work for the obstacle problem. We refer to [4] for details on this topic.

The outline of this paper is the following: In Section 2, we clarify the notation, address
the used discretization scheme, and recall basic results about the solvability of the
obstacle problem and the regularity of its solution. In the subsequent section, we
introduce the concept of discrete supersolutions and use it to study the stability of
the approximate problems obtained from the �nite element discretization. We will see
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here that, in contrast to the continuous setting, the solution operator of a discretized
obstacle problem is not Lipschitz as a function of the obstacle if the latter is allowed
to be curved. Section 4 is devoted to the a priori error analysis in the L∞-norm.
Here, it is demonstrated that L∞-error estimates for the obstacle problem follow
straightforwardly from the stability results of Section 3 if the Ritz projection of the
continuous solution is identi�ed with the solution of an appropriately de�ned discrete
problem. The order of convergence that we ultimately obtain in this section is the
same as in the classical works of Nitsche [15] and Baiocchi [2]. Lastly, in Section 5 we
conclude our investigation with some remarks and a discussion of open problems. The
appendix of this paper contains results about one-sided �nite element approximations
that are needed for our argumentation. The theorems found there may also be of
independent interest.

2. Preliminaries. In what follows, Ω will always denote a bounded Lipschitz
domain in Rd, where d ∈ N is arbitrary but �xed. Furthermore, we will use the
standard abbreviationsH1

0 (Ω),Wm,p(Ω), Cm,γ(Ω) andH−1(Ω) for the Sobolev spaces
on Ω, the Hölder spaces on the closure Ω and the dual of H1

0 (Ω) w.r.t. the L2-inner
product. The pairing between elements of H1

0 (Ω) and H−1(Ω) will be denoted with
〈., .〉. We refer to [1] and [7] for details.

As already mentioned, the objective of this paper is to study the classical unilateral
obstacle problem with zero boundary conditions: Given an f ∈ H−1(Ω) (the force)
and a measurable function ψ : Ω→ R (the obstacle) �nd the solution to

(P )

min
1

2
a(v, v)− 〈f, v〉

s.t. v ∈ K := {z ∈ H1
0 (Ω) : z ≥ ψ a.e. in Ω}.

The bilinear form a appearing here is de�ned to be

a : H1
0 (Ω)×H1

0 (Ω)→ R, (v, w) 7→
∫

Ω

∇v · ∇w dx.

Using that a is coercive (due to the inequality of Poincaré-Friedrichs), it is easy to
prove that (P ) admits a unique solution provided the admissible set K is not empty.
A detailed analysis shows the following:

Theorem 2.1. If ψ : Ω → R is a measurable function such that K is not empty,
then for all f ∈ H−1(Ω) there is a unique solution u ∈ K to the problem (P ) and this
solution is also uniquely determined by the variational inequality

u ∈ K : a(u, u− v) ≤ 〈f, u− v〉 ∀v ∈ K. (2.1)

Moreover, the solution map S : H−1(Ω) 3 f 7→ u ∈ H1
0 (Ω) is Lipschitz continuous.

If, further, there exists a 2 ≤ q <∞ such that ψ, f and Ω satisfy

- f ∈ Lq(Ω), ψ ∈W 2,q(Ω) and trψ ≤ 0 a.e. on ∂Ω,

- there exists a constant C = C(Ω, q) > 0 such that for all functions v ∈ H1
0 (Ω)

with ∆v ∈ Lq(Ω) it holds

‖v‖W 2,q ≤ C‖∆v‖Lq , (2.2)

then the solution u is in W 2,q(Ω) and there exists a constant C ′ = C ′(Ω, q) such that

‖u‖W 2,q ≤ C ′ (‖f‖Lq + ‖max(−∆ψ − f, 0)‖Lq ) .
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Proof. The unique solvability of (P ), the characterization of the solution u by (2.1)
and the Lipschitz continuity of the solution operator follow from standard results like
the well-known theorem of Lions-Stampacchia (see, e.g., [12, Chapter II]). The W 2,q-
regularity of the solution can be obtained with an approximation argument. We refer
to [12, Chapter IV] for details.

A constant C(Ω, q) with property (2.2) exists, for example, if the domain Ω has a C1,1-
boundary and 2 ≤ q < ∞ (see [9, Theorem 9.15, Lemma 9.17]) or if Ω is a polygon
with largest interior angle α and 2 ≤ q < (1− π/(2α))−1 (see [10, Theorem 4.4.4.13]
and [11, Theorem 2.2.3, Theorem 2.4.3.]). It should be noted that the solution u
to the problem (P ) will in general not possess higher derivatives than stated in the
last theorem even if the obstacle ψ and the force f are smooth. If we consider, for
example, the situation Ω = (−2, 2), f(x) = 0 and ψ(x) = 1 − x2, then the solution
u is a spline whose second derivatives are discontinuous at the boundary of the set
{u = ψ} where the solution and the obstacle coincide. This illustrates that higher
order �nite elements provide little practical advantages in the case of problem (P ) (at
least as far as non-adaptive methods are concerned) and explains, why it makes sense
to restrict the analysis to piecewise linear functions.

Having dealt with the existence, the uniqueness and the regularity of the exact solu-
tion, we now turn our attention to the discretization. First, let us recall some basic
concepts (cf. [3]):

Definition 2.2. If Ω ⊂ Rd is a bounded domain with a Lipschitz boundary, then
a collection T = {Ti} of �nitely many closed d-dimensional simplices Ti is called a
triangulation of Ω if the following holds:

-
⋃
Ti = Ω,

- If Ci denotes the set of all vertices of a simplex Ti ∈ T and conv(...) denotes
the convex hull of a set, then for all Ti, Tj ∈ T it is true that

Ti ∩ Tj = conv(Ci ∩ Cj).

If a Lipschitz domain admits a triangulation, we call it a d-dimensional polyhedron. A
familiy F = {Th}0<h≤h0

of triangulations is called quasi-uniform if there are positive
constants ρ1 and ρ2 such that for all 0 < h ≤ h0 it holds

max{diamT : T ∈ Th} ≤ ρ1h and min{diamBT : T ∈ Th} ≥ ρ2h. (2.3)

Here, BT denotes the largest ball contained in a simplex T .

To approximate (P ), we will consider �nite-dimensional minimization problems of the
form

(Ph)

min
1

2
a(vh, vh)− 〈fh, vh〉

s.t. vh ∈ Kh := {zh ∈ V 0
h : zh ≥ ψh a.e. in Ωh}

.

Our standing assumptions are as follows:
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Assumption 2.3.

- {Ωh}0<h≤h0
is a family of d-dimensional polyhedra with Ωh ⊆ Ω for all h,

- {Th}0<h≤h0
is a quasi-uniform family of triangulations such that each Th is

a triangulation of Ωh for all h,

- V 0
h := {v ∈ C(Ω) : v|T is a�ne for all T ∈ Th and v|Ω\Ωh = 0},

- ψh : Ωh → R is measurable for all h,

- fh ∈ H−1(Ω) for all h.

Note that the condition Ωh ⊆ Ω ensures that V 0
h is a subspace of H1

0 (Ω). This implies
in particular that the quantities a(vh, vh) and 〈fh, vh〉 are well-de�ned. For brevity's
sake, in what follows we will often suppress the range of the mesh width h, i.e., we
will write {Ωh} instead of {Ωh}0<h≤h0 , h > 0 instead of h0 ≥ h > 0 etc. Using again
the theorem of Lions-Stampacchia, it is straightforward to prove:

Theorem 2.4. If the admissible set Kh is not empty, then for all fh ∈ H−1(Ω) there
exists one and only one solution uh ∈ V 0

h to the problem (Ph) and this solution is also
uniquely determined by the variational inequality

uh ∈ Kh : a(uh, uh − vh) ≤ 〈fh, uh − vh〉 ∀vh ∈ Kh. (2.4)

Moreover, the solution operator Sh : H−1(Ω) 3 fh 7→ uh ∈ H1
0 (Ω) is Lipschitz contin-

uous with a Lipschitz constant independent of h.

It should be noted that we do not assume ψh to be an element of our �nite element
space. This will be of major importance in Section 4.

3. Discrete Supersolutions and Stability Results. To estimate the error
between the continuous solution u and the �nite element approximation uh, we will
study the sensitivity of the solution map (fh, ψh) 7→ uh associated with the discrete
problem (Ph). The main tool of our stability analysis will be a variant of the discrete
maximum principle of Raviart-Ciarlet that is tailored to the study of the variational
inequality (2.4). More precisely, we will make use of the following concept:

Definition 3.1. A function gh is called a discrete supersolution of the problem (Ph)
if it holds:

- gh ∈ Vh := {v ∈ C(Ωh) : v|T is a�ne for all T ∈ Th},
- a(gh, vh) ≤ 〈fh, vh〉 for all vh ∈ V 0

h with vh ≤ 0 in Ωh,

- gh ≥ ψh a.e. in Ωh,

- gh ≥ 0 on ∂Ωh.

The expression a(gh, vh) appearing in the second point of the above de�nition is, of
course, to be understood as

a(gh, vh) :=

∫
Ωh

∇gh · ∇vh dx.

In what follows, we will make frequent use of this slight abuse of notation.

Note that De�nition 3.1 extends the concept of supersolutions employed in [12] straight-
forwardly to the discrete setting. The main idea in the following is to prove that
discrete supersolutions exhibit broadly the same behavior as their continuous coun-
terparts, i.e., to show that a discrete supersolution gh majorizes (at least in some
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sense) the solution uh of the problem (Ph). To obtain such a result, we have to
restrict our analysis to triangulations of a special type:

Definition 3.2. A triangulation Th of Ωh is said to satisfy the condition (Z) if

a(ϕih, ϕ
j
h) =

∫
Ωh

∇ϕih · ∇ϕ
j
hdx ≤ 0 ∀i 6= j with xj /∈ ∂Ωh. (3.1)

Here, {xi} denotes the set of all vertices of the triangulation Th (including those on
the boundary ∂Ωh) and {ϕih} denotes the nodal basis of the space Vh (i.e., the basis
with ϕih(xl) = δil for all nodes xl).

The condition (Z) expresses that the system matrix arising from the �nite element
discretization has to be a Z-matrix. (It is easy to see that it is even an M -matrix
in this case). It should be noted that assumptions of the type (Z) are well-known in
the context of discrete maximum principles (see, e.g., [5]). In our approach, the non-
negativity condition (3.1) will come into play very naturally in the proof of Theorem
3.4. As the following lemma shows, the triangulations satisfying the condition (Z)
can be characterized precisely in terms of certain geometric features:

Lemma 3.3 ([19]).

- If d = 1, then every triangulation satis�es (Z).

- If d = 2, then (Z) is satis�ed if and only if for each edge E of Th with
E * ∂Ωh it holds

θT1

E + θT2

E ≤ π.

Here, θT1

E , θ
T2

E ∈ (0, π) denote the angles that oppose E in the adjacent mesh
cells T1 and T2 (see Figure 3.1).

- If d > 2, then (Z) is satis�ed if and only if for all edges E of Th with E * ∂Ωh
it holds ∑

T⊃E
Hd−2(κTE) cot θTE ≥ 0.

Here, for every T = conv(p1, ..., pd+1) ∈ Th and every E = conv(pi, pj) ⊂ T
the quantities κTE and θTE are de�ned by

κTE := Si ∩ Sj and θTE := ](Si, Sj),

where Si and Sj denote the (d− 1)-dimensional simplices

Si := conv(p1, ..., pi−1, pi+1, ..., pd+1)

and

Sj := conv(p1, ..., pj−1, pj+1, ..., pd+1)

and ](Si, Sj) ∈ (0, π) denotes the angle enclosed by Si and Sj (or the normal
vectors of Si and Sj, to be more precise). With Hd−2(.), we mean the (d−2)-
dimensional Hausdor� measure.
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Fig. 3.1. The geometric situation in Lemma 3.3 for d = 2 and d = 3 (cf. [19]).

Using the results about one-sided �nite element approximations found in the appendix
of this paper, we can prove:

Theorem 3.4. Assume that the admissible set Kh of the problem (Ph) is not empty
and that Th satis�es (Z). Assume further that the obstacle ψh in (Ph) satis�es

ψh ∈ C(Ωh) and ψh|T ∈ C1,γ(T ) ∀T ∈ Th

for some γ ∈ (0, 1] and let ρ1 be the constant in (2.3). Then (Ph) admits a unique
solution uh and for every supersolution gh of (Ph) it is true that

uh ≤ gh +

√
d

1 + γ
ρ1+γ

1 h1+γ max
T∈Th

|ψh|C1,γ(T ) in Ωh, (3.2)

where

|ψh|C1,γ(T ) := max
k=1,...,d

sup
x 6=y∈T

|∂kψh(x)− ∂kψh(y)|
‖x− y‖γ

.

The above theorem shows that discrete supersolutions at least approximately behave
as expected: They are larger than the solution uh modulo an error that depends on
the mesh width h and the curvature of the obstacle ψh. The inequality uh ≤ gh,
i.e., the behavior observed in the continuous setting (cf. [12, Theorem II6.4]), is only
obtained if ψh is an element of the space Vh.

Proof of Theorem 3.4. The existence of the solution uh follows straightforwardly from
Theorem 2.4. To prove inequality (3.2), we will use an argument similar to that
employed in the continuous setting (cf. [12]). In a �rst step, we de�ne g′h := gh + C,
where

C :=

√
d

1 + γ
ρ1+γ

1 h1+γ max
T∈Th

|ψh|C1,γ(T ).

Note that g′h is again a supersolution since the addition of a positive constant to the
function gh has no e�ect on the properties in De�nition 3.1. We now consider the
unique element vh in Vh with

vh(xi) = min(uh(xi), g
′
h(xi)) ∀xi, (3.3)

where {xi} again denotes the set o� all vertices of Th (including those on the boundary
∂Ωh). Since uh ∈ V 0

h , the function vh can be identi�ed with an element of V 0
h and
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from (3.3) we readily obtain that vh ≤ uh holds everywhere in Ωh. Furthermore,
it follows from our construction that vh ≥ ψh. To see this, we use that according
to Theorem A.4 from the appendix (applied to z := uh − ψh), for every mesh cell
T ∈ Th with vertices p1, ..., pd+1 we can �nd an a�ne linear function ψTh on T such
that ψh ≤ ψTh ≤ uh holds on T and such that

0 ≤ ψTh (pk)− ψh(pk) ≤
√
d

1 + γ
ρ1+γ

1 h1+γ |ψh|C1,γ(T ) ∀k = 1, .., d+ 1.

This yields that vh satis�es

vh(pk) = min(uh(pk), gh(pk) + C) ≥ min(ψTh (pk), ψh(pk) + C) ≥ ψTh (pk)

for all k = 1, ..., d + 1. From the a�ne linearity of vh and ψTh on T , it now follows
vh ≥ ψTh ≥ ψh which implies vh ≥ ψh on Ωh as claimed. From the second property in
De�nition 3.1 and the variational inequality (2.4), we may now deduce:

a(g′h, vh − uh) ≤ 〈fh, vh − uh〉 and a(uh, uh − vh) ≤ 〈fh, uh − vh〉 .

If we add these inequalities and de�ne yi := uh(xi)−g′h(xi) for all nodes xi, we obtain
(using the properties of vh)

0 ≥ a(uh − g′h, uh − vh)

=
∑
xi

yi max(0, yi)a(ϕih, ϕ
i
h) +

∑
xi 6=xj

yi max(0, yj)a(ϕih, ϕ
j
h)

=
∑
xi

max(0, yi)
2a(ϕih, ϕ

i
h) +

∑
xi 6=xj and xj /∈∂Ωh

yi max(0, yj)a(ϕih, ϕ
j
h), (3.4)

where {ϕih} again denotes the nodal basis of Vh. Because of the condition (Z), how-
ever, we also know that for all i, j with xi 6= xj and xj /∈ ∂Ωh it holds

yi max(0, yj)a(ϕih, ϕ
j
h) ≥ max(0, yi) max(0, yj)a(ϕih, ϕ

j
h).

Thus, (3.4) implies

0 ≥
∑
xi

∑
xj

max(0, yi) max(0, yj)a(ϕih, ϕ
j
h) = a(uh − vh, uh − vh) ≥ 0

and consequently

uh(xi)− vh(xi) = max(0, uh(xi)− g′h(xi)) = 0 ∀xi.

Using again the piecewise linearity of the involved functions, we may deduce

uh ≤ g′h = gh + C = gh +

√
d

1 + γ
ρ1+γ

1 h1+γ max
T∈Th

|ψh|C1,γ(T ) in Ωh.

This completes the proof.

Theorem 3.4 allows to analyze the sensitivity of the solution uh with respect to per-
turbations of the obstacle ψh and the force fh:
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Theorem 3.5. Consider two discrete obstacle problems of the form

(Ph,i)

min
1

2
a(vh, vh)− 〈fh,i, vh〉

s.t. vh ∈ Kh,i := {zh ∈ V 0
h : zh ≥ ψh,i a.e. in Ωh}

, i = 1, 2,

and assume that:

- fh,1, fh,2 ∈ H−1(Ω),

- the underlying triangulation Th satis�es (Z),

- ψh,1, ψh,2 ∈ C(Ωh) and Kh,1 6= ∅, Kh,2 6= ∅,
- there exist γ1, γ2 ∈ (0, 1] such that ψh,i|T ∈ C1,γi(T ) for all T ∈ Th , i = 1, 2.

Let ρ1 be the constant in (2.3). Then (Ph,1) and (Ph,2) admit unique solutions uh,1
and uh,2 and there exists a constant C > 0 independent of h such that

‖(uh,1 − uh,2)+‖L∞
≤ ‖(ψh,1 − ψh,2)+‖L∞ + C r(h)‖fh,1 − fh,2‖H−1

+

√
d

1 + γ1
(ρ1h)1+γ1 max

T∈Th
|ψh,1|C1,γ1 (T ) (3.5)

and

‖(uh,1 − uh,2)−‖L∞
≤ ‖(ψh,1 − ψh,2)−‖L∞ + Cr(h)‖fh,1 − fh,2‖H−1

+

√
d

1 + γ2
(ρ1h)1+γ2 max

T∈Th
|ψh,2|C1,γ2 (T ). (3.6)

Here, v+ := max(0, v) and v− := min(0, v) denote the positive and the negative part
of a function, respectively, and r(h) is de�ned by:

r(h) :=


1 if d = 1

(1 + | log h|)1/2 if d = 2

h1−d/2 if d ≥ 3

. (3.7)

Proof. The unique solvability of the problems (Ph,1) and (Ph,2) is a straightforward
consequence of Theorem 2.4. It remains to prove the estimates (3.5) and (3.6). If we
assume �rst that fh,1 = fh,2 and de�ne gh,1 := uh,2 + ‖(ψh,1 − ψh,2)+‖L∞ , then it
certainly holds gh,1 ∈ Vh, gh,1 ≥ 0 on ∂Ωh and

gh,1 ≥ uh,2 + ψh,1 − ψh,2 ≥ ψh,1 in Ωh.

From the variational inequality associated with (Ph,2) and the de�nition of a(., .), it
follows further that gh,1 satis�es

a(gh,1, vh) = a(uh,2, vh) = a(uh,2, uh,2 − (uh,2 − vh)) ≤ 〈fh,2, vh〉 = 〈fh,1, vh〉

for every vh ∈ V 0
h with vh ≤ 0 in Ωh. Thus, gh,1 is a supersolution for (Ph,1) and we

may deduce from our last theorem that

uh,1 ≤ gh,1 +

√
d

1 + γ1
(ρ1h)1+γ1 max

T∈Th
|ψh,1|C1,γ1 (T ) in Ωh,
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which implies

‖(uh,1 − uh,2)+‖L∞ ≤ ‖(ψh,1 − ψh,2)+‖L∞ +

√
d

1 + γ1
(ρ1h)1+γ1 max

T∈Th
|ψh,1|C1,γ1 (T ).

This is exactly (3.5) for fh,1 = fh,2. The inequality (3.6) is obtained analogously if
we interchange the roles of uh,1 and uh,2. This proves the claim for discrete obstacle
problems with identical forces. Assume now that fh,1 6= fh,2 and denote with uh,i,j
the solution of the discrete obstacle problem with obstacle ψh,i and force fh,j , then
it follows from the triangle inequality, the Lipschitz property in Theorem 2.4 and
well-known inverse estimates (see, e.g., [3, Section 4.5, 4.9]) that

‖(uh,1 − uh,2)+‖L∞
≤ ‖(uh,1,1 − uh,2,1)+‖L∞ + ‖uh,2,1 − uh,2,2‖L∞
≤ ‖(uh,1,1 − uh,2,1)+‖L∞ + C1r(h)‖uh,2,1 − uh,2,2‖H1

≤ ‖(ψh,1 − ψh,2)+‖L∞ + C2r(h)‖fh,1 − fh,2‖H−1

+

√
d

1 + γ1
ρ1+γ1

1 h1+γ1 max
T∈Th

|ψh,1|C1,γ1 (T ),

where C1, C2 are constants independent of h. This proves (3.5) in the general case.
The estimate (3.6) is again obtained by interchanging roles.

As the above result shows, for �xed fh the solution operator ψh 7→ uh of the problem
(Ph) is not Lipschitz continuous as a function from (a subset of) L∞(Ω) to L∞(Ω).
We only obtain a Lipschitz-like estimate with an error that again depends on the
mesh width h and the curvature of the involved obstacles. This is a major di�erence
to the continuous setting where it can be shown easily that the solutions u1 and u2

of two obstacle problems with L∞-obstacles ψ1 and ψ2 and identical forces satisfy
‖u1 − u2‖L∞ ≤ C‖ψ1 − ψ2‖L∞ (cf. [12, Theorem IV8.5]). It should be noted that
neither the continuous solution u nor the obstacle ψ or the domain Ω have been
relevant for the derivation of (3.5) and (3.6). Up to now, we have solely worked with
the discrete problems.

4. L∞-Error Estimates. A priori estimates for the error ‖u − uh‖L∞ can be
derived straightforwardly from Theorem 3.5. We just have to observe the following:

Lemma 4.1. If u ∈ H1
0 (Ω) is the solution to the obstacle problem (P ) and Rhu the

Ritz projection of u, i.e., the unique element of V 0
h satisfying

a(Rhu, vh) = a(u, vh) ∀vh ∈ V 0
h , (4.1)

then Rhu is also the unique solution to the discrete obstacle problem

(Qh)

min
1

2
a(vh, vh)− 〈f, vh〉

s.t. vh ∈ V 0
h and vh ≥ ψ +Rhu− u a.e. in Ωh

.

Recall that we have assumed Ωh ⊆ Ω (see Assumption 2.3). This ensures that u and
ψ are de�ned everywhere in Ωh and that the constraint in (Qh) makes sense.

Proof of Lemma 4.1. The Ritz projection Rhu is obviously admissible for (Qh) and
because of (4.1) and the variational inequality (2.1), it holds

a(Rhu,Rhu− vh) = a(u,Rhu− vh) = a(u, u− (u−Rhu+ vh)) ≤ 〈f,Rhu− vh〉

9



for all vh ∈ V 0
h with vh ≥ ψ +Rhu− u, i.e., u−Rhu+ vh ≥ ψ. This shows that Rhu

is indeed the solution to (Qh) and completes the proof (cf. Theorem 2.4).

Note that Lemma 4.1 holds without any further assumptions on the regularity of the
functions u and ψ and that the obstacle ψ + Rhu − u appearing in (Qh) is typically
not piecewise linear. By applying Theorem 3.5 to (Qh) and the problem (Ph) used
for the �nite element approximation, we obtain:

Theorem 4.2. Assume that (P ) admits a solution u and denote with Rhu the Ritz
projection of u as de�ned in (4.1). Suppose further that the following is satis�ed:

- u, ψ ∈ C(Ω), ψh ∈ C(Ωh) and Kh 6= ∅,
- ∃γ1, γ2 ∈ (0, 1] with ψh|T ∈ C1,γ1(T ) and u|T , ψ|T ∈ C1,γ2(T ) for all T ∈ Th,
- the triangulation Th satis�es (Z).

Then (Ph) admits a unique solution uh and there exists a constant C > 0 independent
of h such that

‖(u− uh)−‖L∞(Ωh)

≤ ‖(u−Rhu)−‖L∞(Ωh) + ‖(ψh − ψ + u−Rhu)+‖L∞(Ωh)

+ Cr(h)‖f − fh‖H−1(Ω) +

√
d

1 + γ1
(ρ1h)1+γ1 max

T∈Th
|ψh|C1,γ1 (T ) (4.2)

and

‖(u− uh)+‖L∞(Ωh)

≤ ‖(u−Rhu)+‖L∞(Ωh) + ‖(ψh − ψ + u−Rhu)−‖L∞(Ωh)

+ Cr(h)‖f − fh‖H−1(Ω) +

√
d

1 + γ2
(ρ1h)1+γ2 max

T∈Th
|ψ − u|C1,γ2 (T ). (4.3)

Here, r(h) is again de�ned by (3.7).

With the above theorem we have reduced the problem of �nding an a priori estimate
for the error ‖u− uh‖L∞ to that of estimating the L∞-error between u and the Ritz
projection Rhu. The approximation properties of Rhu, however, have been studied
by numerous authors and estimates for the quantity ‖u−Rhu‖L∞(Ωh) are well-known.
The following result can be found, for example, in [17]:

Lemma 4.3. Assume that ∂Ω is smooth, that u ∈ H1
0 (Ω)∩C(Ω) and that there exists

a constant δ > 0 independent of h such that

max
x∈∂Ωh

dist(x, ∂Ω) ≤ δh2.

Then there exists a constant C > 0 independent of h such that

‖u−Rhu‖L∞(Ωh) ≤ C| log h|α inf
vh∈V 0

h

‖u− vh‖L∞(Ωh)

with α = 0 for d = 1 and α = 1 for d > 1.

Combining Theorem 4.2 and Lemma 4.3 yields:
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Corollary 4.4. Let the assumptions of Theorem 4.2 and Lemma 4.3 hold. Then
there exists a constant C > 0 independent of h such that

‖(u− uh)−‖L∞(Ωh)

≤ ‖(ψ − ψh)−‖L∞(Ωh) +

√
d

1 + γ1
(ρ1h)1+γ1 max

T∈Th
|ψh|C1,γ1 (T )

+ Cr(h)‖f − fh‖H−1(Ω) + C| log h|α inf
vh∈V 0

h

‖u− vh‖L∞(Ωh) (4.4)

and

‖(u− uh)+‖L∞(Ωh)

≤ ‖(ψ − ψh)+‖L∞(Ωh) +

√
d

1 + γ2
(ρ1h)1+γ2 max

T∈Th
|ψ − u|C1,γ2 (T )

+ Cr(h)‖f − fh‖H−1(Ω) + C| log h|α inf
vh∈V 0

h

‖u− vh‖L∞(Ωh), (4.5)

where α and r(h) are de�ned as before.

As a consequence of Corollary 4.4, we obtain in particular:

Corollary 4.5. Assume that:

- ∂Ω is smooth,

- f ∈ Lq(Ω) and ψ ∈W 2,q(Ω) for some max(d, 2) < q <∞,

- trψ ≤ 0 a.e. on ∂Ω,

- there exists a constant δ > 0 independent of h such that

max
x∈∂Ωh

dist(x, ∂Ω) ≤ δh2,

- the triangulation Th satis�es (Z).

Suppose further that one of the following holds:

a) ψh is equal to the Lagrange interpolant Ihψ ∈ Vh of ψ and Kh 6= ∅.
b) ψh is equal to the restriction ψ|Ωh and Kh 6= ∅.

Then (P ) and (Ph) admit unique solutions u and uh, it holds u ∈ H1
0 (Ω) ∩W 2,q(Ω)

and there exists a constant C > 0 independent of h such that

‖u− uh‖L∞(Ωh)

≤ C| log h|αh2−d/q(‖f‖Lq(Ω) + ‖ψ‖W 2,q(Ω)) + Cr(h)‖f − fh‖H−1(Ω), (4.6)

where α and r(h) are de�ned as before.

Proof. The unique solvability of the problems (P ) and (Ph) and the W 2,q-regularity
of the solution u are direct consequences of Theorem 2.1 and Theorem 2.4. The error
estimate (4.6) follows straightforwardly from (4.4) and (4.5). We just have to employ
standard results about the accuracy of the Lagrange interpolant (as found, e.g., in
[3, Theorem 4.4.20]) and the embedding W 2,q(Ω) ↪→ C1,1−d/q(Ω).

Note that in case a), (4.6) is the 'standard' L∞-error estimate for the obstacle problem
that is usually found in the literature (cf. [2,13,15]).
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5. Concluding Remarks. The method that we have employed in the last two
sections to derive a priori error estimates for the obstacle problem (P ) has some
advantages that we would like to point out here:

First of all, our approach is more �exible than the traditional one since we do not
require ψh to be the Lagrange interpolant Ihψ of the continuous obstacle ψ (or an
element of the �nite element space at all, cf. Theorem 4.2). Moreover, we can treat the
case Ωh ⊂ Ω with ease since the relation between the domains Ω and Ωh is completely
irrelevant for the stability analysis that our proofs are based on (cf. Theorem 3.5).

Second, our results provide slightly more information about the behavior of the ap-
proximation error than those found in the literature. We obtain, for example, in a
natural way separate estimates for the quantities (u− uh)+ and (u− uh)− that allow
to study in greater detail how the accuracy of the �nite element method is a�ected
by the choice of ψh (cf. (4.2) and (4.3)).

Lastly, our approach demonstrates that the problem of estimating the error between
the continuous solution u and the �nite element approximation uh can be identi�ed
with a problem of sensitivity analysis: If we know how the solution of the discrete
obstacle problem (Qh) changes when the obstacle ψ + Rhu − u is replaced with ψh,
then we also know how the quantities u− uh and u−Rhu, i.e., the errors associated
with the constraint and the unconstraint setting, are related to each other and vice
versa. Note that this interpretation is only possible when the obstacles in the discrete
problems are allowed to be arbitrary measurable functions (cf. the de�nition of (Qh)).

The above perspective on the a priori error analysis turns out to be very advantageous
when error estimates in lower Lp-norms are considered. In [4], for example, it was
used to construct two counterexamples which demonstrate (among other things) that
the estimate (4.6) is optimal in the one-dimensional case in the sense that there exist
situations where the assumptions of Corollary 4.5 are satis�ed and where it holds
‖u − uh‖Lp(Ωh) = ord(h2−1/q) for all 1 ≤ p ≤ ∞. Interestingly, the latter is true
regardless of whether the Lagrange interpolant Ihψ or the restriction ψ|Ωh is chosen
as ψh in (Ph). We refer to [4] for a detailed discussion of this topic.

It should be noted that the situation is much less clear in higher dimensions and
that it is (at least to the author's best knowledge) presently unknown if an Lp-error
estimate of the form ‖u − uh‖Lp(Ωh) = O(hγ) with γ > 2 − d/q and γ > 1 can be
obtained for an obstacle problem with u, ψ ∈W 2,q(Ω) if the dimension is greater than
one. A further open question is whether the condition (Z) can be weakened. The
results found in [6] indicate that the latter might be the case and that it might be
su�cient to assume that (3.1) holds in an appropriately chosen subset of Ωh to derive
Theorem 3.4 (cf. also the results in [16]). A proof of this conjecture, however, is still
pending.

Appendix A. Finite Element Approximation under Inequality Constraints.

In this section, we prove the approximation results that we have used in the proof of
Theorem 3.4. We will be mainly concerned with the following task:

Assume that T is a closed d-dimensional simplex with vertices p1, ..., pd+1

and let z be a function satisfying 0 ≤ z ∈ C1,γ(T ) for some 0 < γ ≤ 1.
Find an a�ne linear function zT such that 0 ≤ zT ≤ z holds in T
and such that zT approximates z as accurately as possible.
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The above approximation problem has already been studied by Mosco in [14] and
Strang in [18] for one- and two-dimensional H2-functions. The method of proof that
we will employ in this section is closely related to the approach of these two authors.
Our analysis, however, also covers the higher-dimensional case.

To construct an approximation zT with the desired properties, we introduce a partial
order on the set of a�ne linear functions on T (analogously to [14]) and de�ne:

Definition A.1. Let T ⊂ Rd and 0 ≤ z ∈ C1,γ(T ), 0 < γ ≤ 1, be as above and let

V := {v : T → R : v a�ne linear with 0 ≤ v ≤ z in T}.

Then a function v ∈ V is called a maximal element of V if for every a�ne linear
function w with w 6≡ 0 and w ≥ 0 in T it holds v + w /∈ V .
Using standard arguments, it is easy to prove:

Lemma A.2. The set V always admits at least one maximal element.

Proof. If we denote with p1, ..., pd+1 the vertices of T and de�ne

U =

{
v ∈ Rd+1 : 0 ≤

d+1∑
i=1

λivi ≤ z

(
d+1∑
i=1

λipi

)
for all λi ≥ 0 with

d+1∑
i=1

λi = 1

}
,

then U is closed, non-empty and bounded. Thus, the function f(v) :=
∑d+1
i=1 vi attains

its supremum in U in some v. Because of its maximality, this v has to satisfy v+w /∈ U
for all w ∈ Rd+1 \ {0} with w ≥ 0 (componentwise). This, however, implies that the
a�ne linear map

x =

d+1∑
i=1

λipi ∈ T 7→
d+1∑
i=1

λivi

de�ned in the barycentric coordinates w.r.t. the vertices pi of the simplex T is a
maximal element of V .

To estimate the di�erence between z and a maximal element of V , we observe the
following:

Lemma A.3. Let T ⊂ Rd and 0 ≤ z ∈ C1,γ(T ), 0 < γ ≤ 1, be as above and denote
with p1, ..., pd+1 the vertices of T . Let v be a maximal element of V and de�ne

E(v) := {ζ ∈ T : z(ζ) = v(ζ)}.

Then E(v) is not empty and if it holds E(v) ⊆ conv(p1, ..., pk−1, pk+1, ..., pd+1), where
conv(...) denotes the convex hull, then there exists a ζ ∈ E(v) such that

∇(z − v)(ζ) · (pk − ζ) = 0. (A.1)

Proof. The non-emptiness of E(v) follows trivially from the maximality of v. To prove
the second part of the lemma, we assume w.l.o.g. that k = d+1, that conv(p1, ..., pd) ⊂
Rd−1 × {0}, and that pd+1 ∈ Rd−1 × (0,∞). Since all ζ ∈ E(v) are global minima of
the function z − v ∈ C1(T ), it necessarily holds

D(ζ) := ∇(z − v)(ζ) · (pd+1 − ζ) ≥ 0 ∀ζ ∈ E(v). (A.2)
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From the compactness of E(v) and the continuity of the function D : T → R, we
obtain that there exists a ζ ′ ∈ E(v) with

D(ζ ′) = min
ζ∈E(v)

D(ζ) =: m ≥ 0. (A.3)

If the minimum m is zero, then the claim is obviously true. If m > 0, then there
exists an open ball B(ζ) around each ζ ∈ E(v) such that D(x) > m/2 holds for all
x ∈ T ∩B(ζ) and we may de�ne

B′(ζ)

:= B(ζ) ∩
{
λx+ (1− λ)pd+1 : x ∈ B(ζ) ∩ T ∩

(
Rd−1 × {0}

)
and λ ∈ (0, 1]

}
and

E′(v) :=
⋃

ζ∈E(v)

B′(ζ).

Note that it follows from our construction that E(v) ⊂ E′(v) ⊂ T (cf. Figure A.1).
Moreover, E′(v) is relatively open in T and it holds

∇(z − v)(x) · (pd+1 − x) >
1

2
m ∀x ∈ E′(v).

Suppose now that c is a constant satisfying 0 < c < c′ := m/(4xd(pd+1)), where
xd(pd+1) > 0 denotes the d-th coordinate of the point pd+1, and consider the function
vc(x) := v(x) + c xd. Then vc is obviously a�ne and it holds

∇(z − vc)(x) · (pd+1 − x) ≥ 1

2
m− c xd(pd+1) ≥ 1

4
m ∀x ∈ E′(v).

From z − vc = z − v ≥ 0 on T ∩ (Rd−1 × {0}), the mean value theorem, and the
fact that for every x ∈ E′(v) the line between x and the unique x′ = x′(x) with
x′ ∈ T ∩ (Rd−1 × {0}) and x ∈ conv(x′, pd+1) is contained in E′(v) (cf. Figure A.1),
it follows further

(z − vc)(x) ≥ (z − vc)(x)− (z − vc)(x′)

=

∫ 1

0

∇(z − vc)(x′ + t(x− x′)) · (x− x′)dt

=

∫ 1

0

∇(z − vc)(x′ + t(x− x′)) · (pd+1 − (x′ + t(x− x′))
‖pd+1 − (x′ + t(x− x′)‖

‖x− x′‖ dt

≥ 1

4
m

∫ 1

0

‖x− x′‖
‖pd+1 − (x′ + t(x− x′)‖

dt

≥ 0 ∀x ∈ E′(v).

To avoid a contradiction with the maximality of v, it now has to hold that for every
0 < c < c′ there exists at least one xc ∈ T \ E′(v) with (z − vc)(xc) < 0. The set
T \E′(v), however, is compact. This implies that we can �nd a sequence cn → 0 such
that xcn converges to an x0 ∈ T \ E′(v) and such a limit x0 has to satisfy

0 ≥ lim
cn→0

(z − vcn)(xcn) = lim
cn→0

(z − v)(xcn) = (z − v)(x0) ≥ 0,
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i.e., x0 ∈ E(v) ⊂ E′(v). This is a contradiction to x0 ∈ T \E′(v) and shows that the
minimum m in (A.3) cannot be positive.

Rd−1

R

p1 E(v) pd

pd+1

T

E′(v)

pd+1

E(v)x′

x
E′(v)

Fig. A.1. The geometric situation in the proof of Lemma A.3.

The intuition behind the proof of Lemma A.3 is clear: If v ∈ V is a function with
E(v) ⊆ conv(p1, ..., pk−1, pk+1, ..., pd+1) such that there is no ζ ∈ E(v) with (A.1),
then we can increase the value v(pk) without violating the constraint 0 ≤ v ≤ z and
v cannot be a maximal element. Using Lemma A.3, we obtain:

Theorem A.4. Let T ⊂ Rd, p1, ..., pd+1 and 0 ≤ z ∈ C1,γ(T ) be as before. Then
there exists an a�ne linear function v : T → R such that 0 ≤ v ≤ z and

z(pk)− v(pk) ≤
√
d

1 + γ
diam(T )1+γ |z|C1,γ(T ) ∀k = 1, .., d+ 1.

Proof. If v is an arbitrary maximal element of V and pk a vertex of T , then there are
three possibilities: If pk ∈ E(v), then it holds v(pk) = z(pk) and the claim is certainly
true. If, on the other hand, pk /∈ E(v) and there exist ζ ∈ E(v) and ε > 0 such that
ζ + ε(pk − ζ), ζ − ε(pk − ζ) ∈ T , then (A.2) implies

∇(z − v)(ζ) · (pk − ζ) = 0

and we may compute

(z − v)(pk) = (z − v)(pk)− (z − v)(ζ)

=

∫ 1

0

[
∇(z − v)(ζ + t(pk − ζ))−∇(z − v)(ζ)

]
· (pk − ζ)dt

=

∫ 1

0

[
∇z(ζ + t(pk − ζ))−∇z(ζ)

]
· (pk − ζ)dt

≤
∫ 1

0

‖∇z(ζ + t(pk − ζ))−∇z(ζ)‖
‖t(pk − ζ)‖γ

‖pk − ζ‖γ+1tγ dt

≤ |z|C1,γ(T )

√
d

∫ 1

0

‖pk − ζ‖γ+1tγ dt

≤
√
d

1 + γ
diam(T )1+γ |z|C1,γ(T ). (A.4)
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This proves the claim in the second case. If, lastly, pk /∈ E(v) and there are no
ζ ∈ E(v) and ε > 0 such that ζ+ ε(pk− ζ), ζ− ε(pk− ζ) ∈ T , then it necessarily holds
E(v) ⊆ conv(p1, ..., pk−1, pk+1..., pn+1) and we may employ Lemma A.3 to obtain that
there is some ζ ∈ E(v) with

∇(z − v)(ζ) · (pk − ζ) = 0.

A calculation analogous to (A.4) now yields the claim. This completes the proof.

It should be noted that there is no straightforward way to construct the approximation
v appearing in the last theorem from the Lagrange interpolant of the function z since
it is in general unclear how the interpolant has to be modi�ed such that both the
constraints v ≤ z and v ≥ 0 are satis�ed. We conclude our investigation with the
following result about global approximations:

Corollary A.5. Let Ω ⊂ Rd be a bounded polyhedric domain with a quasi-uniform
family of triangulations {Th} and let ρ1 and ρ2 be de�ned as in De�nition 2.2. Assume
that z ∈W 2,q(Ω)∩H1

0 (Ω) for some d < q <∞ and suppose that a family of functions
{wh} is given such that

z ≤ wh a.e. in Ω and wh ∈ V 0
h ∀h > 0,

where V 0
h := {v ∈ C(Ω) : v|T is a�ne for all T ∈ Th and v|∂Ω = 0}. Then there

exists a family of approximations {zh} satisfying

z ≤ zh ≤ wh a.e. in Ω and zh ∈ V 0
h

for all h such that

‖z − zh‖L∞ ≤ Ch2−d/q‖z‖W 2,q

holds with a constant C independent of h.

Proof. Let h be arbitrary but �xed, then it follows from W 2,q(Ω) ↪→ C1,1−d/q(Ω) and
Theorem A.4 that for every T ∈ Th there exists an a�ne linear vT : T → R such that
0 ≤ vT ≤ wh − z and

0 ≤ (wh − z)(pk)− vT (pk) ≤
√
d

2− d/q
diam(T )2−d/q|z|C1,1−d/q(T )

holds for all vertices pk of T . We now de�ne vh to be the unique element of V 0
h with

vh(xi) = min
T∈Th:xi∈T

vT (xi)

for all mesh nodes xi. This vh certainly satis�es 0 ≤ vh ≤ vT ≤ wh− z on every mesh
cell T and

0 ≤ (wh − z)(xi)− vh(xi) ≤
√
d

2− d/q

(
max

T∈Th:xi∈T
diam(T )2−d/q|z|C1,1−d/q(T )

)
≤

√
d

2− d/q
ρ

2−d/q
1 h2−d/q max

T∈Th
|z|C1,1−d/q(T )

for all nodes xi of the mesh. De�ning zh := wh − vh, we now obtain a function with
zh ∈ V 0

h , z ≤ zh ≤ wh and

‖Ihz − zh‖L∞ ≤ max
xi
|z(xi)− zh(xi)| ≤ Ch2−d/q|z|C1,1−d/q(Ω)
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for some C = C(d, q, ρ1) > 0. The claim now follows from the triangle inequality, the
Sobolev embedding W 2,q(Ω) ↪→ C1,1−d/q(Ω) and well-known error estimates for the
L∞-error of the Lagrange interpolant ([3, Theorem 4.4.20]).

REFERENCES

[1] Adams, R.A.: Sobolev Spaces, Academic Press, New York (1975)
[2] Baiocchi, C.: Estimation d'erreur dans L∞ pour les inéquations à obstacle, Lecture Notes in

Mathematics, 606, 27-34 (1977)
[3] Brenner, S.C., and L.R. Scott: The Mathematical Theory of Finite Element Methods, 3. Edition,

Springer-Verlag, New York (2008)
[4] Christof, C., and C. Meyer: A Note on A Priori Lp-Error Estimates for the Obstacle Problem,

Ergebnisbericht des Instituts für Angewandte Mathematik Nr. 543, TU Dortmund, Faculty
of Mathematics (2016)

[5] Ciarlet, P.G.: Discrete Maximum Principle for Finite-Di�erence Operators, Aequationes Math-
ematicae, 4, 338-352 (1970)

[6] Draganescu, A., T.F. Dupont and L.R. Scott: Failure of the Discrete Maximum Principle for an
Elliptic Finite Element Problem, Mathematics of Computation, 74, 1-23 (2005)

[7] Evans, L.C.: Partial Di�erential Equations, 2. Edition, AMS, Providence, RI (2010)
[8] Finzi-Vita, S.: L∞-Error Estimates for Variational Inequalities with Hölder-continuous Obsta-

cle, RAIRO Analyse Numérique, 16, 27-37 (1982)
[9] Gilbart, D., and N.S. Trudinger: Elliptic Partial Di�erential Equations of Second Order, Reprint

of the 1998 Edition, Springer-Verlag, Berlin/Heidelberg/New York (2001)
[10] Grisvard, P.: Elliptic Problems in Nonsmooth Domains, Pitman, London (1985)
[11] Grisvard, P.: Singularities in Boundary Value Problems, Springer-Verlag,

Berlin/Heidelberg/New York (1992)
[12] Kinderlehrer, D., and G. Stampacchia: An Introduction to Variational Inequalities and Their

Applications, SIAM, Philadelphia (2000)
[13] Meyer, C., and O. Thoma: A Priori Finite Element Error Analysis for Optimal Control of the

Obstacle Problem, SIAM Journal on Numerical Analysis, 51, 605-628 (2013)
[14] Mosco, U., and G. Strang: One-Sided Approximation and Variational Inequalities, Bulletin of

the American Mathematical Society, 80, 308-312 (1974)
[15] Nitsche, J.: L∞-Convergence of Finite Element Approximations, Lecture Notes in Mathematics,

606, 261-274 (1977)
[16] Nochetto, R.H.: Pointwise accuracy of a �nite element method for nonlinear variational in-

equalities, Numerische Mathematik, 54, 601 - 618 (1989)
[17] Schatz, A.H., and L.B. Wahlbin: On the Quasi-Optimality in L∞ of the H1

0 -Projection into
Finite Element Spaces, Mathematics of Computation, 38, 1-22 (1982)

[18] Strang, G.: One-Sided Approximation and Plate Bending, Computing Methods in Applied
Sciences and Engineering Part 1, Lecture Notes in Computer Science, 10, 140-155 (1974)

[19] Xu, J., and L. Zikatanov: A Monotone Finite Element Scheme for Convection Di�usion Equa-
tions, Mathematics of Computation, 68, 1429-1446 (1999)

17


