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A NOTE ON A PRIORI LP-ERROR ESTIMATES FOR THE

OBSTACLE PROBLEM

C. CHRISTOF§
AND C. MEYER§

Abstract. This paper is concerned with a priori error estimates for the piecewise linear �nite
element approximation of the classical obstacle problem. We demonstrate by means of two one-
dimensional counterexamples that the L2-error between the exact solution u and the �nite element
approximation uh is typically not of order two even if the exact solution is in H2(Ω) and an estimate
of the form ‖u − uh‖H1 ≤ Ch holds true. This shows that the classical Aubin-Nitsche trick which
yields a doubling of the order of convergence when passing over from the H1- to the L2-norm cannot
be generalized to the obstacle problem.
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1. Introduction. While H1- and L∞-error estimates for the piecewise linear
�nite element approximation of the unilateral obstacle problem

min
1

2

∫
Ω

∇v · ∇v dx− 〈f, v〉

s.t. v ∈ H1
0 (Ω) and v ≥ ψ a.e. in Ω

are classical (see, e.g., [1,2,4,10]), there are still several open questions regarding the
behavior of the �nite element error in lower Lp-norms. Especially the question of
whether a duality argument similar to that of the well-known Aubin-Nitsche trick
can be used in the case of the obstacle problem to obtain an L2-error estimate of
order two appears frequently in the literature (see, e.g., [7,9,11,12]). In this paper, we
clarify that such an estimate cannot be obtained even if the exact solution u and the
obstacle ψ possess H2-regularity and the order of convergence in the energy norm is
one. We will proceed as follows:

In Section 2 we construct a �rst counterexample which illustrates that a general a
priori error estimate of the form ‖u− uh‖Lp ≤ Chβ , 1 ≤ p ≤ ∞, cannot hold true for
a one-dimensional obstacle problem with u, ψ ∈ W 2,q(Ω), q ≥ 2, unless β ≤ 2 − 1/q.
This shows that the order of an a priori error estimate in an arbitrary Lp-space cannot
be higher than that typically obtained with an a priori error estimate in L∞(Ω) and
that W 2,∞-regularity has to be assumed to prove an L2-error estimate of order two.
The discretization method that we employ in our �rst counterexample is that most
commonly found in the literature: We approximate the space H1

0 (Ω) by means of
piecewise linear �nite elements and use the Lagrange interpolant of the obstacle ψ to
discretize the inequality constraint v ≥ ψ.

In Section 3 we demonstrate by means of a second counterexample that the results of
Section 2 are still valid when the original obstacle ψ appears in the side condition of
the discrete problems used for the �nite element approximation, i.e., that the order
2− 1/q is still optimal when the function space is discretized but the obstacle is not
modi�ed at all. This illustrates that the discretization of the obstacle ψ is not solely
responsible for the behavior of the approximation error observed in our �rst example.
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Lastly, in Section 4 we compare our �ndings with known results. We will see here that
L∞-error estimates can detect the e�ects observed in our model problems surprisingly
well.

The appendix of this paper contains a result about one-sided �nite element approxi-
mations that is needed for the discussion of the example in Section 3. The theorem
found there essentially goes back to Mosco and Strang [8]. We include a proof for the
convenience of the reader.

In what follows, we will use the standard notation H1
0 (Ω), Wm,q(Ω), Cm,γ(Ω) etc.

for the Sobolev and Hölder spaces on a bounded Lipschitz domain Ω (or the closure
of Ω, respectively). The dual of H1

0 (Ω) with respect to the L2-inner product and the
associated dual pairing will be denoted with H−1(Ω) and 〈., .〉. In one dimension, a
prime will always denote a (weak) derivative.

2. A First Counterexample. As a �rst counterexample, we consider an ob-
stacle problem of the form

min
1

2

∫ 1

−1

(v′)2dx

s.t. v ∈ H1
0 (−1, 1) and v ≥ ψα a.e. in (−1, 1),

 (Pα)

i.e., Ω = (−1, 1) and f ≡ 0. The obstacle ψα appearing in (Pα) is de�ned by

ψα(x) :=

φ
(
x+ 1

2

) (
3
2 − 12

∣∣x+ 1
2

∣∣2−α)− 1
2 , if x ∈ (−1, 0]

φ
(
x− 1

2

) (
3
2 − 12

∣∣x− 1
2

∣∣2−α)− 1
2 , if x ∈ (0, 1),

(2.1)

where α ∈ (0, 1/2) is a given constant and φ ∈ C∞c (R) denotes an arbitrary but �xed
cut-o� function satisfying

0 ≤ φ(x) ≤ 1, φ ≡ 1 in (−0.3, 0.3) and suppφ ⊂ [−0.4, 0.4].

Note that it follows from (2.1) that ψα is smooth in (−1, 1) \ {±0.5}, smaller than
one (almost) everywhere in (−1, 1), and an element of W 2,q(−1, 1) for all q ∈ [2, 1/α)
(cf. Figure 2.1). It is further easy to see that only the non-positive part of ψα is
a�ected by the choice of φ in the above situation. This will ensure that our results
are independent of the cut-o� function appearing in the construction. Using standard
results about variational inequalities, we obtain:

Proposition 2.1. There is one and only one solution uα to (Pα). This solution is
uniquely determined by the variational inequality

uα ∈ K,
∫ 1

−1

u′α(u′α − v′)dx ≤ 0 ∀ v ∈ K (2.2)

with

K := {v ∈ H1
0 (−1, 1) : v ≥ ψα a.e. in (−1, 1)}.

Furthermore, it holds

uα ∈W 2,q(−1, 1) ∀ q ∈ [2, 1/α) and uα = 1 a.e. in (−0.5, 0.5) (2.3)

and there exists an εα > 0 such that

uα = ψα a.e. in (−0.5− εα,−0.5) ∪ (0.5, 0.5 + εα) . (2.4)
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Proof. The unique solvability of the problem (Pα) and the characterization of uα by
(2.2) are easy consequences of the well-known theorem of Lions-Stampacchia (see, e.g.,
[6, Chapter II]). Concerning theW 2,q-regularity of the solution we refer to [6, Chapter
IV]. To prove uα = 1 a.e. in (−0.5, 0.5), note that the problem (Pα) is symmetric
w.r.t. the origin and that H1

0 (−1, 1) ↪→ C([−1, 1]). This implies that we can evaluate
uα pointwise and that uα(0.5) = uα(−0.5). Since uα is feasible for (Pα), we know that
uα(±0.5) ≥ ψα(±0.5) = 1 and from the de�nition of ψα we obtain that ψα ≤ 1 holds
(almost) everywhere in the interval (−1, 1). Combining these observations yields that
the function

vα(x) :=

{
uα(0.5), if x ∈ [−0.5, 0.5]

uα(x), else

is an element of K. From (2.2), it now follows

0 ≥
∫ 1

−1

u′α(u′α − v′α)dx =

∫ 0.5

−0.5

(u′α)2dx.

This implies that uα is constant in [−0.5, 0.5]. Using [6, Corollary II.6.5], we obtain
further that uα cannot be bigger than one in (−1, 1). Hence, uα(±0.5) = 1 and uα
is identical one in [−0.5, 0.5]. It remains to prove (2.4). To this end, note that it
follows from (2.2) and the W 2,q-regularity in (2.3) that uα is a�ne linear in the open
set {x ∈ (−1, 1) : uα(x) 6= ψα(x)}. (We, of course, use the continuous representatives
of uα and ψα here.) This yields that there cannot exist points x1, x2 ∈ (−0.8,−0.5]
satisfying x1 < x2, uα(x1) = ψα(x1), uα(x2) = ψα(x2) and uα > ψα in (x1, x2)
(since the concavity of ψα in (−0.8,−0.2), the linearity of uα in (x1, x2) and the
feasibility of uα would otherwise yield a contradiction). On the other hand, we know
that uα(−0.5) = ψα(−0.5) and it is obvious that −0.5 cannot be the only point in
(−0.8,−0.5] where uα and ψα coincide. Consequently, there has to exist an εα > 0
such that uα = ψα holds a.e. in (−0.5− εα,−0.5). The symmetry of the problem now
yields (2.4). This completes the proof.

Remark 2.2. Using a more elaborate argumentation than that employed in the proof
of Proposition 2.1, it is possible to show that the solution uα to (Pα) is given by

uα(x) =



ψα(−ε̃α − 0.5)
x+ 1

0.5− ε̃α
, if x ∈ (−1,−ε̃α − 0.5)

ψα(x), if x ∈ [−0.5− ε̃α,−0.5)

1, if x ∈ [−0.5, 0.5)

ψα(x), if x ∈ [0.5, 0.5 + ε̃α)

ψα(ε̃α + 0.5)
x− 1

ε̃α − 0.5
, if x ∈ [0.5 + ε̃α, 1),

(2.5)

where ε̃α is the unique solution to

ψα(−ε̃α − 0.5) = (0.5− ε̃α)ψ′α(−ε̃α − 0.5), ε̃α ∈ (0, 0.3).

This explicit formula for uα allows to calculate the error of the �nite element method
in numerical experiments precisely. We point out that (2.5) is not needed for the
construction of our counterexamples - the information in Proposition 2.1 is su�cient
for this purpose.
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Fig. 2.1. The obstacle ψα and the solution uα for α = 0.4 and a suitable cut-o� function φ.

For brevity's sake, in the following we will frequently suppress the index α and simply
write u and ε for uα and εα.

We now turn our attention to the discretization: To approximate (Pα), we employ
a standard �nite element method with piecewise linear continuous ansatz functions
and equidistant meshes. The �nite-dimensional problems that we use as discrete
counterparts to (Pα) read as follows:

min
1

2

∫ 1

−1

(v′h)2dx

s.t. vh ∈ V 0
h and vh ≥ Ihψα in (−1, 1).

 (Pα,h)

Here,

• h := 1/N for some N ∈ N,
• Th := {[xl, xl+1] : l = 0, ..., 2N − 1} with xl := −1 + l h, l = 0, ..., 2N ,

• Vh := {v ∈ C([−1, 1]) : v|T is a�ne for all cells T ∈ Th},
• V 0

h := Vh ∩H1
0 (−1, 1),

• Ih : C([−1, 1])→ Vh: Lagrange interpolation operator associated with Vh.

Note that in the above the inequality constraint in (Pα) is discretized by replacing
the continuous obstacle ψα with the Lagrange interpolant Ihψα. This is equivalent to
imposing the constraint only in the nodes of the mesh Th and constitutes the most
common approach found in the literature (see, e.g., [3,5,7]). Using again the theorem
of Lions-Stampacchia and a well-known variant of Céa's lemma, we obtain:

Proposition 2.3. For all h = 1/N , N ∈ N, there is one and only one solution uα,h
to (Pα,h). This solution is uniquely determined by the variational inequality

uα,h ∈ Kh,

∫ 1

−1

u′α,h(u′α,h − v′h)dx ≤ 0 ∀ vh ∈ Kh (2.6)

with

Kh := {vh ∈ V 0
h : vh ≥ Ihψα in (−1, 1)}.

Further, there exists a constant C independent of h such that

‖uα − uα,h‖H1 ≤ C h. (2.7)

4



Proof. The existence of the solution and its characterization by means of the varia-
tional inequality (2.6) are obtained analogously to the continuous case. We refer to
[5]. The H1-error estimate follows from standard estimates for the Lagrange inter-
polant and a well-known theorem of Falk (see [4]). A complete derivation of (2.7) can
be found in [3, Theorem 9.1, 9.2].

Analogously to the continuous setting, in what follows we drop the index α and simply
write uh instead of uα,h.

As Proposition 2.3 shows, in case of our model problem the qualitative behavior of
the H1-error is exactly the same as for the Poisson equation. The L2-error, however,
behaves di�erently. To see this, we observe the following:

Proposition 2.4. If hk := 1/(2k + 1), k ∈ N, then it holds

uhk ≡ 1− 12

(
hk
2

)2−α

in

(
−0.5− hk

2
, 0.5 +

hk
2

)
. (2.8)

Proof. Since any partition of the interval (0, 1) with width hk, k ∈ N, has an odd
number of cells, the point 0.5 has to be the midpoint of some [xl, xl+1] ∈ Thk . The
same, of course, holds true for the point −0.5. This means that the maxima of the
obstacle ψα are cut o� by the Lagrange interpolation operator and that the interpolant
Ihkψα satis�es

(Ihkψα)(x) ≤ ψα
(
−0.5− hk

2

)
= ψα

(
0.5 +

hk
2

)
= 1− 12

(
hk
2

)2−α

=: C(k, α)

in [−1, 1]. We can now proceed along the lines of the proof of Proposition 2.1 to
obtain the claim: From the feasibility of uhk and the symmetry of the problem, it
follows that

uhk

(
−0.5− hk

2

)
= uhk

(
0.5 +

hk
2

)
≥ C(k, α)

and using the test function

vhk(x) :=

{
uhk

(
0.5 + 1

2hk
)
, if x ∈

[
−0.5− 1

2hk, 0.5 + 1
2hk

]
uhk(x), else

in (2.6) yields that uhk is constant in [−0.5− hk/2, 0.5 + hk/2]. Further, the constant
function ghk := C(k, α) is a discrete supersolution of the problem (Pα,hk) in the
sense of [2, De�nition 5]. This implies that uhk ≤ C(k, α) holds a.e. in (−1, 1) (see
[2, Theorem 8]). Combining the above yields (2.8) as claimed.

From Propositions 2.1 and 2.4, it readily follows

‖u− uhk‖Lp(−1,1) ≥ ‖u− uhk‖Lp(−0.5,0.5) = 12

(
hk
2

)2−α

(2.9)

for all 1 ≤ p ≤ ∞. This shows that in the situation of our model problem the order
of convergence in any Lp-norm cannot be higher than 2−α despite the optimal order
of the H1-error in (2.7) and the H2-regularity of the exact solution.
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Taking into account that u, ψα ∈W 2,q(−1, 1) for all q ∈ [2, 1/α), our �ndings can be
summarized as follows:

Theorem 2.5. In case of the one-dimensional obstacle problem and the above dis-
cretization technique (i.e., linear �nite elements and Lagrange interpolation of the
obstacle) an a priori error estimate of the form

If the obstacle and the solution are functions in W 2,q(Ω),
then it holds ‖u− uh‖Lp ≤ Chβ

for some 1 ≤ p ≤ ∞ and q ≥ 2 cannot hold true unless β ≤ 2 − 1/q. In particular,
an L2-error estimate of order two can in general only be obtained if the obstacle and
the solution are assumed to possess W 2,∞-regularity.

Remark 2.6. It should be noted that the positive part (u − uh)+ := max(0, u − uh)
of the approximation error is responsible for the comparatively slow convergence in
(2.9). In fact, using an approach of Mosco [9], it is possible to prove that the norm
‖(u − uh)−‖L2 converges to zero with order two in our example, i.e., the rate of
convergence typically obtained for the Poisson equation can be recovered if only the
negative part of the error is considered.

We conclude this section with a numerical experiment that con�rms our theoretical
�ndings: Figure 2.1 shows the experimental order of convergence in L2(−1, 1), i.e.,
the quantity

(L2-EOC)k :=
log ‖u− uhk+1

‖L2 − log ‖u− uhk‖L2

log hk+1 − log hk
,

that is achieved when (Pα,h) is solved by means of an active set algorithm for the
widths hk = 1/(2k+ 1) and α = 0.4. It can be seen that the L2-EOC scatters around
2− α. This behavior agrees well with our analytical predictions.
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Fig. 2.2. The obstacle Ihψα and the approximate solution uh for α = 0.4 and h = 1/17.
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Fig. 2.3. L2-EOC for (Pα) in the case α = 0.4. The results scatter around 2− α.

The reason for the loss of the factor hα observed in (2.9) is intuitively clear: The
maxima of the obstacle ψα are not reproduced accurately enough by the Lagrange
interpolants Ihkψα appearing in the discrete problems (Pα,hk) and thus the �nite
element solutions uhk do not reach the height that would be necessary to obtain, e.g.,
the order two in the L2-norm. This demonstrates that in case of the obstacle problem
a special pollution e�ect may occur: local inaccuracies in the approximation of the
obstacle - in our example the error between ψα and Ihkψα at ±0.5 - can propagate
and are able to a�ect the rate of convergence globally.

3. A Second Counterexample. In view of the analysis in the last section, it
is tempting to think that an L2-error estimate of order two can be recovered if better
approximations of the obstacle are used in the discrete problems that characterize
the �nite element solutions uh. But this is not the case. Even if the continuous
obstacle itself is used in the inequality constraint of the approximate problems, we
cannot expect the rate of convergence in any Lp-norm to be higher than the threshold
2− 1/q appearing in Theorem 2.5. Note that this is a purely theoretical result since
there is no way to handle a constraint of the type vh ≥ ψ numerically if ψ is an
arbitrary function.

To see that an L2-estimate of order two cannot be obtained even if the obstacle is not
discretized at all, we consider the following one-dimensional model problem:

min
1

2

∫ 1

−1

(v′)2dx− 〈fα, v〉

s.t. v ∈ H1
0 (−1, 1) and v ≥ ψα a.e. in (−1, 1).

 (Qα)

The inhomogeneity fα appearing in (Qα) is de�ned to be −u′′α, where uα is the solution
to the problem (Pα) discussed in the last section, i.e., the function de�ned in (2.5).
The obstacle ψα is the same as before. This construction ensures that the following
holds:

Proposition 3.1. The problem (Qα) admits a unique solution. Furthermore, the
solutions to (Qα) and (Pα) coincide.

Proof. The unique solvability of (Qα) can be proved analogously to (Pα). To obtain
that the solution is exactly uα, one rewrites (Qα) as a variational inequality. The
claim then follows from fα = −u′′α and integration by parts.
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The �nite-dimensional problems that we will use to approximate (Qα) are chosen to
be

min
1

2

∫ 1

−1

(v′h)2dx− 〈fα, vh〉

s.t. vh ∈ V 0
h and vh ≥ ψα a.e. in (−1, 1),

 (Qα,h)

where V 0
h and the underlying meshes Th are de�ned as in Section 2. Note that the

exact obstacle ψα appears in the inequality constraint of (Qα,h) - only the function
space is discretized. Similarly to the proof of Proposition 2.3, we obtain:

Proposition 3.2. The problem (Qα,h) is uniquely solvable for all h = 1/N , N ∈ N.
Furthermore, the solution to (Qα,h) (which we again denote with uh) is uniquely
determined by the variational inequality

uh ∈ Kh,

∫ 1

−1

u′h(u′h − v′h)dx ≤ 〈fα, uh − vh〉 ∀ vh ∈ Kh (3.1)

with

Kh := {vh ∈ V 0
h : vh ≥ ψα in (−1, 1)}

and there exists a constant C independent of h such that the error between the exact
solution to (Qα) (which we again denote with u) and uh satis�es

‖u− uh‖H1 ≤ C h. (3.2)

Proof. The unique solvability of the problem (Qα,h) and the characterization of uh
by means of the variational inequality (3.1) again follow from the theorem of Lions-
Stampacchia. To obtain the H1-error estimate (3.2), we note that according to [4,
Theorem 9.1] there exists a constant C > 0 independent of h such that

‖u− uh‖H1 ≤ C
(
‖uh − v‖L2 + ‖u− vh‖L2 + ‖u− vh‖2H1

) 1
2 (3.3)

holds for all vh ∈ Kh and all v ∈ K. Choosing v = uh and vh = zh in (3.3), where
u ≤ zh ∈ V 0

h is a unilateral �nite element approximation of u as constructed in
Theorem A.1 in the Appendix, yields (3.2) as desired.

As the above result shows, in case of the problems (Qα) and (Qα,h) the order of
convergence in H1(−1, 1) is exactly the same as in our �rst example. The following,
however, can also be observed:

Proposition 3.3. Let ε be an arbitrary but �xed positive number such that (2.4) is
satis�ed, i.e., such that it holds

u = ψα a.e. in (−0.5− ε,−0.5) ∪ (0.5, 0.5 + ε) . (3.4)

Then for all mesh widths hk = 1/(2k + 1), k ∈ N, with hk/2 < ε it is true that

uhk ≥ 1 + 6

(
hk
18

)2−α

in

[
−0.5 +

hk
2
, 0.5− hk

2

]
. (3.5)
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Proof. Since we consider mesh widths of the form hk = 1/(2k+ 1), k ∈ N, there exist
mesh cells T1 = [xi−1, xi] and T2 = [xj , xj+1] in Thk such that

xi = −0.5 +
hk
2

and xj = 0.5− hk
2
.

From the symmetry of the problem (Qα,h) w.r.t. the origin, it follows further that
uhk(xi) = uhk(xj) has to hold and from the de�nition of the obstacle ψα we readily
obtain ψα(x) ≤ ψα(xi) for all x ∈ [xi, xj ] (cf. Figure 2.1). Combining the above yields
that the function

vhk(x) :=

{
uhk(xi), x ∈ [xi, xj ]

uhk(x), else

is feasible for (Qα,hk). Using that fα = −u′′α ≡ 0 in (−0.5, 0.5), cf. (2.5), it now follows
analogously to the proof of Proposition 2.4 that

0 ≥
∫ 1

−1

u′hk(u′hk − v
′
hk

) + fα(vhk − uhk)dx =

∫ xj

xi

(u′hk)2dx.

Thus, the function uhk is constant in [xi, xj ] and the situation near the maxima of
the obstacle ψα is that depicted in Figure 3.1.

fα

ψα

uhk

xi−1 −0.5 xi

hk

xi+1

Fig. 3.1. The functions ψα and uhk near the point −0.5. The situation near 0.5 is analogous.

We now de�ne ϕihk to be the unique element of V 0
hk

with ϕihk(xl) = δil for all nodes

xl of the mesh Thk (i.e., ϕihk is the element of the nodal basis associated with xi) and

choose vhk := uhk + ϕihk in (3.1) to obtain

−
∫ 1

−1

u′hk(ϕihk)′dx ≤ −
∫ 1

−1

fαϕ
i
hk

dx.

Thanks to suppϕihk = [xi−1, xi+1], u′hk ≡ 0 in [xi, xj ], hk/2 < ε, the de�nition of the
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right-hand side fα, (2.1), and (3.4), the above inequality yields

uhk(xi)− uhk(xi−1)

hk
=

∫ xi

xi−1

u′hk(ϕihk)′dx

≥
∫ −0.5

xi−1

fαϕ
i
hk

dx

=

∫ −0.5

−0.5−hk2
12(2− α)(1− α)(−x− 0.5)−α

(x+ 0.5 + hk
2 )

hk
dx

=
12

hk

(
hk
2

)2−α

.

This implies

uhk(xi) ≥ uhk(xi−1) + 12

(
hk
2

)2−α

. (3.6)

To prove the claim, we now consider two di�erent cases:

1. case: uhk(xi−1) ≥ 1− 6 (hk/2)
2−α

In this case, we deduce from (3.6) that

uhk(x) = uhk(xi) ≥ uhk(xi−1) + 12

(
hk
2

)2−α

≥ 1 + 6

(
hk
2

)2−α

∀x ∈ [xi, xj ],

giving in turn (3.5).

2. case: uhk(xi−1) < 1− 6 (hk/2)
2−α

De�ne

δα :=

(
1

22−α(2− α)

) 1
1−α

∈
[

1

18
,

1

8

]
∀α ∈

(
0,

1

2

)
and consider the tangent Tα to ψα in the point −0.5 − δαhk ∈ [xi−1,−0.5], i.e., the
function

Tα(x) = 1− 12(δαhk)2−α + 12(2− α)(δαhk)1−α(x+ 0.5 + δαhk).

Then it holds

Tα(xi−1) ≥ 1− 12h2−α
k

(
(2− α)

2
δ1−α
α

)
= 1− 6

(
hk
2

)2−α

> uhk(xi−1)

and it follows from uhk(−0.5− δαhk) ≥ ψα(−0.5− δαhk) = Tα(−0.5− δαhk) that Tα
and uhk intersect in (xi−1,−0.5) (cf. Figure 3.2). This yields uhk(xi) ≥ Tα(xi) and
implies

uhk(xi) ≥ 1 + 12h2−α
k δ2−α

α

(
(2− α)

2δα
+ (1− α)

)
≥ 1 + 6

(
hk
18

)2−α

.

This completes the proof.
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ψα

uhk
Tα

xi−1 −0.5− δαhk−0.5

hk

xi

Fig. 3.2. The situation in the second case considered in the proof of Proposition 3.3.

Analogously to our �rst counterexample, it follows from (3.5) (in combination with
Proposition 2.1) that for all su�ciently small hk and all 1 ≤ p ≤ ∞ it holds

‖u− uhk‖Lp(−1,1) ≥ ‖uhk − 1‖Lp(−0.25,0.25) ≥ 3

(
hk
18

)2−α

. (3.7)

Thus, the order two is again out of reach - no matter which Lp-norm is considered.
Note that, in contrast to our �rst example, this time the component (u − uh)− is
responsible for the slow convergence, i.e., the discrete solutions are too big to obtain
the accuracy that is typically achieved in case of the Poisson equation. Taking into
account the regularity of the functions u and ψα, our �ndings can be summarized as
follows:

Theorem 3.4. In case of the one-dimensional obstacle problem and the above dis-
cretization technique (i.e., linear �nite elements without any discretization of the ob-
stacle) an a priori error estimate of the form

If the obstacle and the solution are functions in W 2,q(Ω),
then it holds ‖u− uh‖Lp ≤ C hβ

for some 1 ≤ p ≤ ∞ and q ≥ 2 cannot hold true unless β ≤ 2 − 1/q. In particular,
an L2-error estimate of order two can in general only be obtained if the obstacle and
the solution are assumed to possess W 2,∞-regularity.

The reason for the loss of the factor hα in (3.7) is again intuitively clear: Since neither
the contact set {u = ψα} nor the set {fα 6= 0} is resolved properly by the meshes Thk
and since the obstacles in (Qα,hk) are not piecewise linear, the error between uhk and
u at the nodes xi and xj is a�ected negatively. This local perturbation propagates and
spoils the rate of convergence in the Lp-norms similarly to our �rst counterexample.

4. Concluding Remarks and Outlook. The behavior of the error u − uh
observed in Sections 2 and 3 can be explained as follows: As shown in [2], the Ritz
projection Rhu of the solution u to a one-dimensional obstacle problem of the form

min
1

2

∫ 1

−1

(v′)2dx− 〈f, v〉

s.t. v ∈ H1
0 (−1, 1) and v ≥ ψ a.e. in (−1, 1),

11



i.e., the unique element of V 0
h satisfying

∫ 1

−1

(Rhu)′v′hdx =

∫ 1

−1

u′v′hdx ∀ vh ∈ V 0
h ,

is exactly the solution of the discrete obstacle problem

min
1

2

∫ 1

−1

(v′h)2dx− 〈f, vh〉

s.t. vh ∈ V 0
h and vh ≥ Rhu+ ψ − u a.e. in (−1, 1).

 (PR,h)

This implies that the di�erence between the Ritz projection Rhu of u and a �nite
element approximation uh which is characterized by a problem of the form

min
1

2

∫ 1

−1

(v′h)2dx− 〈f, vh〉

s.t. vh ∈ V 0
h and vh ≥ ψh a.e. in (−1, 1)

can be identi�ed with the change that occurs in the solution to (PR,h) when the
obstacle Rhu + ψ − u is replaced with ψh. In other words, the error Rhu − uh is
directly related to the sensitivity of the solution to (PR,h) w.r.t. perturbations of
the obstacle Rhu + ψ − u. Pointwise perturbations of the obstacle, however, can
a�ect the solution of a (discrete) one-dimensional obstacle problem globally (cf. our
�rst example) and thus it is only logical that the error ‖Rhu − uh‖Lp is typically
not of higher order than the quantity ‖Rhu + ψ − u − ψh‖L∞ . The pointwise error
‖Rhu + ψ − u − ψh‖L∞ that enters here is responsible for the comparatively slow
convergence observed in our counterexamples.

If the above informal discussion is made rigorous (i.e., when it is carefully analyzed
which error occurs when the obstacle Rhu+ ψ − u in the problem (PR,h) is replaced
with a function ψh), then the following L∞-error estimates can be obtained for the
one-dimensional obstacle problem:

Theorem 4.1 ([2, Theorem 11]). Let Ω be an open bounded interval. Suppose that
f ∈ H−1(Ω) and ψ ∈ C(Ω) are given such that the obstacle problem

min
1

2

∫
Ω

(v′)2dx− 〈f, v〉

s.t. v ∈ H1
0 (Ω) and v ≥ ψ a.e. in Ω

 (P)

admits a unique solution u. Assume that

• {Th}h>0 is a family of partitions of Ω with max {diamT : T ∈ Th} ≤ h,
• V 0

h := H1
0 (Ω) ∩ {v ∈ C(Ω) : v|T is a�ne for all cells T ∈ Th},

• {ψh}h>0 is a family of C(Ω)-functions with ψh ≤ 0 on ∂Ω for all h > 0,

• There exist γ1, γ2 ∈ (0, 1] with ψh|T ∈ C1,γ1(T ) and u|T , ψ|T ∈ C1,γ2(T ) for
all T ∈ Th and all h > 0.
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Then the discrete obstacle problem

min
1

2

∫
Ω

(v′h)2dx− 〈f, vh〉

s.t. vh ∈ V 0
h and vh ≥ ψh a.e. in Ω

 (Ph)

admits a unique solution uh for all 0 < h < diam Ω and it holds

‖(u− uh)−‖L∞ ≤ ‖(u−Rhu)−‖L∞ + ‖(ψh − ψ + u−Rhu)+‖L∞

+
1

1 + γ1
h1+γ1 max

T∈Th
|ψh|C1,γ1 (T )

(4.1)

and

‖(u− uh)+‖L∞ ≤ ‖(u−Rhu)+‖L∞ + ‖(ψh − ψ + u−Rhu)−‖L∞

+
1

1 + γ2
h1+γ2 max

T∈Th
|ψ − u|C1,γ2 (T ).

(4.2)

Here, Rhu again denotes the Ritz projection of u and

|v|C1,γ(T ) := sup
x 6=y∈T

|v′(x)− v′(y)|
|x− y|γ

.

It should be noted that the last error contribution in (4.1) and the second to last
contributions in (4.1) and (4.2), respectively, behave contrarily. While an accurate
approximation of the continuous obstacle ψ (possibly involving curved obstacles ψh in
the discrete problems) is favorable to reduce the error ψh−ψ, the last error contribu-
tion in (4.1) becomes larger when the curvature of the function ψh increases. These
two e�ects were also observed in our two counterexamples: Whereas the pointwise
error in the approximation of the obstacle is responsible for the reduction of the or-
der of convergence in our �rst example, the curvature of the obstacle ψh induces the
problems in our second example, cf. Figures 3.1 and 3.2.

By employing standard �nite element error estimates for the Ritz projection and
Sobolev embeddings, one deduces the following result from Theorem 4.1:

Corollary 4.2 ([2, Corollary 14]). Let Ω be an open bounded interval and assume
that:

• f ∈ Lq(Ω), ψ ∈W 2,q(Ω) and ψ|∂Ω ≤ 0 holds for some 2 ≤ q <∞,

• {Th}h>0 and V 0
h satisfy the assumptions of Theorem 4.1.

Suppose further that ψh is chosen to be the Lagrange interpolant Ihψ or that ψh is
chosen to be the equal to ψ. Let h < diam Ω. Then the problems (P) and (Ph) in
Theorem 4.1 admit unique solutions u ∈ H1

0 (Ω)∩W 2,q(Ω) and uh ∈ V 0
h , respectively,

and there exists a constant C > 0 independent of h such that

‖u− uh‖L∞ ≤ Ch2−1/q (‖f‖Lq + ‖ψ‖W 2,q ) . (4.3)

Note that it follows from (4.3) that the examples in Sections 2 and 3 are worst-case
scenarios. Conversely, our model problems demonstrate that an a priori estimate
of the form (4.3) is optimal in the sense that no general a priori Lp-error estimate,
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1 ≤ p ≤ ∞, can yield an order higher than 2 − 1/q in the situations that we have
considered. This answers the question what can (and, more importantly, what cannot)
be expected when it comes to a priori Lp-error estimates for the piecewise linear �nite
element approximation of one-dimensional obstacle problems.

Unfortunately, the situation is much less clear in higher dimensions. If a d-dimensional
obstacle problem with aW 2,q-obstacle, q > max(d, 2), is approximated with piecewise
linear �nite elements, then the order of convergence obtained with an a priori L∞-error
estimate is typically 2− d/q (modulo logarithmic factors). See, e.g., [2] for a higher-
dimensional analogue of Theorem 4.1. On the other hand, it is easy to construct
examples similar to those in Sections 2 and 3 (e.g., by rotation) which demonstrate
that 2 − 1/q is an upper bound for the order of an a priori Lp-error estimate in d
dimensions when the obstacle is assumed to be in W 2,q(Ω). There is thus a gap
between what can be proved with counterexamples and what can be obtained from
the L∞-error analysis and, to the best of our knowledge, it is still on open question
whether an a priori estimate of the form

‖u− uh‖Lp ≤ C hα

can be obtained for some 1 ≤ p <∞ and some max(1, 2− d/q) < α ≤ 2− 1/q. This
gives rise to further research.

Appendix A. Unilateral Finite Element Approximation in One Dimension.

In this section, we construct the unilateral �nite element approximations that are
needed in the proof of Proposition 3.2. The underlying analysis essentially goes back
to Mosco and Strang, cf. [8,13]. For the convenience of the reader we shortly recall
the arguments in the following.

Theorem A.1. Let Ω be an open bounded interval and assume that {Th}0<h<h0
is

a family of partitions of Ω such that ch < diamT < min(Ch,diam Ω) holds for all
T ∈ Th and all 0 < h < h0 with constants c, C > 0 independent of h. Let

V 0
h := H1

0 (Ω) ∩ {v ∈ C(Ω) : v|T is a�ne for all cells T ∈ Th}

and suppose that z ∈ H1
0 (Ω) ∩W 2,q(Ω), 1 < q < ∞, is a given function. Then there

exist constants C1, C2, C3 independent of h and a family {zh}0<h<h0 ⊂ V 0
h satisfying

z ≤ zh for all 0 < h < h0 such that

‖z − zh‖Lq ≤ C1h
2|z|W 2,q , ‖z − zh‖W 1,q ≤ C2h|z|W 2,q (A.1)

and

‖z − zh‖L∞ ≤ C3h
2−1/q|z|W 2,q (A.2)

holds for all 0 < h < h0.

Proof. In what follows, we will always identify z with its C1(Ω)-representative. To
prove Theorem A.1, we consider for an arbitrary but �xed mesh size 0 < h < h0 the
optimization problem

min
∑
x∈Ch

vh(x) s.t. z ≤ vh in Ω and vh ∈ V 0
h , (A.3)
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where Ch denotes the set of all vertices of the partition Th. Using standard techniques
from �nite-dimensional optimization, it is easy to see that (A.3) admits at least one
global minimum zh. From the de�nition of (A.3), it follows that the function values
zh(x), x ∈ Ch, of such a minimum cannot be decreased without violating the constraint
z ≤ zh. This implies that for every node x ∈ Ch \ ∂Ω with adjacent mesh cells
Tl = [xl, x] and Tr = [x, xr] one of the following has to be true:

a) It holds zh(x) = z(x).

b) There exists an a ∈ [xl, xr] \ {x} such that zh(a) = z(a) and z′h(a) = z′(a).
If a ∈ {xl, xr}, we mean the left (resp., right) limit of the derivative here.

If b) is the case, then the fundamental theorem of calculus yields

zh(x)− z(x) =

∣∣∣∣∫ x

a

z′′(t)(x− t)dt
∣∣∣∣

≤
(
q − 1

2q − 1

) q−1
q

(Ch)2− 1
q

(
max

T∈Th:x∈T
|z|W 2,q(T )

)
and if a) is true (or x ∈ ∂Ω), it trivially holds zh(x)− z(x) = 0. Thus, we obtain that
zh satis�es

0 ≤ zh(x)− Ihz(x)

≤
(
q − 1

2q − 1

) q−1
q

(Ch)2− 1
q

(
max

T∈Th:x∈T
|z|W 2,q(T )

)
∀x ∈ Ch. (A.4)

Here, Ih : H1
0 (Ω) → V 0

h again denotes the Lagrange interpolation operator. From
(A.4) and the piecewise linearity of the functions in V 0

h , it readily follows

‖zh − Ihz‖L∞(Ω) ≤
(
q − 1

2q − 1

) q−1
q

(Ch)2− 1
q |z|W 2,q(Ω). (A.5)

Combining (A.5) with the triangle inequality and standard error estimates for the
Lagrange interpolant yields (A.2). Further, we obtain from (A.4) that

‖zh − Ihz‖Lq(T ) ≤
(
q − 1

2q − 1

) q−1
q

(Ch)2

(
max

T̃∈Th:T∩T̃ 6=∅
|z|W 2,q(T̃ )

)
∀T ∈ Th.

Summation over all T ∈ Th now yields

‖zh − Ihz‖Lq(Ω) ≤ 3
1
q

(
q − 1

2q − 1

) q−1
q

(Ch)2|z|W 2,q(Ω).

Using again the triangle inequality and standard interpolation error estimates, we
obtain the �rst estimate in (A.1). To prove the W 1,q-estimate, note that

‖z′h − I ′hz‖L∞(T ) ≤
2

c h
‖zh − Ihz‖L∞(T ) ∀T ∈ Th.

Proceeding as in case of the Lq-error now gives the second estimate in (A.1).

It should be noted that in higher dimensions, it is still possible to prove L∞-error
estimates for unilateral approximations provided the function z under consideration
possesses enough regularity. We refer to [2] for details.
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