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Abstract. We study the stability of solutions to H1
0 -elliptic variational inequalities of the second

kind that contain a non-di�erentiable Nemytskii operator. The local Lipschitz continuity of the
solution map with respect to perturbations of the right-hand side and perturbations of the coe�cient
of the Nemytskii operator is proved for a large class of problems and directional di�erentiability results
are obtained under suitable structural assumptions. It is further shown that directional derivatives of
the solution map are typically characterized by elliptic variational inequalities in weighted Sobolev
spaces whose bilinear forms contain surface integrals and whose right-hand sides depend on the
direction of the derivative. Our work extends results recently obtained by De los Reyes and Meyer and
demonstrates that �ne properties of the solution and (pull backs of) distributional derivatives have
to be taken into account when it comes to the sensitivity analysis for elliptic variational inequalities
of the second kind in Sobolev spaces.
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1. Introduction. While the continuity and di�erentiability of solution operators
to elliptic variational inequalities of the �rst kind have been studied in a multitude of
papers (cf. [3,4,10,13,14,18,19,23]), sensitivity results for elliptic variational inequal-
ities of the second kind can only hardly be found in the literature (see [6, 24] for two
of the few contributions). This is in particular unsatisfying regarding the increasing
interest in the analysis and numerical solution of optimal control problems governed
by this type of variational inequality (cf. [5, 6]). With this paper we hope to make a
further step towards the extension of the known continuity and di�erentiability results
to elliptic variational inequalities of the second kind by analyzing in detail problems
of the form

w ∈ H1
0 (Ω), a(w, v − w) +

∫
Ω

cj(v)dλ−
∫

Ω

cj(w)dλ ≥ 〈f, v − w〉 ∀v ∈ H1
0 (Ω), (P)

where a is a continuous coercive bilinear form and j : R→ [0,∞) is a convex function
satisfying j(0) = 0. The outline of this paper is the following:

In Section 2 we clarify the notation, make precise our assumptions and discuss basic
results concerning the existence, uniqueness and regularity of solutions to (P) that
are needed throughout this paper.

In Section 3 we prove the local H1- and L∞-Lipschitz continuity of the solution map
S : (c, f) 7→ w associated with the variational inequality (P) (see Theorem 3.1).

In Section 4 we give an overview of the strategy that we use in the subsequent section
to study the (directional) di�erentiability of the solution map S.

§Faculty of Mathematics, Technische Universität Dortmund, Dortmund-Germany.

1



Section 5 is concerned with the di�erentiability of S for functions j which are twice
continuously di�erentiable away from the origin. It will be seen here that �ne proper-
ties of the solution w and the second distributional derivative of j are relevant for the
di�erentiability properties of the solution operator S and that directional derivatives
of S are typically characterized by elliptic variational inequalities in weighted Sobolev
spaces. See Theorem 5.15 for our main result.

Lastly, in Section 6 we conclude our investigation, interpret our �ndings and address
open questions.

It should be noted that the (weak) directional di�erentiability of the solution operator
S : f 7→ w to a problem of the form

w ∈ H1
0 (Ω), a(w, v − w) +

∫
Ω

|v|dλ−
∫

Ω

|w|dλ ≥ 〈f, v − w〉 ∀v ∈ H1
0 (Ω) (1.1)

has already been studied by De los Reyes and Meyer in [6]. These two authors
used the idea to reformulate the variational inequality (1.1) as a variational equality
by introducing a slack variable q and to analyze the convergence behavior of the
di�erence quotients associated with q and the solution w to obtain information about
the regularity of the solution map S. This primal-dual approach yields results similar
to ours if right-hand sides f are considered where the solution w = S(f) is continuous,
where the sets {w > 0} and {w < 0} are at a positive distance from each other,
and where the level set {w = 0} does not have (d − 1)-dimensional components
(cf. [6, Assumptions 3.13, 3.16]).

In this paper, we use a methodology that does not require the introduction and
analysis of slack variables but solely works with primal quantities. This allows us to
study (1.1) (and similar problems) in the situation where (d − 1)-dimensional parts
of the set {w = 0} are present and, moreover, enables us to show that these lower
dimensional components of the active set manifest themselves as surface integrals in
the variational inequalities that characterize the directional derivatives of the solution
operator S.

2. Preliminaries and Notation. In what follows, we use the standard notation
H1

0 (Ω), W k,p(Ω), Ck,γ(Ω), k ∈ N, 1 ≤ p ≤ ∞, γ ∈ (0, 1], for the Sobolev and Hölder
spaces on a domain Ω ⊆ Rd, d ≥ 1. We refer to [1,8] for details on these spaces. The
dual of H1

0 (Ω) w.r.t. L2(Ω) and the associated dual pairing are denoted with H−1(Ω)
and 〈., .〉, respectively. With λk and Hk we denote the k-dimensional Lebesgue and
Hausdor� measure (whereHk is assumed to be scaled as in [9, De�nition 2.1] such that
it coincides with the surface measure on su�ciently regular sets). When the dimension
is clear from the context, we drop the index k and simply write λ. Further, we de�ne
x+ := max(0, x), x− := min(0, x) and Lp+(Ω) := {c ∈ Lp(Ω) : c ≥ 0 a.e. in Ω},
1 ≤ p ≤ ∞. With C we denote a generic constant. If we want to emphasize that C
depends on a quantity α, we write C = C(α). The topological closure and interior of
a set S are denoted with cl(S) and int(S), respectively. For subsets of the Euclidean
space we also use the notation S := cl(S).

As already mentioned, the purpose of this paper is to study variational inequalities
of the form

w ∈ H1
0 (Ω), a(w, v − w) +

∫
Ω

cj(v)dλ−
∫

Ω

cj(w)dλ ≥ 〈f, v − w〉 ∀v ∈ H1
0 (Ω). (P)

Our standing assumptions on the quantities a, j and Ω appearing in (P) are as follows:
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Assumption 2.1 (Standing Assumptions).

- Ω ⊂ Rd, d ≥ 1, is a bounded (strong) Lipschitz domain,
- a : H1

0 (Ω)×H1
0 (Ω)→ R is a (not necessarily symmetric) bilinear form de�ned

by a(v1, v2) := 〈Av1, v2〉, where A : H1
0 (Ω) → H−1(Ω) is a second order

partial di�erential operator of the type

Av := −
d∑

i,j=1

∂

∂xj

(
αij

∂

∂xi
v

)
+ βv

with αij ∈ C1(Ω) and β ∈ L∞+ (Ω) such that there exists a C > 0 with

d∑
i,j=1

αij(x)ζiζj ≥ C|ζ|2 ∀ζ ∈ Rd ∀x ∈ Ω,

- j : R→ [0,∞) is a convex function satisfying j(0) = 0.

We point out that in Section 5 we tighten the assumptions on j and con�ne ourselves
to the situation where j can be written in the form j(x) = j1(x+) + j2(−x−) with
non-negative, convex functions j1, j2 ∈ C2([0,∞)) satisfying j1(0) = j2(0) = 0 and
j′1(0), j′2(0) > 0. Up to then, however, the minimal regularity in Assumption 2.1 is
su�cient for our needs. Note that standard arguments from convex analysis (see,
e.g., [7]) yield the following:

Lemma 2.2. If j : R → [0,∞) satis�es the conditions in Assumption 2.1, then it is
true that:

a) j is Lipschitz on bounded sets,
b) j is directionally di�erentiable in every x ∈ R in all directions h ∈ R and the

directional derivative j′(x;h) satis�es

j′(x;h) = inf
t>0

(
j(x+ th)− j(x)

t

)
,

c) j is Hadamard di�erentiable in every x ∈ R in all directions h ∈ R, i.e., if
(hn) ⊂ R, (tn) ⊂ (0,∞) are sequences satisfying hn → h and tn → 0, then it
holds

j′(x;h) = lim
n→∞

(
j(x+ tnhn)− j(x)

tn

)
,

d) j|[0,∞) is monotonically increasing and j|(−∞,0] is monotonically decreasing,
e) for all x, y ∈ R, it holds

j′(x; y − x) + j′(y;x− y) ≤ 0.

We emphasize that we do not impose any conditions on the growth of the function j
for x→ ±∞. Consequently, the functional

v 7→
∫

Ω

cj(v)dλ

appearing in (P) may take the value +∞ if c ≥ 0 holds a.e. in Ω. To circumvent
problems with this mapping behavior, we will often make use of the following results
that go back to Stampacchia:
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Lemma 2.3 (Stampacchia).

a) For all v ∈ H1
0 (Ω) it holds v+, v− ∈ H1

0 (Ω) and

∇(v+) =

{
∇v a.e. in {v > 0}
0 a.e. in {v ≤ 0}

, ∇(v−) =

{
∇v a.e. in {v < 0}
0 a.e. in {v ≥ 0}

.

Moreover, the map H1
0 (Ω) 3 v 7→ (v+, v−) ∈ H1

0 (Ω)×H1
0 (Ω) is continuous.

b) If v ∈ H1
0 (Ω) is a function such that

vk := v −min(k,max(v,−k)) =


v − k a.e. in {v ≥ k}
0 a.e. in {|v| < k}
v + k a.e. in {v ≤ −k}

, k ≥ 0, (2.1)

satis�es

‖vk‖2H1 ≤
∫

Ω

f |vk|dλ ∀k ≥ 0 (2.2)

for some f ∈ Lp(Ω) with p > max (d/2, 1), then there exists a constant C
depending only on Ω, p and d such that

‖v‖L∞ ≤ C‖f‖Lp .

Proof. Part a) of Lemma 2.3 is classical and can be found, e.g., in [17, Theorem II.A1]
(see also [2, Theorem 5.8.2] and [12, Corollary 2.1]). The L∞-bound in b) is obtained
along the lines of [17, Lemma II.B2] (cf. [6, Lemma 3.8]). Since we will use b) several
times, we brie�y recall the proof for the convenience of the reader: Let us assume
that d > 2 and de�ne L(h) := {|v| ≥ h}, where, as usual, {|v| ≥ h} is shorthand for
{x ∈ Ω : |v(x)| ≥ h} (de�ned up to sets of measure zero). Then it follows from the
Sobolev embedding H1(Ω) ↪→ L2d/(d−2)(Ω) that there exists a C > 0 which depends
only on Ω and d such that for all h ≥ k ≥ 0 we have

‖vk‖2H1 ≥ C2‖vk‖2L2d/(d−2) ≥ C2

(∫
L(h)

(|v| − k)
2d

d−2 dλ

) d−2
d

≥ C2(h− k)2λ(L(h))
d−2
d .

(2.3)
On the other hand, our assumption p > max(d/2, 1) implies

p(d+ 2)

2d
>
d+ 2

4
≥ 1

and we may use Hölder's inequality, Young's inequality and the Sobolev embeddings
to obtain (with the same constant C as in (2.3))∫

Ω

f |vk|dλ ≤
1

C

(∫
L(k)

|f |
2d

d+2 dλ

) d+2
2d

‖vk‖H1

≤ 1

C

(∫
L(k)

|f |pdλ

) 2d
p(d+2)

λ(L(k))1− 2d
p(d+2)


d+2
2d

‖vk‖H1

≤ 1

C
‖f‖Lpλ(L(k))

d+2
2d −

1
p ‖vk‖H1

≤ 1

2C2
‖f‖2Lpλ(L(k))

d+2
d −

2
p +

1

2
‖vk‖2H1 . (2.4)
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Combining (2.3) and (2.4) with (2.2) yields

C2(h− k)2λ(L(h))
d−2
d ≤ 1

C2
‖f‖2Lpλ(L(k))

d+2
d −

2
p ,

i.e.,

(h− k)λ(L(h))
d−2
2d ≤ 1

C2
‖f‖Lpλ(L(k))

d+2
2d −

1
p =

1

C2
‖f‖Lp

[
λ(L(k))

d−2
2d

]s
(2.5)

for all h ≥ k ≥ 0 with

s :=

(
2d

d− 2

)(
d+ 2

2d
− 1

p

)
>

(
2d

d− 2

)(
d+ 2

2d
− 2

d

)
= 1.

From (2.5) and [17, Lemma II.B1] (a simple growth result for real valued functions),
it now follows λ(L(k0)) = 0 for

k0 := 2
s

s−1
1

C2
λ(Ω)

(s−1)(d−2)
2d ‖f‖Lp .

This proves the claim for d > 2. For d = 2 the argumentation used above has to be
altered slightly to take into account that the Sobolev conjugate 2d/(d−2) degenerates
in two dimensions. The modi�cations, however, are straightforward, so we leave the
proof to the reader. For d = 1 the claim is trivially true. This completes the proof.

We are now in the position to analyze the solvability of the variational inequality (P):

Theorem 2.4. Let Assumption 2.1 hold. Then it is true that:

a) For all (c, f) ∈ L1
+(Ω)×H−1(Ω) there exists a unique solution w ∈ H1

0 (Ω) to
the variational inequality (P).

b) If (c, f) ∈ L1
+(Ω) × Lp(Ω) with p > max(d/2, 1), then there exists a C > 0

which depends only on d, p,Ω and A such that ‖w‖L∞ ≤ C‖f‖Lp .
c) If (c, f) ∈ Lp1+ (Ω) × Lp2(Ω) with p1 > max(2d/(d + 2), 1), p2 > max(d/2, 1),

then for all v ∈ H1
0 (Ω) it holds

a(w, v) +

∫
Ω

cj′(w; v)dλ ≥ 〈f, v〉 . (2.6)

d) If (c, f) ∈ Lp1+ (Ω) × Lp2(Ω) with p1 > max(2d/(d + 2), 1), p2 > max(d/2, 1)
and if j|(−∞,0]) ∈ C1((−∞, 0]), j|[0,∞) ∈ C1([0,∞)), then there exists a slack
variable q ∈ L∞(Ω) such that

Aw + cq = f and q = j′(w) a.e. in {j(w) 6= 0}.

e) If (c, f) ∈ Lp+(Ω) × Lp(Ω), max(d/2, 1) < p < ∞, j|(−∞,0]) ∈ C1((−∞, 0])
and j|[0,∞) ∈ C1([0,∞)) and if Ω has a C1,1-boundary, then w is in W 2,p(Ω).

In particular, w ∈ C1(Ω) for all (c, f) ∈ Lp+(Ω)× Lp(Ω) with p > d.

Proof.

Ad a) The bilinear form a is H1
0 -elliptic and continuous due to Assumption 2.1

and Friedrichs' inequality. Further, we obtain from Fatou's lemma and the
properties of j that the functional

H1
0 (Ω) 3 v 7→

∫
Ω

cj(v)dλ ∈ R ∪ {∞}

is convex, proper and lower semicontinuous for a �xed c ∈ L1
+(Ω). This allows

us to apply standard results as, e.g., [12, Theorem 4.1]) to obtain the unique
solvability of (P).
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Ad b) Let w be the unique solution to (P) and let wk, k ≥ 0, be de�ned as in (2.1).
Then we may choose the test function v := w − wk in (P) to obtain (using
Lemma 2.3 a))∫

Ω

d∑
i,j=1

−αij∂iwk∂jwk − βwwkdλ

+

∫
{w>k}

c
(
j(k)− j(w)

)
dλ

+

∫
{w<−k}

c
(
j(−k)− j(w)

)
dλ ≥ −

∫
Ω

fwkdλ. (2.7)

Since j is monotonically increasing on [0,∞) and monotonically decreasing
on (−∞, 0], and since β ≥ 0 a.e. in Ω, it follows from (2.7) (in combination
with Assumption 2.1 and Friedrichs' inequality) that there exists a constant
C depending only on d,Ω and A such that

‖wk‖2H1 ≤
∫

Ω

C|f ||wk|dλ ∀k ≥ 0.

Using Lemma 2.3 b) now yields the claim.
Ad c) Let v ∈ H1

0 (Ω)∩L∞(Ω) and t ∈ (0, 1) be arbitrary. Then we may choose the
test function w + tv in (P) to obtain

a(w, v) +

∫
Ω

c
j(w + tv)− j(w)

t
dλ ≥ 〈f, v〉 .

Note that it follows from f ∈ Lp2(Ω), p2 > max(d/2, 1), that w is essentially
bounded in Ω (see b)). Further, we obtain from Lemma 2.2 a) that j is
Lipschitz on the interval [−‖w‖L∞ − ‖v‖L∞ , ‖w‖L∞ + ‖v‖L∞ ]. Thus, there
exists a C > 0 with∣∣∣∣j(w + tv)− j(w)

t

∣∣∣∣ ≤ C|v| ∈ L∞(Ω) ∀t ∈ (0, 1).

Using the dominated convergence theorem, we may now deduce

a(w, v) +

∫
Ω

cj′(w; v)dλ ≥ 〈f, v〉 . (2.8)

This proves c) for all v ∈ H1
0 (Ω) ∩ L∞(Ω). If v is unbounded, we can choose

the function vk := min(v+, k) + max(v−,−k) ∈ L∞(Ω), k ≥ 0, in (2.8) and
exploit the positive homogeneity of the directional derivative to obtain

a(w, vk) +

∫
Ω

cj′(w; 1) min(v+, k)dλ

+

∫
Ω

cj′(w;−1) min(−v−, k)dλ ≥ 〈f, vk〉 .

Letting k → ∞ in the above and using again the dominated convergence
theorem (with the majorant (‖j′(w; 1)‖L∞ + ‖j′(w;−1)‖L∞)c|v| ∈ L1(Ω), cf.
the Sobolev embeddings, p1 > max(2d/(d + 2), 1) and the local Lipschitz
continuity of the function j) yields (2.6) in the general case.
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Ad d) To prove the existence of the slack variable q, we employ an approximation
argument: Consider for ε > 0 the regularized variational inequality

wε ∈ H1
0 (Ω), a(wε, v − wε) +

∫
Ω

cjε(v)dλ−
∫

Ω

cjε(wε)dλ ≥ 〈f, v − wε〉

∀v ∈ H1
0 (Ω) (Pε)

with

jε(x) :=
√
ε+ j(x)2 −

√
ε ∀x ∈ R.

Then jε : R→ [0,∞) is a convex function satisfying jε(0) = 0 and it follows
from a) that there exists a unique solution wε to (Pε). Moreover, we obtain
from b) that this solution satis�es ‖wε‖L∞ ≤ C‖f‖Lp2 for some constant C
which does not depend on ε. Note that testing with w in (Pε) and wε in (P)
yields

a(w − wε, w − wε) ≤
∫

Ω

c (jε(w)− j(w) + j(wε)− jε(wε)) dλ ≤ 2
√
ε‖c‖L1 ,

i.e., we have ‖w−wε‖H1 → 0 as ε→ 0. Further, it follows from the de�nition
of jε, j|(−∞,0]) ∈ C1((−∞, 0]), j|[0,∞) ∈ C1([0,∞)) and j(0) = 0 that jε is
continuously di�erentiable with

j′ε =
jj′√
ε+ j2

in R \ {0}, j′ε(0) = 0.

This implies in combination with c) that

a(wε, v) +

∫
Ω

c
j(wε)j

′(wε)√
ε+ j(wε)2

1{wε 6=0}vdλ = 〈f, v〉 (2.9)

holds for all v ∈ H1
0 (Ω), where 1{wε 6=0} ∈ L∞(Ω) is the indicator function of

the set {wε 6= 0}. The slack variable

qε :=
j(wε)j

′(wε)√
ε+ j(wε)2

1{wε 6=0} (2.10)

appearing in (2.9) satis�es

‖qε‖L∞ ≤ max
x∈[−‖wε‖L∞ ,‖wε‖L∞ ]\{0}

|j′(x)| ≤ C <∞

with a constant C independent of ε. Thus, the family {qε}ε>0 is bounded
in L∞(Ω) and we can apply the theorem of Banach-Alaoglu to extract a
subsequence (unrelabeled) such that qε converges to some q ∈ L∞(Ω) w.r.t.
the weak*-topology in L∞(Ω) ∼= L1(Ω)∗ as ε→ 0. Using that ‖w−wε‖H1 → 0
holds for ε→ 0 and that we have cv ∈ L1(Ω) due to the Sobolev embeddings
and p1 > max(2d/(d+ 2), 1), we can pass to the limit in (2.9) to obtain that
the weak limit q satis�es

a(w, v) +

∫
Ω

c qvdλ = 〈f, v〉 ∀v ∈ H1
0 (Ω).

This proves the claim. The fact that q = j′(w) holds a.e. in {j(w) 6= 0}
follows trivially from the pointwise convergence of (a subsequence of) qε to
j′(w) a.e. in {j(w) 6= 0} (see (2.10) and ‖w − wε‖H1 → 0).
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Ad e) If (c, f) ∈ Lp+(Ω) × Lp(Ω), max(d/2, 1) < p < ∞, j|(−∞,0]) ∈ C1((−∞, 0])
and j|[0,∞) ∈ C1([0,∞)), then it follows from part d) of the theorem and
max(d/2, 1) ≥ max(2d/(d+ 2), 1) for all d ≥ 1 that there exists a q ∈ L∞(Ω)
with

−
d∑

i,j=1

∂

∂xj

(
αij

∂

∂xi
w

)
+ βw = −cq + f =: f̃ .

Thus, w solves an elliptic partial di�erential equation of second order with
right-hand side f̃ ∈ Lp(Ω) and we can employ standard regularity results
(see [11, Theorem 9.15]) and the Sobolev embeddings to obtain the claim.

We remark that part d) of Theorem 2.4 can also be proved with dualization arguments
(cf. [5]). Note that in what follows, we will not analyze the sensitivity of the slack
variable q with respect to perturbations of c and f (in contrast to the approach in [6]).
In our analysis, the slack variable q is only needed to obtain the regularity result in
Theorem 2.4 e).

3. Local Lipschitz Continuity of the Solution Map. Having studied the
existence, the uniqueness and the regularity of the solution w to (P), we now turn
our attention to the mapping properties of the solution operator S : (c, f) 7→ w. In
what follows, we �rst analyze the continuity of S as a function from Lp+(Ω)× Lp(Ω),
p > max(d/2, 1), to H1

0 (Ω). The main result of this section is:

Theorem 3.1. Let Assumption 2.1 hold, let p > max(d/2, 1), and let r > 0 be
arbitrary but �xed. Then there exists a constant C depending only on d, p,Ω, A, r and
j such that the solution operator S : (c, f) 7→ w associated with (P) satis�es

‖S(c1, f1)− S(c2, f2)‖H1 + ‖S(c1, f1)− S(c2, f2)‖L∞

≤ C
(
‖c1 − c2‖Lp + ‖f1 − f2‖Lp

)
for all (c1, f1), (c2, f2) ∈ Lp+(Ω)× {f ∈ Lp(Ω) : ‖f‖Lp ≤ r}.
Proof. Let f1, f2 ∈ Lp(Ω) with ‖f1‖Lp , ‖f2‖Lp ≤ r and c1, c2 ∈ Lp+(Ω) be arbitrary
but �xed. Denote with w1 the solution S(c1, f1) and with w2 the solution S(c2, f2).
Then we know from Theorem 2.4 b) and c) that ‖w1‖L∞ , ‖w2‖L∞ ≤ C holds with a
constant C depending only on d, p,Ω, A and r and that

a(w1, v) +

∫
Ω

c1j
′(w1; v)dλ ≥ 〈f1, v〉

and

a(w2,−v) +

∫
Ω

c2j
′(w2;−v)dλ ≥ 〈f2,−v〉

holds for all v ∈ H1
0 (Ω). Adding the above inequalities yields

a(w1 − w2, v) +

∫
Ω

(c1 − c2)j′(w1; v)dλ+

∫
Ω

c2

(
j′(w1; v) + j′(w2;−v)

)
dλ

≥ 〈f1 − f2, v〉 ∀v ∈ H1
0 (Ω). (3.1)
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Choosing v = w2 − w1, we now obtain (using e) in Lemma 2.2, Sobolev embeddings
and the local Lipschitz continuity of j)

a(w1 − w2, w1 − w2)

≤ 〈f1 − f2, w1 − w2〉+

∫
Ω

(c1 − c2)j′(w1; sgn(w2 − w1))|w1 − w2|dλ

+

∫
Ω

c2

(
j′(w1;w2 − w1) + j′(w2;w1 − w2)

)
dλ

≤ C
(
‖f1 − f2‖Lp + ‖c1 − c2‖Lp

)
‖w1 − w2‖H1

with a constant C depending only on d, p,Ω, r and j. Consequently,

‖w1 − w2‖H1 ≤ C(d, p,Ω, A, r, j)
(
‖c1 − c2‖Lp + ‖f1 − f2‖Lp

)
.

This proves the local Lipschitz continuity in H1(Ω). It remains to prove the pointwise
stability estimate. To this end, we choose the test function v = −(w1 − w2)k, k ≥ 0,
in (3.1), where (w1 − w2)k is de�ned as in (2.1). This yields

a((w1 − w2)k, (w1 − w2)k)

≤ 〈f1 − f2, (w1 − w2)k〉+

∫
Ω

(c1 − c2)j′(w1;−(w1 − w2)k)dλ

+

∫
Ω

c2

(
j′(w1;−(w1 − w2)k) + j′(w2; (w1 − w2)k)

)
dλ. (3.2)

Note that the positive homogeneity of the directional derivative, the de�nition of
(w1 − w2)k and e) in Lemma 2.2 imply∫

Ω

c2

(
j′(w1;−(w1 − w2)k) + j′(w2; (w1 − w2)k)

)
dλ

=

∫
{|w1−w2|>k}

c2

(
j′(w1;− sgn(w1 − w2)) + j′(w2; sgn(w1 − w2))

)
(|w1 − w2| − k)dλ

=

∫
{|w1−w2|>k}

c2

(
j′(w1;w2 − w1) + j′(w2;w1 − w2)

) |w1 − w2| − k
|w1 − w2|

dλ

≤ 0.

Thus, it follows from (3.2) that

‖(w1 − w2)k‖2H1 ≤ C(d, p,Ω, A, r, j)

∫
Ω

(
|f1 − f2|+ |c1 − c2|

)
|(w1 − w2)k|dλ

holds for all k ≥ 0. Lemma 2.3 b) now yields

‖w1 − w2‖L∞ ≤ C(d, p,Ω, A, r, j) (‖f1 − f2‖Lp + ‖c1 − c2‖Lp) .

This proves the claim.
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4. Strategy for the Di�erential Sensitivity Analysis. As Theorem 3.1
shows, the solution map S : Lp+(Ω) × Lp(Ω) → H1

0 (Ω), (c, f) 7→ w, p > max(d/2, 1),
is H1- and L∞-Lipschitz on bounded sets. This is not only interesting for its own
sake (as it implies, for example, that S is even continuous when c is identical zero
and the non-di�erentiable term in (P) degenerates), but also the point of departure
for our di�erential sensitivity analysis: If a tuple (h, g) ∈ Lp(Ω) × Lp(Ω) satisfying
c+ t0h ∈ Lp+(Ω) for some t0 > 0 is given (with (c, f) ∈ Lp+(Ω)× Lp(Ω) arbitrary but
�xed), then the local Lipschitz continuity of the solution operator S implies that the
di�erence quotients

δt :=
S(c+ th, f + tg)− S(c, f)

t
, 0 < t < t0,

remain bounded in H1(Ω) and L∞(Ω) as t tends to zero. This yields that for every
sequence tn ⊂ (0, t0) satisfying tn → 0 we can �nd a subsequence (unrelabeled for
simplicity) such that the associated di�erence quotients δtn converge weakly inH1(Ω),
strongly in L2(Ω) and pointwise a.e. in Ω to a function δ ∈ H1

0 (Ω). In what follows,
the main idea is to show that this weak limit δ is unique, i.e., independent of the
choice of (sub)sequences, and that the di�erence quotients δtn converge even strongly
in H1(Ω). If this is established, then it follows immediately by contradiction that S
is directionally di�erentiable in (c, f) in the direction (h, g) with S′((c, f); (h, g)) = δ
(cf. also with [6]). So let us consider the following situation:

Assumption 4.1.

- p > max(d/2, 1),
- (c, f) ∈ Lp+(Ω)× Lp(Ω) is arbitrary but �xed (with w := S(c, f)),
- (h, g) ∈ Lp(Ω) × Lp(Ω) is arbitrary but �xed such that there exists a t0 > 0
with c+ t0h ∈ Lp+(Ω),

- 0 < tn < t0 is a sequence tending to zero as n→∞,
- the di�erence quotients δn := δtn associated with tn satisfy

δn ⇀ δ in H1(Ω), δn → δ in L2(Ω), δn → δ pointwise a.e. in Ω

for some δ ∈ H1
0 (Ω).

To prove that the weak limit δ is unique, we �rst note that the de�nition of δn yields
S(c+ tnh, f + tng) = w + tnδn. Consequently, for all v ∈ H1

0 (Ω) it is true that

a(w + tnδn, v − w − tnδn) +

∫
Ω

(c+ tnh) j(v)dλ−
∫

Ω

(c+ tnh) j(w + tnδn)dλ

≥ 〈f + tng, v − w − tnδn〉 . (4.1)

If we choose functions of the form v = w + tnz, z ∈ H1
0 (Ω), in (4.1), then we obtain

after some manipulations

a(δn, z − δn) + Jn(z) +Hn(z)− Jn(δn)−Hn(δn) ≥ 〈g, z − δn〉 ∀z ∈ H1
0 (Ω) (4.2)

with

Hn(z) :=

∫
Ω

h
j(w + tnz)− j(w)

tn
dλ
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and

Jn(z) :=
1

tn

(
a(w, z) +

∫
Ω

c j′(w; z)dλ− 〈f, z〉
)

+
1

tn

(∫
Ω

c
j(w + tnz)− j(w)

tn
− c j′(w; z)dλ

)
. (4.3)

In the following, our aim will be to pass to the limit n→∞ in (4.2) and to show that
the limit δ is itself the solution of an elliptic variational inequality which does not
depend on the sequence (tn) appearing in Assumption 4.1. If this is proved, then δ is
clearly unique and the solution map S is indeed directionally di�erentiable. Note that
for the Hn-terms in (4.2) the limit transition n→∞ is completely unproblematic:

Lemma 4.2. Let Assumptions 2.1 and 4.1 hold. Then for all z ∈ H1
0 (Ω) ∩ L∞(Ω) it

is true that

Hn(z)−Hn(δn)→
∫

Ω

hj′(w; z)dλ−
∫

Ω

hj′(w; δ)dλ.

Proof. We know from Theorem 2.4 that ‖w‖L∞ ≤ C‖f‖Lp and if z ∈ L∞(Ω), then
‖w+ tnz‖L∞ ≤ C‖f‖Lp + t0‖z‖L∞ . Consequently, there exists a constant C > 0 such
that ‖w‖L∞ , ‖w + tnz‖L∞ ∈ [0, C] holds for all n and we may use the local Lipschitz
continuity of j in combination with the dominated convergence theorem to obtain

Hn(z) =

∫
Ω

h
j(w + tnz)− j(w)

tn
dλ→

∫
Ω

hj′(w; z)dλ.

For Hn(δn), it follows from w + tnδn = S(c + tnh, f + tng) and Theorem 2.4 that
‖w + tnδn‖L∞ ≤ C(‖f‖Lp + t0‖g‖Lp). Further, we have a uniform bound on ‖δn‖L∞
due to Theorem 3.1. Thus, we may again use the dominated convergence theorem
and the Hadamard di�erentiability of j to deduce

Hn(δn) =

∫
Ω

h
j(w + tnδn)− j(w)

tn
dλ→

∫
Ω

hj′(w; δ)dλ.

This proves the claim.

Unfortunately, passing to the limit n → ∞ with the Jn-terms in (4.2) is much more
di�cult. Due to the negative powers of tn in (4.3) and since j is not assumed to
be twice continuously di�erentiable, it is perfectly possible that the sequence Jn(z)
diverges and the pointwise behavior of the second order di�erence quotients

1

tn

(
j(w + tnδn)− j(w)

tn
− j′(w; δn)

)
(4.4)

appearing in Jn(δn) is in general hard to determine. To overcome these problems, we
note the following:

Lemma 4.3. Let Assumptions 2.1 and 4.1 hold. Then it is true that

0 ≤ lim sup
n→∞

(
1

tn

(
a(w, δn) +

∫
Ω

c j′(w; δn)dλ− 〈f, δn〉
))

<∞

and

0 ≤ lim sup
n→∞

(
1

tn

(∫
Ω

c
j(w + tnδn)− j(w)

tn
− c j′(w; δn)dλ

))
<∞.
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Proof. Choosing the test function z = 0 in (4.2) yields

〈g, δn〉 −Hn(δn) ≥ 1

tn

(
a(w, δn) +

∫
Ω

c j′(w; δn)dλ− 〈f, δn〉
)

+
1

tn

(∫
Ω

c
j(w + tnδn)− j(w)

tn
− c j′(w; δn)dλ

)
≥ 0,

where the last inequality holds due to Lemma 2.2 b) and (2.6). The claim now follows
immediately from the boundedness of the term 〈g, δn〉 −Hn(δn).

Lemma 4.3 shows that, although the term Jn(z) might diverge for an arbitrary test
function z ∈ H1

0 (Ω), the expression Jn(δn) in (4.2) has to remain bounded. In what
follows, we will use this boundedness property to obtain additional information about
the weak limit δ and to reduce the class of test functions that has to be considered in
the variational inequality (4.2). As a �rst consequence of Lemma 4.3, we obtain:

Lemma 4.4. Let Assumptions 2.1 and 4.1 hold. Then the weak limit δ of the di�erence
quotients δn is an element of the so-called critical cone

Tcrit(c, f) :=

{
z ∈ H1

0 (Ω) : a(w, z) +

∫
Ω

cj′(w; z)dλ = 〈f, z〉
}
.

Proof. From the �rst estimate in Lemma 4.3, it follows

lim
n→∞

(
a(w, δn) +

∫
Ω

c j′(w; δn)dλ− 〈f, δn〉
)

= 0

and the weak convergence δn ⇀ δ yields a(w, δn)−〈f, δn〉 → a(w, δ)−〈f, δ〉. Further,
we obtain from the uniform L∞-bound on δn, the local Lipschitz continuity of the
function j and the dominated convergence theorem∫

Ω

c j′(w; δn)dλ =

∫
Ω

c j′(w; 1)δ+
n dλ−

∫
Ω

c j′(w;−1)δ−n dλ→
∫

Ω

c j′(w; δ)dλ.

Combining all of the above proves the claim.

Lemma 4.5. The set Tcrit(c, f) de�ned in Lemma 4.4 is a closed convex cone.

Proof. The cone property and the closedness of Tcrit(c, f) w.r.t. the H1-topology are
trivial. To see that Tcrit(c, f) is convex, note that from (2.6) and the convexity of j
it follows that for all z1, z2 ∈ Tcrit(c, f) and all s ∈ [0, 1] it holds

0 ≤ a(w, sz1 + (1− s)z2) +

∫
Ω

cj′(w; sz1 + (1− s)z2)dλ− 〈f, sz1 + (1− s)z2〉

= a(w, sz1 + (1− s)z2)− 〈f, sz1 + (1− s)z2〉

+

∫
Ω

c

(
lim
t→0+

j(sw + (1− s)w + t(sz1 + (1− s)z2))− j(w)

t

)
dλ

≤ s
(
a(w, z1) +

∫
Ω

cj′(w; z1)dλ− 〈f, z1〉
)

+ (1− s)
(
a(w, z2) +

∫
Ω

cj′(w; z2)dλ− 〈f, z2〉
)

= 0.

This proves the claim.
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Remark 4.6. The critical cone consists precisely of those functions that satisfy the
necessary condition (2.6) with equality, i.e., those directions for which a linearization
of the problem (P) does not provide any information about the "optimality" of the
solution w (cf. [4]). For an elliptic variational inequality of the �rst kind whose
admissible set is (extended) polyhedric, the critical cone is exactly the admissible set
of the projection that characterizes the directional derivatives of the solution map. We
refer to [13] and [19] for details on this topic.

Note that the information δ ∈ Tcrit(c, f) is obtained from the O(tn)-terms in the
perturbed variational inequality (4.1), i.e., Lemma 4.4 is essentially the consequence
of a �rst order perturbation analysis of the problem (P). To be able to pass to the
limit in (4.2), it remains to study which "second order information" about δ is encoded
in the boundedness property

0 ≤ lim sup
n→∞

(
1

tn

(∫
Ω

c
j(w + tnδn)− j(w)

tn
− c j′(w; δn)dλ

))
<∞. (4.5)

Unfortunately, what can be deduced from (4.5) depends heavily on the precise nature
of the function j and, at least to the authors' best knowledge, there is currently no
general strategy that can be used to study which implications (4.5) has if j is an
arbitrary function satisfying the conditions in Assumption 2.1 (although there are,
of course, general results about the behavior of second order di�erence quotients of
convex functions, cf. Alexandrov's theorem, [22, Theorem 3.11.2]). As a consequence,
in what follows, we have to con�ne our analysis to a suitable subclass of problems.

5. Variational Inequalities Involving Piecewise Smooth Functions. Hence-
forth, we impose the following more restrictive conditions on the function j:

Assumption 5.1. It holds j(x) = j1(x+) + j2(−x−) with non-negative and convex
functions j1, j2 ∈ C2([0,∞)) satisfying j1(0) = j2(0) = 0 and j′1(0), j′2(0) > 0.

Remark 5.2. We emphasize that the strategy described in Section 4 and pursued
hereafter can also be employed in situations other than that in Assumption 5.1. Our
approach is, for example, also applicable if one of the following holds:

- j is a C1-function satisfying the conditions in Assumption 2.1 and j′ is locally
Lipschitz continuous and directionally di�erentiable,

- j(x) = |x|1+ε with ε > 0.

In the above cases, passing to the limit in (4.2) is even simpler than in the situation
of Assumption 5.1 and structural assumptions (as those in Assumption 5.3 below) are
not needed to prove the directional di�erentiability of the solution map S. We remark
that it is also possible to extend our analysis to cover the cases where one of the
derivatives j′1(0), j′2(0) in Assumption 5.1 vanishes and where the function j is non-
di�erentiable at several points. The notational e�ort, however, increases signi�cantly
if this more general setting is considered.

As we will see in the following, in the situation of Assumption 5.1, the boundedness
property (4.5) yields information about the traces of δ on the boundary of the set
{w 6= 0} (i.e., the boundary of the inactive set). To be able to talk about traces on
∂{w 6= 0}, we have to make some assumptions:
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Assumption 5.3 (Structural Assumptions).

a) It holds f ∈ Lp(Ω), p > max(d/2, 1), 0 < c ∈ C(Ω) and w ∈ C1(Ω)∩W 2,1(Ω).
b) The set ∂{w 6= 0} ⊆ Ω is a λd-zero set and there exists a set C ⊆ Ω such that

the following is true:
- C is closed and has H1-capacity zero (i.e., cap2(C,Rd) = 0),
- ∂{w 6= 0}\C is a strong (d−1)-dimensional Lipschitz submanifold of Rd,
- the sets

N+ := {∇w = 0} ∩ ∂{w > 0} \ C
N− := {∇w = 0} ∩ ∂{w < 0} \ C

are relatively open in ∂{w 6= 0} \ C.
Here and in what follows, when we use the variable w, we always mean the
C1-representative of the solution S(c, f).

Some remarks are in order regarding the conditions in Assumption 5.3:

Remark 5.4.

a) The assumption w ∈ C1(Ω) ∩W 2,1(Ω) is automatically ful�lled if Ω has a
C1,1-boundary and if f ∈ Lp(Ω) holds for some p > d (see Theorem 2.4 e)).

b) Recall that a set N ⊂ Rd is called a strong (d − 1)-dimensional Lipschitz
submanifold of Rd if the following holds (cf. [25]): For all p ∈ N there exist
an orthogonal transformation R ∈ O(d), an open ball B ⊂ Rd−1, an open
interval J = (a, b) and a Lipschitz continuous map h : B → J such that

p ∈ R(B × J) and N ∩R(B × J) = R({(x, h(x)) : x ∈ B}).

Note that here and in what follows, we use the following conventions for the
degenerate case d = 1:
- R0 := {0} (with the open ball B := R0),
- the set R0 × R is identi�ed with R, i.e., if J ⊆ R and B = R0, then
B × J := J and B × J := J .

c) In the situation of Assumption 5.3, the part of ∂{w 6= 0} ∩ Ω with ∇w 6= 0,
i.e., the set

M := ∂{w 6= 0} ∩ {∇w 6= 0} = {w = 0} ∩ {∇w 6= 0} ⊂ Ω,

is a (d−1)-dimensional C1-submanifold of Rd (cf. implicit function theorem).
d) Since N+ and N− are relatively open subsets of ∂{w 6= 0} \ C, they are

themselves strong (d− 1)-dimensional Lipschitz submanifolds of Rd.
e) SinceM,N+ and N− are strong (d−1)-dimensional Lipschitz submanifolds,

traces on these sets are well-de�ned (cf. [1, 21]).
f) The capacity condition imposed on C in part b) of Assumption 5.3 means the

following (cf. [2, Chapter 5.8.2]):

0 = inf
{
‖φ‖H1 : φ ∈ Cc(Rd) ∩W 1,∞(Rd), 0 ≤ φ ≤ 1, φ ≡ 1 in a nbhd. of C

}
.

The above property will ensure that C is so "small" that we can neglect it
(cf. the proof of Lemma 5.14). In practice, C will contain lower dimensional
parts of the boundary ∂{w 6= 0} that cannot be handled analytically without
major problems, e.g., isolated zeros of the function w or points where the set
∂{w 6= 0} has a cusp (cf. Figure 5.1).
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Ω

w > 0

w < 0

w < 0

w > 0

w > 0

M

N−

N−N−

N−

N+

N+

N+

N+

N+

N+

C

w ≡ 0

w ≡ 0

Fig. 5.1. The geometric situation in Assumption 5.3. All visible lines are part of the boundary

∂{w 6= 0} ⊆ Ω. In the grey sets, it holds w ≡ 0. Points contained in C are marked by black squares.

The sets M,N− and N+ are depicted in blue, green and red, respectively. We point out that N+

and N− do not necessarily have to be disjoint and that there is always a change of sign along M.

Note that in the situation of Assumptions 5.1 and 5.3, our �rst order condition in
Lemma 4.4 can be rewritten as follows:

Lemma 5.5. Suppose that Assumptions 2.1, 5.1 and 5.3 are satis�ed. Then it holds
−cj′2(0) ≤ f ≤ cj′1(0) λd-a.e. in {w = 0} and it is true that

z ∈ Tcrit(c, f) ⇐⇒ z+ ∈ Tcrit(c, f) and z− ∈ Tcrit(c, f)

⇐⇒ z+ = 0 λd-a.e. in {w = 0} ∩ {−cj′2(0) ≤ f < cj′1(0)} and
z− = 0 λd-a.e. in {w = 0} ∩ {−cj′2(0) < f ≤ cj′1(0)}. (5.1)

Proof.

a) Since w ∈W 2,1(Ω) and f ∈ L1(Ω), (2.6) implies∫
Ω

(Aw)zdλ+

∫
{w 6=0}

cj′(w)zdλ+

∫
{w=0}

c
(
j′1(0)z+ − j′2(0)z−

)
dλ

≥
∫

Ω

fzdλ ∀z ∈ C∞c (Ω). (5.2)

If we choose test functions z ∈ C∞c ({w 6= 0}) in the above inequality, we
obtain (using that the set {w 6= 0} is open)

Aw + cj′(w)− f = 0 a.e. in {w 6= 0}. (5.3)
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From (5.2) and (5.3), it follows∫
{w=0}

(Aw)zdλ+

∫
{w=0}

c
(
j′1(0)z+ − j′2(0)z−

)
dλ ≥

∫
{w=0}

fzdλ (5.4)

for all z ∈ C∞c (Ω). Since ∂{w = 0} is a λd-zero set, (5.4) yields∫
{w=0}

(cj′1(0)− f)z+ − (cj′2(0) + f)z−dλ ≥ 0 (5.5)

for all z ∈ C∞c (Ω) and, by approximation, for all z ∈ L∞(Ω). Choosing the
indicator functions

z1 := 1{f>cj′1(0)} and z2 := −1{f<−cj′2(0)}

in (5.5), we readily obtain −cj′2(0) ≤ f ≤ cj′1(0) a.e. in {w = 0}. This proves
the �rst claim of the lemma.

b) If z+, z− ∈ Tcrit(c, f), then it follows from the convexity of the cone Tcrit(c, f)
that z = z+ + z− ∈ Tcrit(c, f). If, conversely, z ∈ Tcrit(c, f), then it holds

0 = a(w, z) +

∫
{w 6=0}

cj′(w)zdλ+

∫
{w=0}

c
(
j′1(0)z+ − j′2(0)z−

)
dλ− 〈f, z〉

=

(
a(w, z+) +

∫
{w 6=0}

cj′(w)z+dλ+

∫
{w=0}

cj′1(0)z+dλ−
〈
f, z+

〉)

+

(
a(w, z−) +

∫
{w 6=0}

cj′(w)z−dλ−
∫
{w=0}

cj′2(0)z−dλ−
〈
f, z−

〉)
.

The two bracketed terms on the right-hand side of the last identity are each
non-negative due to (2.6). Consequently, they both have to vanish and it
follows z+, z− ∈ Tcrit(c, f) as claimed. To obtain the second equivalence, we
note that, due to the regularity of the functions w and f , the condition in the
de�nition of the set Tcrit(c, f) can also be written as (cf. part a))∫

{w=0}
(cj′1(0)− f)z+ − (cj′2(0) + f)z−dλ = 0.

If we assume that z+ ∈ Tcrit(c, f) holds, then it follows from the above and
−cj′2(0) ≤ f ≤ cj′1(0) a.e. in {w = 0} that

0 =

∫
{w=0}

(cj′1(0)− f)z+dλ =

∫
{w=0}

|(cj′1(0)− f)z+|dλ.

This yields z+ = 0 a.e. in {w = 0} ∩ {−cj′2(0) ≤ f < cj′1(0)} as claimed.
Completely analogously, we obtain that z− ∈ Tcrit(c, f) implies z− = 0 a.e.
in {w = 0} ∩ {−cj′2(0) < f ≤ cj′1(0)}. This proves the implication ⇒ in the
second equivalence in (5.1). The reverse implication is trivial.
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Remark 5.6. In the situation of Lemma 5.5, the critical cone can also be described
as follows, using the slack variable q appearing in Theorem 2.4 d):

Tcrit(c, f) =

{
z ∈ H1

0 (Ω) :

∫
{w=0}

c(j′1(0)− q)z+ − (j′2(0) + q)z−dλ = 0

}
.

The above formulation corresponds to that used in [6].

We now turn our attention back to the boundedness condition (4.5), i.e.,

0 ≤ lim sup
n→∞

(
1

tn

(∫
Ω

c
j(w + tnδn)− j(w)

tn
− c j′(w; δn)dλ

))
<∞.

To analyze which implications (4.5) has in the situation of Assumptions 5.1 and 5.3,
we need the following prototypical result:

Proposition 5.7. Let B ⊂ Rd−1 be an open ball and let a > 0. Suppose that
v, ϕ ∈ C(B × [0, a]) are functions satisfying

v = 0 on B × {0}, v > 0 in B × (0, a] and ϕ ≥ 0 in B × [0, a].

Assume further that tn ∈ (0,∞) and zn ∈ H1(B × (0, a)) are sequences with tn → 0
and zn ⇀ z in H1(B × (0, a)) for some function z. Then the following is true:

a) If it holds v ∈W 1,∞(B × (0, a)), ϕ > 0 in B × {0} and

lim
t→0

(
‖∇v‖L∞(B×(0,t))

)
= 0

and if (tr z)− is not identical zero on B × {0}, then

lim inf
n→∞

(∫
B×(0,a)

ϕ
(−v − tnzn)+

t2n
dλ

)
=∞.

b) If it holds v ∈ C1(B× [0, a]) and ‖∇v‖ ≥ ε > 0 on B×{0} and if there exists
a constant C independent of n with ‖zn‖L∞ ≤ C, then∫

B×(0,a)

ϕ
(−v − tnzn)+

t2n
dλ→ 1

2

∫
B×{0}

ϕ
(tr z−)2

(∂dv)
dHd−1.

Here, tr z− ∈ L2(B × {0},Hd−1) is the trace of the function z− on B × {0}.

Proof. We restrict our attention to the case d > 1 (the proof for the one-dimensional
case is completely analogous but requires some notational adjustments): Note that
we may assume w.l.o.g. zn ∈ C(B× [0, a]) for all n ∈ N. If this is not the case, we can
simply replace zn with a sequence z̃n ∈ C(B× [0, a]) satisfying ‖zn− z̃n‖H1 ≤ t2n (and
‖z̃n‖L∞ ≤ C in b)) since this exchange does not alter the limiting behavior of the
integral expressions under consideration. In the following, we denote the �rst d − 1
coordinates of the Euclidean space with x ∈ Rd−1 and the d-th coordinate with y ∈ R.
Further, we introduce the abbreviations dx and dy for dλd−1(x) and dλ1(y).
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Ad a) If M > 0 is arbitrary but �xed, then for all n large enough it holds tnM < a
and (since v ≥ 0 in B × (0, a))∫

B×(0,a)

ϕ
(−v − tnzn)+

t2n
dλ ≥

∫
B

∫ tnM

0

ϕ
(−zn)+

tn
− ϕ v

t2n
dydx. (5.6)

From v = 0 on B × {0} and v ∈W 1,∞(B × (0, a)), we obtain further∣∣∣∣∣
∫
B

∫ tnM

0

ϕ(x, y)
v(x, y)

t2n
dydx

∣∣∣∣∣
≤ ‖ϕ‖L∞

∫
B

∫ tnM

0

1

t2n

∫ y

0

|(∂dv)(x, s)|dsdydx

≤ 1

2
‖ϕ‖L∞‖∇v‖L∞(B×(0,tnM))λ

d−1(B)M2. (5.7)

Similarly, we may calculate that∫
B

∫ tnM

0

ϕ(x, y)
(−zn(x, y))+

tn
dydx

=

∫
B

∫ tnM

0

ϕ(x, y)
(−zn(x, 0))+

tn
dydx+Rn

=

∫
B

(−zn(x, 0))+

∫ M

0

ϕ(x, tny)dydx+Rn (5.8)

with

|Rn| =

∣∣∣∣∣
∫
B

∫ tnM

0

ϕ(x, y)
(−zn(x, y))+ − (−zn(x, 0))+

tn
dydx

∣∣∣∣∣
≤ ‖ϕ‖L∞

∫
B

∫ tnM

0

1

tn

∫ y

0

|∂dzn(x, s)|dsdydx

≤ ‖ϕ‖L∞
∫
B

∫ tnM

0

1

tn
y1/2

(∫ a

0

|∂dzn(x, s)|2ds

)1/2

dydx

≤ 2

3
‖ϕ‖L∞‖zn‖H1λd−1(B)1/2M3/2t1/2n . (5.9)

Using (5.7), (5.8), (5.9), the boundedness of the sequence zn in H
1(B×(0, a)),

our assumptions on the function v and the compactness of the trace operator
tr : H1(B × (0, a)) → L2(B, λd−1) ∼= L2(B × {0},Hd−1) (cf. [21, Chapter 2,
Theorem 6.2]), we can pass to the limit n→∞ in (5.6) to obtain

lim inf
n→∞

(∫
B×(0,a)

ϕ
(−v − tnzn)+

t2n
dλ

)
≥M

∫
B

ϕ(x, 0)(−tr z(x))+dx

= M

∫
B×{0}

ϕ|(tr z)−|dHd−1. (5.10)

Since M > 0 was arbitrarily large and since ϕ|(tr z)−| is non-negative and
not identical zero on B × {0} (cf. our assumptions), it follows that the limes
inferior in (5.10) has to be in�nite. This proves part a).
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Ad b) The claim in b) is obtained similarly to that in a): Due to the C1-regularity
of v, the function

r(x, y) :=
v(x, y)

y
=

∫ 1

0

∂dv(x, sy)ds

is continuous and from v > 0 in B × (0, a] and ‖∇v‖ = ∂dv = r ≥ ε > 0
on B × {0} it follows that r is positive everywhere in B × [0, a]. Thus, there
exists an ε̃ > 0 such that r ≥ ε̃ holds everywhere in B × [0, a]. On the other
hand, the integrand in the integral under consideration can only be non-zero,
if it is true that

0 ≤ −v(x, y)− tnzn(x, y) = −yr(x, y)− tnzn(x, y),

i.e., if it holds

0 ≤ y ≤ tn
‖zn‖L∞

ε̃
≤ Ctn

with a constant C independent of n. Thus, for large enough n we have∫
B×(0,a)

ϕ
(−v − tnzn)+

t2n
dλ

=

∫
B

∫ Ctn

0

ϕ(x, y)
(−yr(x, y)− tnzn(x, y))+

t2n
dydx

=

∫
B

∫ C

0

ϕ(x, tny)
(
− yr(x, tny)− zn(x, tny)

)+

dydx

=

∫
B

∫ C

0

ϕ(x, tny)
(
− yr(x, 0)− zn(x, 0)

)+

dydx+Rn (5.11)

with

|Rn| ≤ ‖ϕ‖L∞
∫
B

∫ C

0

|yr(x, tny)− yr(x, 0)|+ |zn(x, tny)− zn(x, 0)|dydx

≤ ‖ϕ‖L∞
∫
B

∫ C

0

∫ Ctn

0

|∂dzn(x, s)|dsdydx+ o(1)

≤ ‖ϕ‖L∞
∫
B

∫ C

0

(Ctn)1/2

(∫ a

0

|∂dzn(x, s)|2ds

)1/2

dydx+ o(1)

= o(1). (5.12)

From the compactness of the trace operator, (5.11) and (5.12), it follows∫
B×(0,a)

ϕ
(−v − tnzn)+

t2n
dλ

→
∫
B

ϕ(x, 0)

∫ C

0

(
− y∂dv(x, 0)− (tr z)(x)

)+

dydx. (5.13)

Using ‖∇v‖ = ∂dv ≥ ε > 0 on B × {0}, we can calculate the inner integral
on the right-hand side of (5.13) to obtain∫

B×(0,a)

ϕ
(−v − tnzn)+

t2n
dλ→ 1

2

∫
B

ϕ(x, 0)
(tr z−(x))2

(∂dv)(x, 0)
dλd−1(x).

This proves b).
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Note that for j(x) = |x|, it holds

1

tn

(∫
Ω

c
j(w + tnδn)− j(w)

tn
− c j′(w; δn)dλ

)
=

∫
{w>0}

2c
(−w − tnδn)+

t2n
dλ+

∫
{w<0}

2c
(w + tnδn)+

t2n
dλ,

i.e., the parameter integrals studied in Proposition 5.7 are exactly those appearing in
the boundedness condition (4.5) when the absolute value function is considered. If j is
an arbitrary function satisfying Assumption 5.1, then one can use Taylor expansions
and localization arguments to deduce the following from Proposition 5.7:

Proposition 5.8. Let Assumptions 2.1, 5.1 and 5.3 hold. Then the following is true
in the situation of Assumption 4.1:

(tr δ)+ = 0 Hd−1-a.e. on N− and (tr δ)− = 0 Hd−1-a.e. on N+.

Proof. We again restrict our attention to the case d > 1. To show that (4.5) implies
(tr δ)− = 0 Hd−1-a.e. on N+, we use Taylor's formula and Proposition 5.7 a): From
(4.5), Lemma 2.2 b) and our assumptions on j, it follows that there exists a constant
C > 0 independent of n with

C ≥ 1

tn

(∫
Ω

c
j(w + tnδn)− j(w)

tn
− c j′(w; δn)dλ

)
≥ 1

tn

(∫
{w>0}

c
j(w + tnδn)− j(w)

tn
− c j′(w)δndλ

)

≥ 1

tn

(∫
{w>0}

c
j((w + tnδn)+)− j(w+)

tn
− c j′(w+)δndλ

)

=
1

tn

(∫
{w>0}

c

(
j′1(w+)

(w + tnδn)+ − w+

tn

)
− c j′1(w+)δndλ

)

+

∫
{w>0}

c
((w + tnδn)+ − w+)2

t2n

∫ 1

0

(1− s)j′′1 ((1− s)w+ + s(w + tnδn)+)dsdλ.

(5.14)

Further, we obtain from the boundedness of the sequence δn in L∞(Ω) that the
integrand of the j′′1 -integral in (5.14) satis�es∣∣∣∣c ((w + tnδn)+ − w+)2

t2n

∫ 1

0

(1− s)j′′1 ((1− s)w+ + s(w + tnδn)+)ds

∣∣∣∣
≤ ‖c‖L∞‖δn‖2L∞ max {j′′1 (x) : 0 ≤ x ≤ ‖w‖L∞ + ‖δn‖L∞}
≤ C

a.e. in Ω for some constant C > 0 independent of n. Thus, the j′′1 -term in (5.14)
remains bounded as n tends to in�nity and it is true that

C ≥
∫
{w>0}

cj′1(w+)
1

tn

(
(w + tnδn)+ − w+

tn
− δn

)
dλ

=

∫
{w>0}

cj′1(w+)
(−w − tnδn)+

t2n
dλ. (5.15)
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Consider now an arbitrary but �xed point p ∈ N+ ⊆ ∂{w 6= 0} \ C. Then it follows
from our assumptions that (after possibly changing coordinates such that R = Id)
we can �nd an open ball B ⊂ Rd−1, an open interval J = (a, b) and a Lipschitz
continuous map h : B → J with

p ∈ B × J and ∂{w 6= 0} \ C ∩ (B × J) = {(x, h(x)) : x ∈ B}.

Note that, since C is closed, since N+ is a subset of Ω and since N+ is relatively open
in ∂{w 6= 0} \ C, by making the sets J and B smaller, we can always obtain that the
following holds true for some ε > 0 (cf. Figure 5.2):

p ∈ B × J, cl (B × J) ⊂ Ω \ C,
N+ ∩ (B × J) = {(x, h(x)) : x ∈ B},

{(x, y) : x ∈ B and |y − h(x)| < ε}) ⊆ B × J,
∂{w 6= 0} ∩ cl (B × J) = cl

(
N+ ∩ (B × J)

)
.

In the above situation, it follows from N+ ⊆ ∂{w > 0} that w is positive in at least
one of the sets

D1 := {(x, y) ∈ cl (B × J) : y > h(x)} , D2 := {(x, y) ∈ cl (B × J) : y < h(x)} .

(We, of course, use the unique extension of the function h onto B here). Let us
assume that this is true for D1 (the other case is analogous). Then (5.15) and the
area formula (cf. [9, Theorem 3.9]) imply

C ≥
∫
B

∫ ε

0

(
cj′1(w)

(−w − tnδn)+

t2n

)∣∣∣∣
(x,y+h(x))

dydx. (5.16)

De�ning

v(x, y) := w(x, y + h(x)), ϕ(x, y) := c(x, y + h(x))j′1(w(x, y + h(x))),

zn(x, y) := δn(x, y + h(x)),

the right-hand side of (5.16) takes exactly the form of the integral expression studied
in Proposition 5.7. Further, it follows from the de�nition of N+ that w(x, h(x)) = 0
and (∇w)(x, h(x)) = 0 holds for all x ∈ B. This and the conditions on c and w in
Assumption 5.3 yield that in the situation of (5.16) we have

v, ϕ ∈ C(B × [0, ε]), v = 0 on B × {0}, v > 0 in B × (0, ε], ϕ > 0 in B × [0, ε],

v ∈W 1,∞(B × (0, ε)), lim
t→0

(
‖∇v‖L∞(B×(0,t))

)
= 0.

From Proposition 5.7 a) and (5.16), it now readily follows by contradiction that
(tr δ)− = 0 Hd−1-a.e. on N+ ∩ (B × J). This, together with the arbitrariness of
the point p ∈ N+ proves the claim for (tr δ)−. The result for (tr δ)+ is obtained
completely analogously.
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N+

p

B

J

w > 0

ε

ε

p

w > 0

Fig. 5.2. Local recti�cation of the set N+ in two dimensions.

To study the trace of δ on the setM = {w = 0} ∩ {∇w 6= 0}, we need the following
corollary of Proposition 5.7 b):

Proposition 5.9. Let Ω be a bounded Lipschitz domain and suppose that functions
j, v, c, ψ1 and ψ2 are given such that j satis�es Assumption 5.1 and such that

v ∈ C1(Ω), 0 ≤ c ∈ C(Ω), 0 ≤ ψ1 ∈ Cc(Ω), 0 ≤ ψ2 ∈ Cc(Ω),

supp(ψ1) ∩ ∂{v < 0} ∩ {∇v = 0} = ∅
and

supp(ψ2) ∩ ∂{v > 0} ∩ {∇v = 0} = ∅.

Assume further that tn ∈ (0,∞) and zn ∈ H1(Ω) are sequences satisfying

tn → 0, ‖zn‖L∞ ≤ C, zn ⇀ z in H1(Ω) and zn → z pointwise a.e. in Ω

for some constant C independent of n and some z ∈ H1(Ω). Then it is true that∫
Ω

ψ1
c

tn

(
j(v + tnz

+
n )− j(v)

tn
− j′(v; z+

n )

)
dλ

→ 1

2

∫
{v 6=0}

ψ1cj
′′(v)(z+)2dλ+

1

2

∫
{v=0}

ψ1cj
′′
1 (0)(z+)2dλ

+
1

2

(
j′1(0) + j′2(0)

)∫
{v=0}∩{∇v 6=0}

ψ1c
(tr z+)2

‖∇v‖
dHd−1 (5.17)

and ∫
Ω

ψ2
c

tn

(
j(v + tnz

−
n )− j(v)

tn
− j′(v; z−n )

)
dλ

→ 1

2

∫
{v 6=0}

ψ2cj
′′(v)(z−)2dλ+

1

2

∫
{v=0}

ψ2cj
′′
2 (0)(z−)2dλ

+
1

2

(
j′1(0) + j′2(0)

)∫
{v=0}∩{∇v 6=0}

ψ2c
(tr z−)2

‖∇v‖
dHd−1. (5.18)

Proof. We restrict our attention to (5.18). The limit (5.17) is obtained analogously.
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Further, we again focus on the case d > 1. Note that the properties of j imply∫
Ω

ψ2
c

tn

(
j(v + tnz

−
n )− j(v)

tn
− j′(v; z−n )

)
dλ

=

∫
{v≤0}

ψ2
c

tn

(
j2(−v − tnz−n )− j2(−v)

tn
+ j′2(−v)z−n

)
dλ

+

∫
{v>0}

ψ2
c

tn

(
j1((v + tnz

−
n )+)− j1(v)

tn
− j′1(v)z−n

)
dλ

+

∫
{v>0}

ψ2
c

tn

(
j2(−(v + tnz

−
n )−)

tn

)
dλ

= I1 + I2 + I3.

In what follows, we analyze the three integrals I1, I2 and I3 separately:

Ad I1: Using the dominated convergence theorem, the boundedness of zn in L∞(Ω)
and Taylor's formula, we obtain

I1 =

∫
{v≤0}

ψ2
c

tn

(
j2(−v − tnz−n )− j2(−v)

tn
+ j′2(−v)z−n

)
dλ

=

∫
{v≤0}

ψ2c(z
−
n )2

∫ 1

0

(1− s)j′′2 (−v − stnz−n )dsdλ

→ 1

2

∫
{v≤0}

ψ2cj
′′
2 (−v)(z−)2dλ.

Ad I2: It holds (cf. (5.14))

I2 =

∫
{v>0}

ψ2
c

tn

(
j1((v + tnz

−
n )+)− j1(v)

tn
− j′1(v)z−n

)
dλ

=
1

tn

(∫
{v>0}

ψ2cj
′
1(v)

(
(v + tnz

−
n )+ − v
tn

− z−n
)

dλ

)

+

∫
{v>0}

ψ2c
((v + tnz

−
n )+ − v)2

t2n

∫ 1

0

(1− s)j′′1 ((1− s)v + s(v + tnz
−
n )+)dsdλ

= I2a + I2b.

For I2b we obtain analogously to I1 that

I2b →
1

2

∫
{v>0}

ψ2c j
′′
1 (v)(z−)2dλ.

For I2a a simple distinction of cases shows

I2a =

∫
{v>0}

ψ2cj
′
1(v)

(−v − tnz−n )+

t2n
dλ.

To be able to apply Proposition 5.7 to the above integral, we note that our
assumption supp(ψ2) ∩ ∂{v > 0} ∩ {∇v = 0}) = ∅ implies

supp(ψ2) ∩ ∂{v > 0} ⊂ {∇v 6= 0}. (5.19)
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De�ne K := supp(ψ2) and (as before) M := {v = 0} ∩ {∇v 6= 0}. Then it
follows from (5.19) and the compactness of K ∩ ∂{v > 0} that there exists a
constant m > 0 with

‖∇v‖ ≥ m in K ∩ ∂{v > 0}.

Further, the implicit function theorem yields that for each point p in the set
K ∩∂{v > 0} ⊂ M we may �nd an orthogonal transformation Rp ∈ O(d), an
open ball Bp ⊂ Rd−1, an open interval Jp and a C1-function hp : Bp → Jp
such that

p ∈ Rp(Bp × Jp), Rp(Bp × Jp) ⊂ Ω,

M∩Rp(Bp × Jp) = {v = 0} ∩Rp(Bp × Jp) = Rp({(x, hp(x)) : x ∈ Bp}).

Note that by choosing smaller sets Bp and Jp, in the above situation we can
always obtain that it holds

cl(Rp(Bp × Jp)) ⊂ Ω,

‖∇v‖ ≥ m/2 in Rp(Bp × Jp),

v 6= 0 in cl(Rp(Bp × Jp)) \ cl(Rp({(x, hp(x)) : x ∈ Bp}))

and

Rp({(x, y) : x ∈ Bp, |y − hp(x)| < εp}) ⊆ Rp(Bp × Jp) (5.20)

for some εp > 0. Let us denote the εp-tube on the left-hand side of (5.20)
with Wp. Then the collection {Wp} de�nes an open cover of K ∩ ∂{v > 0}
and it follows from the compactness of the set K ∩ ∂{v > 0} that there exist
points p1, ...,pL ∈ K ∩ ∂{v > 0}, L ∈ N, with

K ∩ ∂{v > 0} ⊂
L⋃
l=1

Wpl
=: U .

Further, since U is open, we can �nd an open set V ⊂ Rd such that

U ∪ V = Rd and V ∩K ∩ ∂{v > 0} = ∅.

Consider now a partition of unity of the Euclidean space Rd subordinate to
the coverWp1

, ....,WpL
, V (cf. [26, Theorem 1.11]), i.e., a collection of smooth

functions ϕl : Rd → [0, 1], l = 1, ..., L+ 1, satisfying

supp(ϕl) ⊂Wpl
, l = 1, ..., L, supp(ϕL+1) ⊂ V and

L+1∑
l=1

ϕl ≡ 1.

Then we obtain

I2a =

L+1∑
l=1

∫
K∩{v>0}

ϕlψ2cj
′
1(v)

(−v − tnz−n )+

t2n
dλ. (5.21)

Note that from V ∩K ∩ ∂{v > 0} = ∅ it follows

V ∩K ∩ {v > 0} = V ∩K ∩ cl({v > 0}).
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Thus, the set V ∩K ∩ {v > 0} is a compact subset of {v > 0} and it holds
v ≥ ε > 0 for some ε > 0 in V ∩K ∩ {v > 0}. This implies, together with
the uniform L∞-bound on ‖z−n ‖L∞ , that the integral associated with ϕL+1

in (5.21) is identical zero for n su�ciently large. It remains to analyze the
integrals∫

K∩{v>0}
ϕlψ2cj

′
1(v)

(−v − tnz−n )+

t2n
dλ

=

∫
Wpl
∩{v>0}

ϕlψ2cj
′
1(v)

(−v − tnz−n )+

t2n
dλ, l = 1, ..., L, (5.22)

appearing in (5.21), i.e., the contributions to I2a that come from the vicinity
of the boundary ∂{v > 0}. To this end, let us drop the index l and assume
w.l.o.g. that Rp = Id. In this prototypical situation, the integral in (5.22)
can be rewritten as follows (cf. the proof of Proposition 5.8):∫

Wp∩{v>0}
ϕψ2cj

′
1(v)

(−v − tnz−n )+

t2n
dλ

=

∫
Bp

∫ εp

−εp

[
1{v>0}ϕψ2cj

′
1(v)

(−v − tnz−n )+

t2n

]∣∣∣∣
(x,y+hp(x))

dydx.

Note that, since {v = 0} ∩Wp = {(x, hp(x)) : x ∈ Bp} ⊂ {v = 0} ∩ {∇v 6= 0}
and due to v 6= 0 in cl(Bp × Jp) \ cl({(x, hp(x)) : x ∈ Bp}), it has to hold
either

v(x, y + hp(x)) > 0 in Bp × (0, εp], v(x, y + hp(x)) < 0 in Bp × [−εp, 0)

or

v(x, y + hp(x)) < 0 in Bp × (0, εp], v(x, y + hp(x)) > 0 in Bp × [−εp, 0).

If the �rst case is true (the second one is analogous), it holds∫
Wp∩{v>0}

ϕψ2cj
′
1(v)

(−v − tnz−n )+

t2n
dλ

=

∫
Bp

∫ εp

0

[
ϕψ2cj

′
1(v)

(−v − tnz−n )+

t2n

]∣∣∣∣
(x,y+hp(x))

dydx.

The integral on the right-hand side of the last equation has exactly the form
of that studied in Proposition 5.7 b). We may thus deduce∫

Wp∩{v>0}
ϕψ2cj

′
1(v)

(−v − tnz−n )+

t2n
dλ

→ 1

2

∫
Bp

j′1(0)

[
ϕψ2c

(tr z−)2

∂dv

]∣∣∣∣
(x,hp(x))

dλd−1(x).

Here, with (tr z−)(x, hp(x)) we, of course, mean the value of the trace

tr z− ∈ L2(M,Hd−1)
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in the point (x, hp(x)) ∈M, x ∈ Bp. Using the identity

‖(∇v)(x, hp(x))‖ = (∂dv)(x, hp(x))
√

1 + ‖∇hp(x)‖2 ∀x ∈ Bp

and the area formula (cf. [9, Theorem 3.9]), it now follows

∫
Wp∩{v>0}

ϕψ2cj
′
1(v)

(−v − tnz−n )+

t2n
dλ

→ 1

2

∫
{(x,hp(x)):x∈Bp}

j′1(0)ϕψ2c
(tr z−)2

‖∇v‖
dHd−1.

This implies (using
∑L
l=1 ϕl ≡ 1 on K ∩ ∂{v > 0} = K ∩M)

I2a →
1

2
j′1(0)

∫
M
ψ2c

(tr z−)2

‖∇v‖
dHd−1.

Ad I3: From Taylor's formula we obtain

I3 =

∫
{v>0}

ψ2
c

tn

(
j2(−(v + tnz

−
n )−)

tn

)
dλ

=

∫
{v>0}

ψ2c
−(v + tnz

−
n )−

t2n

∫ 1

0

j′2(−s(v + tnz
−
n )−)dsdλ

=

∫
{v>0}

ψ2j
′
2(0)c

−(v + tnz
−
n )−

t2n
dλ

+

∫
{v>0}

ψ2c
((v + tnz

−
n )−)2

t2n

(∫ 1

0

∫ 1

0

j′′2 (−st(v + tnz
−
n )−)dt sds

)
dλ

= I3a + I3b.

The dominated convergence theorem yields I3b → 0 (analogously to I2b) and
since∫

{v>0}
ψ2j
′
2(0)c

−(v + tnz
−
n )−

t2n
dλ =

∫
{v>0}

ψ2j
′
2(0)c

(−v − tnz−n )+

t2n
dλ

the integral I3a behaves exactly like I2a. Thus, using the same argumentation
as for I2, we obtain

I3 →
1

2
j′2(0)

∫
M
ψ2c

(tr z−)2

‖∇v‖
dHd−1.

Combining all of our results, we readily obtain (5.18) as desired.

We point out that Proposition 5.9 is also interesting for its own sake. It yields, for
example, the following second order expansion for the L1-norm:

26



Corollary 5.10. Let Ω be a bounded Lipschitz domain and let v ∈ C1(Ω) be a
function with {v = 0} ∩ {∇v = 0} = ∅. Then for all z ∈ Cc(Ω)∩H1(Ω) and all t > 0
it holds∫

Ω

|v + tz|dλ

=

∫
Ω

|v|dλ+ t

(∫
Ω

sgn(v)zdλ

)
+ t2

(∫
{v=0}

z2

‖∇v‖
dHd−1

)
+ o(t2). (5.23)

The Landau symbol o(t2) appearing here refers to the limit t→ 0+.

Proof. Choose a function 0 ≤ ψ ∈ Cc(Ω) with ψ ≡ 1 in supp(z), then it follows from
(5.17) and (5.18) with c ≡ 1, j(x) = |x|, ψ1 = ψ2 = ψ and zn = z that for every
sequence tn ⊂ (0,∞) tending to zero it holds∫

Ω

1

tn

(
|v + tnz| − |v|

tn
− sgn(v)z

)
dλ→

∫
{v=0}∩{∇v 6=0}

(tr z)2

‖∇v‖
dHd−1.

Reformulating the above yields (5.23) as desired.

Remark 5.11. Expansions involving surface integrals similar to that in (5.23) also
appear in the study of highly oscillatory integrals. See [16] for an overview article.

We are now in the position to pass to the limit in the variational inequality (4.2) for
the di�erence quotients δn:

Proposition 5.12. Let Assumptions 2.1, 5.1 and 5.3 hold. Then in the situation of
Assumption 4.1, for all z ∈ L∞(Ω)∩Tcrit(c, f) satisfying z+ = 0 a.e. in a neighborhood
of ∂Ω ∪N− ∪ C and z− = 0 a.e. in a neighborhood of the set ∂Ω ∪N+ ∪ C it holds

a(δ, z) + J(z)− J(δ) +

∫
Ω

h
(
j′(w; z)− j′(w; δ)

)
dλ− 〈g, z − δ〉 ≥ lim sup

n→∞
a(δn, δn)

(5.24)

with

J(z) :=
1

2

∫
{w 6=0}

cj′′(w)z2dλ+
1

2

∫
{w=0}

cj′′1 (0)(z+)2 + cj′′2 (0)(z−)2dλ

+
1

2

(
j′2(0) + j′1(0)

)∫
M
c
(tr z)2

‖∇w‖
dHd−1. (5.25)

In particular, it is true that ∫
M
c
(tr δ)2

‖∇w‖
dHd−1 <∞.

Here, withM we again denote the set {w = 0} ∩ {∇w 6= 0}.
Proof. From (2.6), (4.2) and the de�nition of the critical cone, it follows that for all
z ∈ Tcrit(c, f) we have

a(δn, z) +Hn(z)−Hn(δn)− 〈g, z − δn〉

+
1

tn

(∫
Ω

c
j(w + tnz)− j(w)

tn
− c j′(w; z)dλ

)
≥ a(δn, δn) +

1

tn

(∫
Ω

c
j(w + tnδn)− j(w)

tn
− c j′(w; δn)dλ

)
. (5.26)
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Note that due to the weak H1-convergence δn ⇀ δ and Lemma 4.2, the �rst four
terms on the left-hand side of (5.26) satisfy

a(δn, z) +Hn(z)−Hn(δn)− 〈g, z − δn〉

→ a(δ, z) +

∫
Ω

hj′(w; z)dλ−
∫

Ω

hj′(w; δ)dλ− 〈g, z − δ〉 ∀z ∈ L∞(Ω) ∩H1
0 (Ω).

Suppose now that z ∈ L∞(Ω)∩Tcrit(c, f) is a function such that there exist open sets
U1, U2 ⊆ Rd with ∂Ω ∪ N− ∪ C ⊂ U1, ∂Ω ∪ N+ ∪ C ⊂ U2, z

+ = 0 a.e. in U1 ∩ Ω and
z− = 0 a.e. in U2 ∩ Ω. Then we can �nd functions ψ1, ψ2 ∈ Cc(Ω) with

0 ≤ ψ1, ψ2 ≤ 1 in Ω, ψ1 ≡ 1 in Ω \ U1, ψ2 ≡ 1 in Ω \ U2,

dist(supp(ψ1), C ∪ N−) > 0 and dist(supp(ψ2), C ∪ N+) > 0.

Further, the de�nitions of N− and N+ yield ∂{w < 0} ∩ {∇w = 0} ⊆ C ∪ N− and
∂{w > 0} ∩ {∇w = 0} ⊆ C ∪ N+. Thus, we may employ Proposition 5.9 to obtain

1

tn

(∫
Ω

c
j(w + tnz)− j(w)

tn
− c j′(w; z)dλ

)
=

∫
Ω

ψ1
c

tn

(
j(w + tnz

+)− j(w)

tn
− j′(w; z+)

)
dλ

+

∫
Ω

ψ2
c

tn

(
j(w + tnz

−)− j(w)

tn
− j′(w; z−)

)
dλ

→ J(z). (5.27)

It remains to study the right-hand side of (5.26). To this end, let ψk1 , ψ
k
2 ∈ Cc(Ω) be

sequences of bump functions such that

0 ≤ ψk1 , ψk2 ≤ 1 in Ω,

ψk1 ≡ 1 in {x ∈ Ω : dist(x, C ∪ N− ∪ ∂Ω) ≥ 1/k},
ψk2 ≡ 1 in {x ∈ Ω : dist(x, C ∪ N+ ∪ ∂Ω) ≥ 1/k},

dist(supp(ψk1 ), C ∪ N−) > 0, dist(supp(ψk2 ), C ∪ N+) > 0 ∀k ∈ N,

and note that (5.26), (5.27) and Proposition 5.9 yield that for all z ∈ L∞(Ω) ∩
Tcrit(c, f) with z+ = 0 a.e. in a neighborhood of ∂Ω ∪ N− ∪ C and z− = 0 a.e. in a
neighborhood of the set ∂Ω ∪N+ ∪ C it holds

a(δ, z) + J(z) +

∫
Ω

hj′(w; z)dλ−
∫

Ω

hj′(w; δ)dλ− 〈g, z − δ〉

≥ lim sup
n→∞

[
a(δn, δn) +

∫
Ω

ψk1
c

tn

(
j(w + tnδ

+
n )− j(w)

tn
− j′(w; δ+

n )

)
dλ

+

∫
Ω

ψk2
c

tn

(
j(w + tnδ

−
n )− j(w)

tn
− j′(w; δ−n )

)
dλ

]
=

(
lim sup
n→∞

a(δn, δn)

)
+

1

2

(∫
{w 6=0}

ψk1cj
′′(w)(δ+)2 + ψk2cj

′′(w)(δ−)2dλ

)

+
1

2

(∫
{w=0}

ψk1cj
′′
1 (0)(δ+)2 + ψk2cj

′′
2 (0)(δ−)2dλ

)

+
1

2

(
j′1(0) + j′2(0)

)(∫
M
c
ψk1 (tr δ+)2 + ψk2 (tr δ−)2

‖∇w‖
dHd−1

)
.
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Using the lemma of Fatou and our assumption λd(∂{w 6= 0}) = 0, we can pass to the
limit k →∞ on the right-hand side of the last estimate. This yields the claim.

Let us summarize what we know about the limit δ at this point (cf. Lemma 4.4,
Lemma 5.5 and Proposition 5.8):

Corollary 5.13. Let Assumptions 2.1, 5.1 and 5.3 hold. Then in the situation of
Assumption 4.1, the weak limit δ is an element of the set

T redcrit(c, f) :=
{
z ∈ H1

0 (Ω) : z+ = 0 λd-a.e. in {w = 0} ∩ {−cj′2(0) ≤ f < cj′1(0)},

z− = 0 λd-a.e. in {w = 0} ∩ {−cj′2(0) < f ≤ cj′1(0)},
tr(z+) = 0 Hd−1-a.e. on N−,
tr(z−) = 0 Hd−1-a.e. on N+,∫
M
c
(tr z)2

‖∇w‖
dHd−1 <∞

}
. (5.28)

We will refer to T redcrit(c, f) as the reduced critical cone.

To obtain a proper elliptic variational inequality for the weak limit δ, it remains to
prove that (5.24) holds not only for those functions z that satisfy the conditions of
Proposition 5.12, but also for all other elements of the reduced critical cone T redcrit(c, f).
The following approximation result is useful in this context:

Lemma 5.14. Suppose that Assumption 2.1 and Assumption 5.3 hold. Then for every
function z ∈ H1

0 (Ω) ∩ L∞(Ω) satisfying

tr(z+) = 0 Hd−1-a.e. on N− and tr(z−) = 0 Hd−1-a.e. on N+

there exists a sequence zl ∈ H1
0 (Ω)∩L∞(Ω) such that zl converges to z in H1(Ω) and

such that for all l it is true that

z+
l = 0 a.e. in a neighborhood of ∂Ω ∪N− ∪ C,
z−l = 0 a.e. in a neighborhood of ∂Ω ∪N+ ∪ C.

Proof. Let z ∈ H1
0 (Ω)∩L∞(Ω) be an arbitrary function satisfying the trace conditions

in the lemma. Then it follows from our assumptions on C that there exists a sequence
φm ∈ Cc(Rd) ∩W 1,∞(Rd) with

0 ≤ φm ≤ 1, φm ≡ 1 in a nbhd. of C and ‖φm‖H1 → 0 as m→∞.

De�ne zm := (1 − φm)z ∈ H1
0 (Ω). Then each zm vanishes in a neighborhood of C

and we obtain by direct calculation that zm → z holds in H1(Ω). Consequently, we
may assume w.l.o.g. that the function z that we would like to approximate vanishes
almost everywhere in a neighborhood U ⊆ Rd of C. Further, we have z = z+ + z−

with z+, z− ∈ H1
0 (Ω) according to Lemma 2.3. This allows us to approximate the

positive and the negative part of the function z separately. Let us focus on the
positive part z+ and consider an arbitrary point p ∈ (∂Ω ∪N−) \ U ⊂ ∂{w 6= 0} \ C.
Then it follows from Assumption 5.3 that there exist an orthogonal transformation
Rp ∈ O(d), an open ball Bp ⊂ Rd−1, an open interval Jp and a Lipschitz continuous
map hp : Bp → Jp such that it holds

p ∈ Rp(Bp × Jp), cl (Rp(Bp × Jp)) ⊂ Rd \ C,
(∂Ω ∪N−) ∩Rp(Bp × Jp) = Rp({(x, h(x)) : x ∈ Bp}).
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Since cl(N−) \ N− ⊆ C, the set (∂Ω ∪ N−) \ U is compact and we can �nd points
pl ∈ (∂Ω ∪ N−) \ U , l = 1, ..., L, such that the associated recti�cation domains
Rpl

(Bpl
× Jpl

) cover the set (∂Ω∪N−) \U . Choose an open set V ⊂ Ω such that we

have dist(V , ∂Ω ∪N− ∪ C) > 0 and

Ω ⊆ U ∪ V ∪
L⋃
l=1

Rpl
(Bpl

× Jpl
).

Then it holds Rd = (Rd \Ω)∪U ∪ V ∪Rp1
(Bp1

× Jp1
)∪ ...∪RpL

(BpL
× JpL

) and we
may �nd a smooth partition of unity ϕj : Rd → [0, 1], j = 1, ..., L+ 3, subordinate to
this cover of the Euclidean space. Write

z+ =

L+3∑
j=1

ϕjz
+ ∈ H1

0 (Ω).

Then the functions ϕjz
+ associated with the sets (Rd\Ω) and U are identical zero and

the function ϕjz
+ associated with V vanishes almost everywhere in a neighborhood of

∂Ω∪N−∪C. Moreover, the functions ϕjz
+ associated with the sets Rpl

(Bpl
×Jpl

) all
vanish outside of their respective recti�cation domain. This allows us to employ the
area formula and the usual modi�cation/molli�cation arguments for functions in the
(half-) plane (as found in [8, Theorem 5.5.-2]) to prove that they can be approximated
by continuous functions whose supports have a non-zero distance to ∂Ω∪N−∪C. Note
that due to Lemma 2.3 we may assume w.l.o.g. that these approximating functions
are non-negative everywhere. Combining all of the above, we obtain that z+ can be
approximated by non-negative functions zl which have the desired properties. Using
an analogous argumentation for the negative part z− and adding the approximating
sequences for z+ and z−, the claim of the lemma follows immediately.

We now �nally arrive at the main result of this section:

Theorem 5.15. Let Assumptions 2.1 and 5.1 hold, let p > max(d/2, 1), and let
(c, f) ∈ Lp+(Ω)×Lp(Ω) be a tuple such that c, f and the solution w := S(c, f) satisfy the
conditions in Assumption 5.3. Then the solution operator S : Lp+(Ω)×Lp(Ω)→ H1

0 (Ω)
associated with the problem (P) is Hadamard directionally di�erentiable in (c, f) in
all directions (h, g) ∈ R+(Lp+(Ω)− c)×Lp(Ω) and the derivative δ := S′((c, f); (h, g))
in a direction (h, g) is characterized by the variational inequality

δ ∈ T redcrit(c, f), a(δ, z − δ) + J(z)− J(δ)

≥ 〈g, z − δ〉 −
∫
{w 6=0}

hj′(w)(z − δ)dλ

−
∫
{w=0}

hj′1(0)(z+ − δ+)− hj′2(0)(z− − δ−)dλ

∀z ∈ T redcrit(c, f).
(5.29)

Here, J and T redcrit(c, f) are de�ned by (5.25) and (5.28), respectively.

Proof. Consider the situation in Assumption 4.1 and let z be an arbitrary but �xed
element of the set T redcrit(c, f). Then it follows from the de�nition of the reduced critical
cone and Lemma 5.14 that there exist sequences zk,l ∈ H1

0 (Ω)∩L∞(Ω), k, l ∈ N, such
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that zk,l converges to zk := min(z+, k) + max(z−,−k) in H1(Ω) as l → ∞ for all k
and such that for all l it holds

z+
k,l = 0 a.e. in a neighborhood of ∂Ω ∪N− ∪ C,
z−k,l = 0 a.e. in a neighborhood of ∂Ω ∪N+ ∪ C.

De�ne

z̃k,l := min(z+
k,l,min(z+, k)) + max(z−k,l,max(z−,−k)).

Then the properties of z, zk and zk,l yield

z̃k,l ∈ H1
0 (Ω) ∩ L∞(Ω),

|z̃k,l| ≤ |zk| ≤ |z| λd-a.e. in Ω ∀k, l,

c
(tr z̃k,l)

2

‖∇w‖
≤ c (tr zk)2

‖∇w‖
≤ c (tr z)2

‖∇w‖
∈ L1(M,Hd−1) Hd−1-a.e. onM ∀k, l,

z̃k,l → zk in H1(Ω) as l→∞ ∀k,
z̃+
k,l = 0 λd-a.e. in a neighborhood of ∂Ω ∪N− ∪ C,

z̃−k,l = 0 λd-a.e. in a neighborhood of ∂Ω ∪N+ ∪ C,

z̃+
k,l = 0 λd-a.e. in {w = 0} ∩ {−cj′2(0) ≤ f < cj′1(0)},

z̃−k,l = 0 λd-a.e. in {w = 0} ∩ {−cj′2(0) < f ≤ cj′1(0)}.

Consequently, z̃k,l is an element of the set L∞(Ω) ∩ T redcrit(c, f) and it follows from
Proposition 5.12 that

a(δ, z̃k,l) + J(z̃k,l)− J(δ) +

∫
Ω

h
(
j′(w; z̃k,l)− j′(w; δ)

)
dλ− 〈g, z̃k,l − δ〉

≥ lim sup
n→∞

a(δn, δn). (5.30)

Using the dominated convergence theorem and the weak lower semicontinuity of the
function H1

0 (Ω) 3 z 7→ a(z, z) ∈ R, we can pass to the limit in (5.30) (�rst with l then
with k) to obtain

a(δ, z) + J(z)− J(δ) +

∫
Ω

h
(
j′(w; z)− j′(w; δ)

)
dλ− 〈g, z − δ〉 ≥ lim sup

n→∞
a(δn, δn)

≥ lim inf
n→∞

a(δn, δn)

≥ a(δ, δ). (5.31)

The last estimate has several implications: First of all, it yields that the weak limit δ of
the di�erence quotients δn satis�es the variational inequality (5.29). This proves that
δ is unique (since (5.29) can only have one solution - just argue by contradiction) and
implies that S is weakly directionally di�erentiable in (c, f) (cf. Section 4). Moreover,
if we consider the special choice z = δ ∈ T redcrit(c, f) in (5.31), then we obtain

a(δ, δ) ≥ lim sup
n→∞

a(δn, δn) ≥ lim inf
n→∞

a(δn, δn) ≥ a(δ, δ)

and, consequently,

‖δ − δn‖2 ≤ Ca(δ − δn, δ − δn) = C
(
a(δ, δ)− a(δ, δn)− a(δn, δ) + a(δn, δn)

)
→ 0.
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This shows that the di�erence quotients converge even strongly in the situation of
Assumption 4.1 and that S is strongly directionally di�erentiable. The Hadamard
di�erentiability now follows immediately from the strong directional di�erentiability
and the Lipschitz continuity of the solution operator S. This completes the proof.

6. Notes Regarding Theorem 5.15 and Concluding Remarks. Several
points are noteworthy regarding Theorem 5.15 and the variational inequality (5.29):

First of all, we remark that (5.29) is in general neither a variational inequality of the
�rst nor a variational inequality of the second kind. If we consider, e.g., the special
case j(x) = |x|, c ≡ 1 and h ≡ −1, then (5.29) becomes

δ ∈ T redcrit(c, f),

a(δ, z − δ) +

∫
M

(tr z)2

‖∇w‖
dHd−1 −

∫
{w=0}

|z|dλ−
∫
M

(tr δ)2

‖∇w‖
dHd−1 +

∫
{w=0}

|δ|dλ

≥ 〈g, z − δ〉+

∫
{w 6=0}

sgn(w)(z − δ)dλ ∀z ∈ T redcrit(c, f)

and we end up with a variational inequality which involves an in general non-convex
functional of the form

z 7→
∫
M

(tr z)2

‖∇w‖
dHd−1 −

∫
{w=0}

|z|dλ.

Note that, although (5.29) does not �t into the classical setting, the unique solvability
of the variational inequality in Theorem 5.15 is still guaranteed: The existence of a
solution follows directly from our analysis (since we have proved that the limit of the
di�erence quotients δt satis�es (5.29)), and the uniqueness of the solution is a trivial
consequence of the ellipticity of the bilinear form a (cf. [12, Theorem 4.1] and the
proof of Theorem 5.15).

Secondly, we point out that the natural space for the study of (5.29) is the Hilbert
space

H :=

{
z ∈ H1

0 (Ω) :

∫
M
c
(tr z)2

‖∇w‖
dHd−1 <∞

}
endowed with the scalar product

(z1, z2)H :=

∫
Ω

∇z1 · ∇z2dλ+

∫
M
c
(tr z1)(tr z2)

‖∇w‖
dHd−1.

This can be seen, e.g., in the case j(x) = |x|/2, h ≡ 0 and A = −∆, where (5.29) can
be rewritten as

δ ∈ T redcrit(c, f),∫
Ω

∇δ · ∇(z − δ)dλ+

∫
M
c
(tr δ)(tr z − tr δ)

‖∇w‖
dHd−1 ≥ 〈g, z − δ〉 ∀z ∈ T redcrit(c, f)

(6.1)

and the directional derivative δ = S′((c, f); (h, g)) is exactly the (., .)H -projection of
the Riesz representative of g onto the reduced critical cone T redcrit(c, f). Note that due
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to the weight 1/‖∇w‖ in the trace integral of (., .)H , the space H is usually a proper
subspace of H1

0 (Ω). This has to be taken into account if, e.g., strong stationarity
conditions for optimal control problems governed by variational inequalities of the
type (P) are considered (cf. the analysis in [6, 20]).

Thirdly, it should be noted that in the situation of Theorem 5.15, the solution operator
S associated with (P) is Gâteaux di�erentiable in the point (c, f) if and only if the
map (h, g) 7→ δ is linear and continuous. This implies that it su�cies to study
the solution behavior of the variational inequality (5.29) to derive criteria for the
Gâteaux di�erentiability of the map S. Consider, for example, the situation in (6.1)
where the map g 7→ δ can be identi�ed with the H-projection onto the reduced
critical cone T redcrit(c, f). In this case, the solution operator g 7→ δ is certainly linear
and continuous whenever the set T redcrit(c, f) is a subspace of H. Accordingly (cf. the
de�nition of T redcrit(c, f)), in the situation in (6.1) a su�cient condition for the Gâteaux
di�erentiability of S is

|f | < c/2 a.e. in {w = 0} and N+ \ cl(int({w = 0})) = N− \ cl(int({w = 0})).

Lastly, we remark that the terms J(z) and J(δ) appearing in (5.29) are closely related
to the pullback w ∗ j′′ of the second distributional derivative of j by w (in the sense
of Hörmander [15, Chapter VI]). To be more precise, we have the formal identities

J(z) =
1

2

〈
c(w ∗ j′′), z2

〉
and J(δ) =

1

2

〈
c(w ∗ j′′), δ2

〉
,

where the brackets 〈., .〉 denote the distributional pairing (cf. [15, Example 6.1.5] and
[27, Section V.13]). Recall that in the classical theory, the pullback of a distribution
by a function v ∈ C1(Ω) is de�ned by extending the composition map

C∞c (R) 3 ϕ 7→ ϕ(v) ∈ C1(Ω)

continuously to the space D′(R) and that this extension is only possible if the gradient
of the function v under consideration vanishes nowhere in Ω (cf. [15, Theorem 6.1.2]).
What can be observed in the situation of Theorem 5.15 is that in the variational
inequality (5.29) for the directional derivative S′((c, f); (h, g)) the terms known from
the classical pullback w ∗ j′′ appear "everywhere where they make sense" and that on
the set ∂{w 6= 0}∩{∇w = 0}, where the classical construction fails, the pullback terms
are replaced with the trace conditions tr(z+) = 0 Hd−1-a.e. on N− and tr(z−) = 0
Hd−1-a.e. on N+. That the quantity w ∗ j′′ emerges in the above way when the
convergence of second order di�erence quotients of the type (4.4) is studied (or the
Mosco epi-convergence to be more precise since this is what we have, in fact, considered
in Section 5, cf. [18]) is remarkable and has, at least to the authors' best knowledge,
not been studied systematically so far.

It should be noted that the analysis of the di�erence quotients in (4.4) becomes even
more complicated when the bilinear form a in (P) is assumed to be Hk-elliptic for
some k > 1. In this situation, also (d − 2)-, (d − 3)- etc. dimensional "features" of
the level sets of w are relevant for the sensitivity analysis and traces of derivatives
have to be taken into account, too. Finding a systematic approach towards the study
of such Hk-elliptic problems seems to be di�cult and is subject to further research.
The same holds true for the extension of our di�erentiability results to variational
inequalities that do not �t into the setting of Theorem 5.15, e.g., inequalities which
involve terms of the form j(‖∇v‖).
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