
Bild ohne Schrift:

Bild mit Schrift:

1

ruhr.paD
UA Ruhr Zentrum für
partielle Differentialgleichungen

1

ruhr.paD
UA Ruhr Zentrum für
partielle Differentialgleichungen

Analysis of a viscous two-field gradient damage
model

Part I: existence and uniqueness

C. Meyer and L.M. Susu

Preprint 2016-12



ANALYSIS OF A VISCOUS TWO-FIELD GRADIENT DAMAGE
MODEL

PART I: EXISTENCE AND UNIQUENESS

C. MEYER§ AND L.M. SUSU§

Abstract. The paper deals with a viscous damage model including two damage variables, a
local and a non-local one, which are coupled through a penalty term in the free energy functional.
Under certain regularity conditions for linear elasticity equations, existence and uniqueness of the
solution is proven, provided that the penalization parameter is chosen sufficiently large. Moreover,
the regularity of the unique solution is investigated, in particular the differentiability w.r.t. time.
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1. Introduction. This paper is concerned with the mathematical analysis of a
particular gradient enhanced damage model. The special feature of the model under
consideration is that it contains two damage variables, which are connected through a
penalty term in the free energy functional. For this reason we call our model ’two-field
damage model’. It is inspired by the one presented in [6], which is a popular model
that is widely used in computational mechanics. While one damage variable provides
a local character and carries the non-smooth time evolution, the other one accounts
for nonlocal effects. The goal of this work and the companion paper [21] is to show
that this model is well posed from a mathematical point of view. To be more precise,
we first prove existence and uniqueness for fixed penalty parameter. Afterwards we
turn our attention to the limit analysis for penalty parameter tending to infinity.

From a mathematical perspective, the damage model in [6] has two main drawbacks.
Firstly, it is rate-independent and the corresponding dissipation functional is un-
bounded. Secondly, the coupling between damage evolution and balance of momen-
tum is realized via the less regular one of the two damage variables. To make the
problem amenable to a rigorous mathematical analysis, we therefore slightly modify
the model. In order to guarantee existence and uniqueness of a solution, we add a
viscosity term to the damage evolution, which turns the rate-independent model in [6]
into a rate-dependent one. Moreover, we couple the damage evolution and the balance
of momentum through the more regular damage variable in order to enable the use of
compact embeddings which are essential for the proof of existence. The overall model
arising in this way consists of an elliptic system for nonlocal damage and displacement
field and a non-smooth evolution equation for the local damage variable.

In the present paper, we focus on proving existence and uniqueness for our modified
model for a fixed penalization parameter. An essential tool in this context is the
W 1,p–theory with p > 2 for nonlinear elasticity equations from [15]. Convex analysis
results play a crucial role as well, since they enable us to give an equivalent formula-
tion of the damage evolution in terms of an ordinary differential equation in Banach
space. In combination with a classical contraction argument, this allows us to prove
the unique solvability of the damage model under consideration. The ODE character
of the damage evolution along with elliptic regularity results from [13] are then em-
ployed for the investigation of the regularity of the solution, in particular regarding its
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differentiability w.r.t. time. Here, the characterization via ODE turns out to be very
useful, as continuously differentiability w.r.t. time of the damage can be immediately
followed. This carries on to the other variables, on account of the smoothness of the
elliptic system. The findings of this paper constitute the basis for the limit analysis
for penalization parameter tending to infinity, which is addressed in the companion
paper [21]. The passage to the limit is performed by means of an equivalent reformu-
lation of the model in terms of an energy identity in the spirit of [17]. In the limit
both damage variables coincide, and the limit model is in accordance with the class
of classical partial damage models introduced in [10].

Let us put our work into perspective. Numerous damage models have been addressed
by many authors under different aspects. In [1–3, 9] various viscous damage mod-
els have been analyzed with regard to existence and regularity of solutions. The
concept of viscosity also plays an important role in the mathematical treatment of
rate-independent damage models, as the vanishing viscosity approach is a promi-
nent method to establish solutions for rate-independent problems. We only refer
to [7,16–19,23–25], and the references therein. Various notions of solutions are known
for rate-independent models, such as e.g. global energetic solutions and balanced vis-
cosity (BV) solutions. An overview thereof is given in [22], in the framework of
generalized gradient systems. Under suitable assumptions BV solutions are obtained
via a vanishing viscosity analysis, which has been demonstrated in [17] for a gradient
damage model in the spirit of [10]. However, to the best of our knowledge, a damage
model containing two damage variables has never been investigated so far with regard
to a rigorous mathematical analysis, although these models are frequently used for
numerical simulations, cf. e.g. [20,26,27,30,31]. This concerns the existence and regu-
larity of solutions, let alone the behavior of the damage variables and the displacement
field, as the penalty vanishes.

The paper is organized as follows. In Section 2.1 we introduce the two-field damage
model from [6], which serves as a basis for our damage model. Section 2.2 is devoted
to the modifications of the model from [6], which were already indicated above. We
describe their mathematical motivation in detail and compare our model to the one
from [6]. It turns out that the modified coupling between damage evolution and bal-
ance of momentum is expected to have only little influence in practice, cf. Remark
2.5, whereas the viscous regularization is a standard procedure in computational me-
chanics. Section 2.3 then gives an overview of the variables, operators and function
spaces and collects the notations and standing assumptions. In Section 3.1 we ad-
dress the existence and uniqueness for the elliptic system as part of the complete
damage model. Based on these results, Section 3.2 deals with the complete model
including the evolutionary equation for the local damage variable. This turns out to
be equivalent to an operator differential equation, which allows us to apply standard
contraction arguments for the proof of existence and uniqueness. For convenience
of the reader, some results on Nemyczkii operators, which are used in Section 3 are
stated in Appendix A. Sections 4 and 5 are devoted to improving the regularity of
the solution. We first address the higher spatial regularity of the nonlocal damage
variable, and prove its Lipschitz continuity as a function of the local one. In Section 5
we show that the operators mapping the local damage variable to the nonlocal dam-
age parameter and displacement are continuously Fréchet-differentiable. This finally
allows us to prove that the overall solution is continuously differentiable w.r.t. time
in appropriate spaces.
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2. Formulation of the Model and Standing Assumptions. In this section
we first motivate our damage model, by formally presenting the inspiration thereof. In
the second part, we introduce the precise model, while in the third one, the function
spaces and the variables are defined. At the end of the section we state the general
assumptions on the data.

2.1. A Two-Field Gradient Enhanced Damage Model. The model anal-
ysed throughout this paper was inspired by a damage model presented in [6]. Therein,
two damage variables are introduced, which the authors call ‘local’ and ‘nonlocal’ dam-
age. In the free energy, a gradient term and a term, which penalizes the difference
between local and nonlocal damage, are included. To be precise, the energy functional
E : [0, T ]× V ×H1(Ω)× L2(Ω)→ R according to [6] is given by

E(t,u, ϕ, d) :=
1

2

∫
Ω

g(d)Cε(u) : ε(u) dx− 〈`(t),u〉V +
α

2
‖∇ϕ‖22 +

β

2
‖ϕ− d‖22,

where V is an appropriate Sobolev space and ε(u) = 1
2 (∇u+∇u>) is the linearized

strain tensor. We refer to Section 2.3 for more details. The parameters α, β > 0
are weighting parameters for the gradient regularization and for the penalization,
respectively, see [6] for more details.

The model introduced in [6] describes the evolution of damage in an elastic body.
During the process, a time dependent volume and boundary load, denoted by `, is
applied upon the body, which has a part of its boundary clamped. The body is
described by the domain Ω ⊂ RN , on which we impose mild smoothness assumptions,
see Section 2.3. The load induces a certain displacement u : [0, T ] × Ω → RN , as
well as local and nonlocal damage. The latter one is denoted by ϕ : [0, T ] × Ω → R,
while the local damage is called d : [0, T ]× Ω → R. Its values measure the degree of
the material rigidity loss. Therefore, d(t, x) = 0 means that the body is completely
sound, while d(t, x) → ∞ means that the body is so damaged that there is no more
opponence from its side. The function g is supposed to be smooth and it measures
the influence of the damage on the elastic behaviour of the body. For the precise
assumptions on the function g, see Assumption 2.9. Finally, C is the elasticity tensor,
which is assumed to be coercive and bounded, see Assumption 2.10.

At each time point, the displacement and the nonlocal damage are supposed to min-
imize the stored energy, i.e.,

(u(t), ϕ(t)) ∈ arg min
(u,ϕ)∈V×H1(Ω)

E(t,u, ϕ, d(t)). (2.1)

The evolution of local damage in the rate independent case is modeled by the differ-
ential inclusion

− ∂dE(t,u(t), ϕ(t), d(t)) ∈ ∂R1(ḋ(t)) f.a.a. t ∈ (0, T ), (2.2)

where the function R1 denotes the dissipated energy.

Definition 2.1 (Dissipation Functional). The dissipation R1 : L2(Ω) → [0,∞] is
defined as

R1(η) :=

{
r
∫

Ω
η dx, if η ≥ 0 a.e. in Ω,

∞, otherwise,
3



where r > 0 stands for the fracture toughness of the material.
Thanks to the positive homogeneity of R1, the considered process is rate independent,
which means that the values of the damage do not depend on the rate with which `
changes in time. As a consequence, one ignores inertial and viscosity effects.
The system (2.1)–(2.2) is equivalent to the damage model [6, (6), (7) and (18)]. Note
that [6, (18)] corresponds to the dual formulation of the evolutionary equation (2.2).
In order to see this, we refer to Section 3.2, where a similar result is proven.
Remark 2.2. Let us point out that, in the classical literature (see for instance [9,10]),
the damage variable is frequently set to 1, if the material is fully sound, and 0, if it is
completely damaged. However, since the starting point for our analysis is the model
from [6], we decided to work in the framework described above, where d ∈ [0,∞).
We underline that Section 7 in the companion paper [21] demonstrates that one can
transfer our setting into the classical one [10] by a suitably chosen transformation of
the damage variable.
Remark 2.3. The notions ’local’ and ’nonlocal’ damage, respectively, refer to the fact
that the variable d provides a local character, as it solves an ODE in Banach space,
while the equation for ϕ features a nonlocal gradient regularization, see (3.41) below.

2.2. Modification of the Model. Because of theoretical reasons, we modify
the energy functional E such that the function g depends on the nonlocal damage
instead of the local damage. This modification is motivated by the fact that the
local damage possesses less regularity. Therefore, we insert ϕ instead of d into the
coefficient function g such that the coupling between the balance of momentum and
the damage evolution is realized with the more regular function ϕ.
Definition 2.4 (Energy Functional). The stored energy E : [0, T ] × V × H1(Ω) ×
L2(Ω)→ R is given by

E(t,u, ϕ, d) :=
1

2

∫
Ω

g(ϕ)Cε(u) : ε(u) dx− 〈`(t),u〉V +
α

2
‖∇ϕ‖22 +

β

2
‖ϕ− d‖22.

Remark 2.5. As the penalty approach aims to minimize the deviation between ϕ and
d, we expect the two models to yield similar results, at least for large values of β. This
is also confirmed by the limit analysis for β →∞ in the companion paper [21], which
shows that both damage variables equal in the limit.
We will also work with a different dissipation functional, namely a viscous regular-
ization of the dissipation functional from Definition 2.1. Although (weak) solvability
results for rate-independent damage processes with non-convex energy functional as in
our case may be proven, one can neither expect the solutions to be unique nor smooth
in time, see [17,22]. To overcome this issue, we apply a viscous regularization, which
is frequently used in the context of damage modelling. This consists of adding an L2-
viscosity term in the dissipation functional, which leads to a rate-dependent process,
since the dissipation loses its positive homogeneity.
Definition 2.6 (Viscous Dissipation Functional). We define Rδ : L2(Ω)→ [0,∞] as

Rδ(η) :=

{
r
∫

Ω
η dx+ δ

2‖η‖
2
2, if η ≥ 0 a.e. in Ω,

∞, otherwise,

where δ > 0 is the viscosity parameter.
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To summarize, the viscous ‘two-field damage model’ arising from the above consider-
ations reads:

(u(t), ϕ(t)) ∈ arg min
(u,ϕ)∈V×H1(Ω)

E(t,u, ϕ, d(t)),

0 ∈ ∂Rδ(ḋ(t)) + ∂dE(t,u(t), ϕ(t), d(t))

 (P)

for almost all t ∈ (0, T ) with the initial condition d(0) = d0 a.e. in Ω.

2.3. Notation and Standing Assumptions. Throughout the paper, C de-
notes a generic positive constant. If X and Y are two linear normed spaces, the space
of linear and bounded operators from X to Y is denoted by L(X,Y ). The dual of a
linear normed space X will be denoted by X∗. For the dual pairing between X and
X∗ we write 〈., .〉X and, if it is clear from the context, which dual pairing is meant,
we just write 〈., .〉. By ‖ · ‖p we denote the Lp(Ω)−norm for p ∈ [1,∞] and by (·, ·)2

the L2(Ω)−scalar product. If X is compactly embedded in Y , we write X ↪→↪→ Y ,

and X
d
↪→ Y means that X is dense in Y . In the rest of the paper N ∈ {2, 3} denotes

the spatial dimension. By bold-face case letters we denote vector valued variables
and vector valued spaces. (Partial) derivatives w.r.t. time are frequently denoted by
a dot.
Definition 2.7. For p ∈ [1,∞] we define the following subspace of W 1,p(Ω):

W 1,p
D (Ω) := {v ∈W 1,p(Ω) : v|ΓD = 0},

where ΓD is a part of the boundary of the domain Ω, see Assumption 2.8 below. The
dual space of W 1,p′

D (Ω) is denoted by W−1,p
D (Ω), where p′ is the conjugate exponent

of p. If p = 2, we abbreviate V := W 1,2
D (Ω).

Assumption 2.8. The domain Ω ⊂ RN , N ∈ {2, 3}, is a bounded Lipschitz domain in
the sense of [12, Chap. 1.2]. Its boundary is denoted by Γ and consists of two disjoint
measurable parts ΓN and ΓD such that Γ = ΓN ∪ ΓD. While ΓN is a relatively open
subset, ΓD is a relatively closed subset of Γ with positive measure.
In addition, the set Ω ∪ ΓN is regular in the sense of Gröger, cf. [13]. That is, for
every point x ∈ Γ, there exists an open neighborhood Ux ⊂ RN of x and a bi-Lipschitz
map (a Lipschitz continuous and bijective map with Lipschitz continuous inverse)
Ψx : Ux → RN such that Ψx(x) = 0 ∈ RN and Ψx

(
Ux ∩ (Ω ∪ ΓN )

)
equals one of the

following sets:

E1 :=
{
y ∈ RN : |y| < 1, yN < 0

}
,

E2 :=
{
y ∈ RN : |y| < 1, yN ≤ 0

}
,

E3 := {y ∈ E2 : yN < 0 or y1 > 0} .

A detailed characterization of Gröger-regular sets in two and three spatial dimensions
is given in [14].
Assumption 2.9. The function g : R→ [ε, 1] satisfies

g ∈ C1,1(R) (2.3)

with ε > 0. With a little abuse of notation the Nemystkii-operators associated with
g and g′, considered with different domains and ranges, will be denoted by the same
symbol.
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The coefficient function g measures how the elastic properties of the body are pre-
served depending on the value of the damage. Therefore, from a mechanical point of
view, it would make sense to impose g to be monotonically decreasing. This property
of g is needed, if one aims to show that the nonlocal damage variable admits just
positive values, as the local damage variable does. (In fact, it suffices that g is mono-
tonically decreasing on R− to prove this result.) However, since we do not need this
result in our analysis, we do not require that g is monotonically decreasing.
We emphasize that, due to the condition g ≥ ε, our model constitutes a partial
damage model. By contrast, limϕ→∞ g(ϕ) = 0 is assumed in [6, (2)], which assures
that complete material rigidity loss occures in the case of complete damage. However,
in order to guarantee coercivity of the bilinear form associated with the balance of
momentum in (3.9), we have to impose a positive lower bound on g.
Assumption 2.10. The fourth-order tensor C ∈ L∞(Ω;L(RN×Nsym )) is symmetric and
uniformly coercive, i.e., there is a constant γC > 0 such that

C(x)σ : σ ≥ γC|σ|2 ∀σ ∈ RN×Nsym and f.a.a. x ∈ Ω, (2.4)

where | · | denotes the Frobenius norm on RN×N and (· : ·) the scalar product inducing
this norm.
Assumption 2.11. For the applied volume and boundary load we require

` ∈ C0,1([0, T ];W−1,p
D (Ω)),

where p > 2 is specified below, see Lemma 3.3, Assumption 3.10, and Assumption
3.16.
Moreover, the initial damage is supposed to satisfy d0 ∈ L2(Ω).

3. Existence and Uniqueness. In this section, we mainly focus on finding
unique solutions u, ϕ, d to the problem (P) for a given load `. For this purpose, we
first show that the optimization problem in (P) admits solutions for fixed t and d.
Such solutions will turn out to satisfy the elliptic system in (3.19) below as neces-
sary optimality system, but only after we establish that the displacement u possesses
improved space regularity. As (3.19) is uniquely solvable, if the penalization param-
eter β is sufficiently large, we therefore obtain unique solvability for the optimization
problem in (P) with solutions characterized by (3.19). After concluding uniqueness,
Lipschitz-continuity of the resulting solution maps is proven. Finally, based on these
results, existence and uniqueness for the evolution equation in (P) is shown in Sec-
tion 3.2. Before we begin our investigations, let us emphasize that the assumptions
introduced in the previous Section 2.3 are tacitly assumed in all what follows without
mentioning them every time. By contrast, additional assumptions which appear later
on throughout the paper are always invoked when needed in the upcoming statements.

3.1. The Elliptic System. Throughout this section we work with a fixed (t, d) ∈
[0, T ]× L2(Ω) and deal with the optimization problem

min
(u,ϕ)∈V×H1(Ω)

J (u, ϕ), (3.1)

where J : V ×H1(Ω)→ R is defined as

J (u, ϕ) := E(t,u, ϕ, d). (3.2)
6



Existence of solutions.

Proposition 3.1. The optimization problem (3.1) admits at least one solution.

Proof. Thanks to g ≥ ε and the coercivity of C by Assumptions 2.9 and 2.10, respec-
tively, Korn’s inequality implies that J is radially unbounded on V ×H1(Ω). More-
over, J is weakly lower semicontinuous. To see this, consider a sequence {(un, ϕn)} ⊂
V ×H1(Ω) with (un, ϕn) ⇀ (u, ϕ) in V ×H1(Ω). Note that this convergence implies

ε(un) ⇀ ε(u) in L2(Ω;RN×Nsym ) and ϕn → ϕ in L2(Ω). (3.3)

We define f : Ω × R × RN×Nsym → R as f(x, y, ζ) := g(y)C(x)ζ : ζ. In view of the
convexity of norms squared, the positivity of g and Assumption 2.10, ζ 7→ f(x, y, ζ)
is convex f.a.a. x ∈ Ω and all y ∈ R and f(x, y, ζ) ≥ 0. This allows us to apply [5,
Theorem 3.23], which gives in turn

lim inf
n→∞

∫
Ω

g(ϕn)Cε(un) : ε(un) dx ≥
∫

Ω

g(ϕ)Cε(u) : ε(u) dx,

in view of (3.3). This together with the weak lower semicontinuity of norm squares
gives that J is indeed weakly lower semicontinuous. The existence of solutions for
(3.1) follows by classical arguments of the direct method of variational calculus.

Our next goal is to improve the regularity of the optimal displacement. For this
purpose we need the following

Definition 3.2. For given ϕ ∈ L1(Ω) we define the linear form Aϕ : V → V ∗ as

〈Aϕu,v〉V :=

∫
Ω

g(ϕ)Cε(u) : ε(v) dx.

The operator Aϕ considered with different domains and ranges will be denoted by the
same symbol for the sake of convenience.

Note that the operator Aϕ is well defined in view of Hölder’s inequality and Lemma
A.1.

Lemma 3.3. There exists p > 2 such that, for all p ∈ [2, p] and all ϕ ∈ L1(Ω),
the operator Aϕ : W 1,p

D (Ω) → W−1,p
D (Ω) is continuously invertible. Moreover, there

exists a constant c > 0, independent of ϕ and p, such that

‖A−1
ϕ h‖W 1,p

D (Ω) ≤ c ‖h‖W−1,p
D (Ω) ∀h ∈W−1,p

D (Ω), ∀ϕ ∈ L1(Ω) (3.4)

holds for all p ∈ [2, p].

Proof. The result follows by applying [15, Proposition 1.2]. To this end, we have to
verify [15, Assumption 1.5]. First Assumption 2.8 guarantees the conditions on the
domain from [15, Assumption 1.5(1)]. Moreover, the family of functions {bϕ}ϕ∈L1(Ω),
bϕ : Ω× RN×Nsym → RN×Nsym , defined by

bϕ(x, ε) := g(ϕ(x))C(x)ε. (3.5)

is uniformly bounded and coercive by Assumptions 2.10 and 2.9, which in turn implies
[15, Assumption 1.5(2)]. Thus, [15, Proposition 1.2] gives that Aϕ is continuously
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invertible for every ϕ ∈ L1(Ω) and moreover tells us that the norm of the inverse can
be estimated independently of ϕ and p.
Lemma 3.4 (Partial Fréchet-differentiability of E). The functional E is partially
Fréchet differentiable w.r.t. u and d on [0, T ] × V × H1(Ω) × L2(Ω), and its partial
derivatives are given by

∂uE(t,u, ϕ, d)(δu) = 〈Aϕu, δu〉V − 〈`(t), δu〉V , (3.6)
∂dE(t,u, ϕ, d) = β(d− ϕ). (3.7)

Furthermore, if considered as a mapping in [0, T ] ×W 1,r
D (Ω) ×H1(Ω) × L2(Ω) with

r > 2 for N = 2 and r > 12/5 in case of N = 3, then E is also partially Fréchet-
differentiable w.r.t. ϕ. Its partial derivative reads

∂ϕE(t,u, ϕ, d)(δϕ) =
1

2

∫
Ω

g′(ϕ)Cε(u) : ε(u)δϕ dx

+

∫
Ω

α∇ϕ · ∇δϕ+ β(ϕ− d)δϕ dx.

(3.8)

Proof. The results regarding the partial Fréchet differentiability w.r.t. d and u are
obvious to see. For the latter one, keep in mind that g maps H1(Ω) into L∞(Ω), see
Lemma A.1. Concerning the partial Fréchet differentiability w.r.t. ϕ we first observe
that, for every u ∈W 1,r

D (Ω), the linear functional

L
r
r−2 (Ω) 3 w 7→ 1

2

∫
Ω

wCε(u) : ε(u) dx ∈ R

is bounded on account of Hölder’s inequality with (r − 2)/r + 2/r = 1 and thus
an element of Lr/(r−2)(Ω)∗. Moreover, the conditions on r and Sobolev embeddings
imply H1(Ω) ↪→ Ls(Ω) with some s > r/(r − 2) so that, in view of Lemma A.1, g is
Fréchet-differentiable from H1(Ω) to Lr/(r−2)(Ω). The result then follows from the
chain rule.
Proposition 3.5 (Improved regularity of the optimal displacement). For every
ϕ ∈ H1(Ω), the optimization problem minu∈V J (u, ϕ) admits a unique solution ū ∈
W 1,p

D (Ω), which is characterized by

〈Aϕū,v〉W 1,p′
D (Ω)

= 〈`(t),v〉
W 1,p′

D (Ω)
∀v ∈W 1,p′

D (Ω). (3.9)

Proof. The assertion follows from the standard direct method of calculus of variations
combined with Lemma 3.3 and (3.6).
Definition 3.6 (Solution operator of (3.9)). We define the operator U : [0, T ] ×
H1(Ω)→W 1,p

D (Ω) by

U(t, ϕ) := A−1
ϕ `(t).

As an immediate consequence of Lemma 3.3 and the regularity of ` in Assumption
2.11 one obtains the following
Corollary 3.7. There exists a constant c > 0, independent on t and ϕ such that

‖U(t, ϕ)‖W 1,p
D (Ω) ≤ c ∀ (t, ϕ) ∈ [0, T ]×H1(Ω).
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Proposition 3.8 (Lipschitz continuity of U). Let r ∈
[
2p/(p−2),∞

]
be given, where

p > 2 is the integrability exponent from Lemma 3.3. Then there exists L > 0 such
that for all ϕ1, ϕ2 ∈ H1(Ω) ∩ Lr(Ω) and all t1, t2 ∈ [0, T ] it holds

‖U(t1, ϕ1)− U(t2, ϕ2)‖W 1,π
D (Ω) ≤ L(|t1 − t2|+ ‖ϕ1 − ϕ2‖r), (3.10)

where 1/π = 1/p+ 1/r.
Proof. We abbreviate ui := U(ti, ϕi), i = 1, 2. Subtracting the equations associated
with ui, i = 1, 2, yields

Aϕ1(u1 − u2) = (Aϕ2 −Aϕ1)u2 + `(t1)− `(t2) in W−1,p
D (Ω). (3.11)

For given µ, ρ, τ ≥ 1 such that 1/µ = 1/ρ+ 1/τ , Hölder’s inequality and Assumption
2.10 imply

‖Cε(u) : ε(w)‖µ ≤ C‖u‖W 1,ρ
D (Ω)‖w‖W 1,τ

D (Ω) ∀u ∈W 1,ρ
D (Ω),w ∈W 1,τ

D (Ω), (3.12)

We further apply Hölder’s inequality with 1/π′+1/r+1/p = 1 to the first term on the
right-hand side in (3.11). This gives together with Lemma A.1, (3.12), and Corollary
3.7 the following estimate

‖(Aϕ2
−Aϕ1

)u2‖W−1,π
D (Ω) ≤ C ‖g(ϕ1)− g(ϕ2)‖r ‖u2‖W 1,p

D (Ω)

≤ C ‖ϕ1 − ϕ2‖r.
(3.13)

Now, since 1/r ≤ (p − 2)/(2p), it holds π ∈ [2, p]. Thus, we are allowed to apply
estimate (3.4) to Aϕ1 , when considered as an operator from W 1,π

D (Ω) to W−1,π
D (Ω).

Therewith we deduce from (3.11) and (3.13)

‖u1 − u2‖W 1,π
D (Ω) ≤ C ‖ϕ1 − ϕ2‖r + ‖`(t1)− `(t2)‖W−1,π

D (Ω)

≤ L (‖ϕ1 − ϕ2‖r + |t1 − t2|),

where we used ` ∈ C0,1([0, T ];W−1,π
D (Ω)) for the last inequality. Note that the

constant L > 0 is independent of (ti, ϕi).
We finish the discussion concerning the optimal displacement with a result which will
be very useful later on in Section 5 below.
Lemma 3.9. Let {tn, ϕn} ⊂ [0, T ]×H1(Ω) and (t, ϕ) ∈ [0, T ]×H1(Ω) be given such
that (tn, ϕn) → (t, ϕ) in R × L1(Ω). Then it holds U(tn, ϕn) → U(t, ϕ) in W 1,s

D (Ω)
as n→∞ for every s ∈ [2, p).
Proof. We again abbreviate un := U(tn, ϕn) and u := U(t, ϕ). By subtracting the
equations associated with un and u we obtain for all n ∈ N

Aϕ(u− un) = (Aϕn −Aϕ)un + `(t)− `(tn) in W−1,p
D (Ω). (3.14)

Completely analogously to (3.13), one derives the estimate

‖(Aϕn −Aϕ)un‖W−1,s
D (Ω) ≤ C ‖g(ϕn)− g(ϕ)‖%‖un‖W 1,p

D (Ω), (3.15)

with % ∈ [1,∞) such that 1/%+1/p+1/s′ = 1. Notice that the existence of % is due to
1/s′ ∈ [1/2, 1/p′). Lemma A.1, Corollary 3.7, Assumption 2.11 and (3.15) now lead
to

‖(Aϕn −Aϕ)un + `(t)− `(tn)‖W−1,s
D (Ω) → 0 as n→∞.

In view of (3.14) applying (3.4) toAϕ : W 1,s
D (Ω)→W−1,s

D (Ω) then gives the assertion.
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Uniqueness. Next we concentrate on deriving necessary optimality conditions
for the optimal nonlocal damage. For this purpose one has to differentiate the function
J w.r.t. ϕ. This means that one has to apply Lemma 3.4, which can be done only
under the following additional
Assumption 3.10. From now on we assume that, in case of N = 3, the assertion
of Lemma 3.3 holds for all ϕ ∈ H1(Ω) with p > 12/5, i.e., for every ϕ ∈ H1(Ω), the
operator Aϕ : W 1,p

D (Ω) → W−1,p
D (Ω) is continuously invertible for some p > 12/5

and an estimate analogous to (3.4) holds.
Remark 3.11. The existence of a p fulfilling Assumption 3.10 is guaranteed by the
results of [15], provided that the domain is smooth enough and the difference between
the boundedness and monotonicity constants of the stress strain relation is sufficiently
small. In our case, the stress strain relation is given by (3.5), and thus, the assertion
is ensured, if the values ε γC and ‖C‖∞ are close enough to each other, see the proof
of Lemma 3.3 and [15, Assumption 1.5.(2)] for more details. Recall that, in the
two-dimensional case, Assumption 3.10 is automatically fulfilled.
Remark 3.12. Alternatively to Assumption 3.10, one can proceed as in [17] and use
the Sobolev–Slobodeckij space H3/2(Ω) for the nonlocal damage in three dimensions.
To this end, one replaces the gradient term in the energy functional by a seminorm on
H3/2(Ω), cf. [17, (2.4b)]. The advantage thereof is that H3/2(Ω) ↪→ Lr(Ω) for every
r ∈ [1,∞) for both, the two- and three-dimensional case. A close inspection of the
upcoming analysis shows that the embedding H1(Ω) ↪→ Lr(Ω) for all r < ∞ in case
of N = 2 is the key ingredient to prove the uniqueness result for (3.1) without any
additional assumptions on the integrability exponent p in the two-dimensional case.
Thus, working with H3/2(Ω) instead of H1(Ω) in three dimensions allows us to do the
same in case of N = 3 so that there would be no need for making extra assumptions
on p. However, we chose not to work with H3/2(Ω), as the bilinear form associated
with the H3/2(Ω)-seminorm is difficult to realize in numerical computations.
The following definition will be useful in the sequel:
Definition 3.13 (The linear and nonlinear part of (3.19b)). Suppose that As-
sumption 3.10 is fulfilled. Then we define the mappings B : H1(Ω) → H1(Ω)∗ and
F : [0, T ]×H1(Ω)→ H1(Ω)∗ by

〈Bϕ,ψ〉H1(Ω) :=

∫
Ω

α∇ϕ · ∇ψ + βϕψ dx, φ, ψ ∈ H1(Ω), (3.16)

〈F (t, ϕ), ψ〉H1(Ω) :=
1

2

∫
Ω

g′(ϕ)Cε(U(t, ϕ)) : ε(U(t, ϕ))ψ dx,

t ∈ [0, T ], ϕ, ψ ∈ H1(Ω).

(3.17)

We emphasize that F is well defined. To see this first note that C ∈ L∞(Ω;L(RN×Nsym ))
and g′ ∈ L∞(R) by Assumptions 2.10 and 2.9. Moreover, Sobolev embeddings imply
H1(Ω) ↪→ Ls(Ω) with s = 6 in case of N = 3 and s < ∞ for N = 2. Therefore,
the assertion directly follows from Lemma 3.3 in case of N = 2, whereas one needs
Assumption 3.10 for N = 3.
With a little abuse of notation, the operators B and F considered with different do-
mains and ranges will be denoted by the same symbol.
Proposition 3.14. Under Assumption 3.10, every global minimizer (ū, ϕ̄) of (3.1)
fulfills ū = U(t, ϕ̄) ∈W 1,p

D (Ω) and

Bϕ̄+ F (t, ϕ̄) = βd in H1(Ω)∗, (3.18)
10



which is equivalent to the following optimality system:

− div g(ϕ̄)Cε(ū) = `(t) in W−1,p
D (Ω) (3.19a)

−α∆ϕ̄+ β ϕ̄+
1

2
g′(ϕ̄)C ε(ū) : ε(ū) = βd in H1(Ω)∗, (3.19b)

where div : Lp(Ω;RN×Nsym )→W−1,p
D (Ω) denotes the distributional vector-valued diver-

gence, i.e.,

〈divσ,v〉 := −
∫

Ω

σ : ε(v) dx, σ ∈ Lp(Ω;RN×Nsym ), v ∈W 1,p′

D (Ω), (3.20)

and ∆ : H1(Ω)→ H1(Ω)∗ is the distributional Laplace operator, respectively.

Proof. The global optimality of (ū, ϕ̄) in particular implies that ū is a global minimizer
of

min
u∈V
J (u, ϕ̄).

Therefore, ū = U(t, ϕ̄), in view of Proposition 3.5. Similarly, the global optimality of
(ū, ϕ̄) also implies that ϕ̄ is a global minimizer of

min
ϕ∈H1(Ω)

f̄(ϕ) := J (ū, ϕ). (3.21)

Thanks to the improved regularity of ū by Proposition 3.5 in case of N = 2 and
Assumption 3.10 for N = 3, respectively, one can differentiate f̄ on H1(Ω) by means
of Lemma 3.4. This gives in turn f̄ ′(ϕ̄) = ∂ϕJ (ū, ϕ̄) = 0 as necessary optimality
condition for a global minimizer of (3.21). In view of (3.8), Definition 3.13, and
ū = U(t, ϕ̄), this is equivalent to (3.18). The equivalence to (3.19) directly follows
from the definitions of Aϕ̄, B, and F .

Remark 3.15. Note that the improved regularity of the optimal displacement resulting
from Proposition 3.5 combined with Assumption 3.10, i.e., ū ∈ W 1,p

D (Ω) with p > 2
for N = 2 and p > 12/5 for N = 3, is essential for deriving necessary optimality
conditions for the nonlocal damage. This is due to the fact that J is differentiable
with respect to ϕ only on [0, T ]×W 1,p

D (Ω)×H1(Ω)× L2(Ω), cf. Lemma 3.4.

From Propositions 3.1 and 3.14 we know that (3.19b) has at least one solution. In the
following we aim for showing that this solution is unique, which will give in turn the
unique solvability of (3.1). Unfortunately, Assumption 3.10 does not suffice to prove
the uniqueness of solutions to (3.19). In order to show strong monotonicity of the
operator on the left-hand side of (3.19b), we additionally need that H1(Ω) ↪→ Lr(Ω)
with r > 2p/(p− 2), see proof of Lemma 3.18 below for more details. This motivates
the first part of the following

Assumption 3.16. From now on we require the following:

1. For every ϕ ∈ H1(Ω), the assertion of Lemma 3.3, including the a priori
estimate (3.4), holds for some p > N .

2. The penalization parameter β is sufficiently large, depending only on the given
data, see (3.33) below.

Note that Assumption 3.16.1 is automatically fulfilled if N = 2, see Lemma 3.3. In
case of N = 3, this assumption is guaranteed by imposing additional conditions on the
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data, see Remark 3.11 for more details. We emphasize that, as in case of Assumption
3.10 before, Assumption 3.16.1 is not needed, if one replaces the H1-seminorm in the
energy functional in Definition 2.4 by a H3/2-seminorm, see Remark 3.12 for more
details. Assumption 3.16.2 is not restrictive at all, since β is a penalization parameter,
which is supposed to be large anyway and will be sent to ∞ in the companion paper
[21]. We point out that the dependence of β on the given data does not affect the
rest of the analysis.

We start the discussion of uniqueness with a Lipschitz-continuity result concerning
the mapping F . For later purpose, we prove a slightly more general result.

Lemma 3.17. Let r ≥ 2p/(p − 2) and 1/s + 2/p + 1/r = 1. Under Assumption
3.16.1 the following estimate holds for all t1, t2 ∈ [0, T ], ϕ1, ϕ2 ∈ H1(Ω) ∩ Lr(Ω) and
ψ ∈ Ls(Ω):

|〈F (t1, ϕ1)− F (t2, ϕ2), ψ〉| ≤ C
(
‖ϕ1 − ϕ2‖r + |t1 − t2|

)
‖ψ‖s,

with a constant C > 0 independent of (ti, ϕi)i=1,2 and ψ.

Proof. We again denote ui := U(ti, ϕi) for i = 1, 2. The definition of F in (3.17)
implies

|〈F (t1, ϕ1)− F (t2, ϕ2), ψ〉|

≤
∫

Ω

∣∣(g′(ϕ1)− g′(ϕ2))Cε(u1) : ε(u1)ψ
∣∣ dx

+

∫
Ω

∣∣g′(ϕ2)[Cε(u1) : ε(u1)− Cε(u2) : ε(u2)]ψ
∣∣ dx.

(3.22)

We discuss the two terms on the right-hand side of (3.22) separately:

(i) In view of (3.12) and Corollary 3.7 we have

‖Cε(u1) : ε(u1)‖ p
2
≤ c, (3.23)

where c > 0 is a constant independent on (t1, ϕ1). In addition, the function g′ :
Lr(Ω) → Lr(Ω) is Lipschitz continuous according to Lemma A.1. Thus applying
Hölder’s inequality with 1/r+ 1/s+ 2/p = 1 for the first term on the right-hand side
in (3.22) gives∫

Ω

∣∣(g′(ϕ1)− g′(ϕ2))Cε(u1) : ε(u1)ψ
∣∣ dx ≤ C1‖ϕ1 − ϕ2‖r ‖ψ‖s. (3.24)

(ii) Define π and ω through 1/π = 1/p + 1/r and 1/ω = 1/p + 1/π. Then (3.12),
Corollary 3.7, and Proposition 3.8 result in

‖Cε(u1) : ε(u1)− Cε(u2) : ε(u2)‖ω = ‖C[ε(u1) + ε(u2)] : [ε(u1)− ε(u2)]‖ω
≤ C‖u1 + u2‖W 1,p

D (Ω)‖u1 − u2‖W 1,π
D (Ω)

≤ C(‖ϕ1 − ϕ2‖r + |t1 − t2|).
(3.25)

Then Hölder’s inequality with 1/ω + 1/s = 1, together with Assumption 2.9, yields∫
Ω

∣∣g′(ϕ2)[Cε(u1) : ε(u1)− Cε(u2) : ε(u2)]ψ
∣∣ dx

≤ C(‖ϕ1 − ϕ2‖r + |t1 − t2|)‖ψ‖s.
(3.26)
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Inserting (3.24) and (3.26) in (3.22) finally gives the assertion.
From p > N it follows that

r :=
2p

p− 2
∈
(

2,
2N

N − 2

)
, (3.27)

and therefore Sobolev embeddings give H1(Ω) ↪→ Lr(Ω). Moreover, by construction,
this r satisfies 2/r + 2/p = 1. Thus Lemma 3.17 is applicable with r = s yielding the
estimate

|〈F (t1, ϕ1)− F (t2, ϕ2), ψ〉| ≤ C
(
‖ϕ1 − ϕ2‖ 2p

p−2
+ |t1 − t2|

)
‖ψ‖ 2p

p−2

∀ϕ1, ϕ2, ψ ∈ H1(Ω).
(3.28)

Lemma 3.18. Under Assumption 3.16.1 it holds

‖ϕ‖22p
p−2

≤ Ck ‖ϕ‖22 + k ‖ϕ‖2H1(Ω) ∀ϕ ∈ H1(Ω) and ∀ k > 0,

where Ck > 0 is a constant, which depends only on k and the given data.

Proof. For convenience we again set r := 2p/(p − 2). First note that, because of
Assumption 3.16, there is an index % such that r ∈ (2, %) and H1(Ω) ↪→ L%(Ω). For
instance take % = (2p + 1)/(p − 2) for N = 2 and % = 6 in case of N = 3, cf. (3.27).
Therefore there exists θ ∈ (0, 1) such that 1/r = θ/2 + (1− θ)/% so that Lyapunov’s
inequality leads to

‖ϕ‖2r ≤ ‖ϕ‖2θ2 ‖ϕ‖2−2θ
% ≤ C‖ϕ‖2θ2 ‖ϕ‖2−2θ

H1(Ω). (3.29)

Thanks to the generalized Young inequality, (3.29) can be continued as

‖ϕ‖2r ≤ Ck ‖ϕ‖22 + k ‖ϕ‖2H1(Ω) ∀ k > 0, (3.30)

where Ck > 0 is a constant depending only on k and θ (and thus, on k and p). Since
p depends only on the given data, cf. [15], the proof is now complete.
Lemma 3.19 (Strong monotonicity of B +F ). Under Assumption 3.16 the following
estimate holds for all t1, t2 ∈ [0, T ] and all ϕ1, ϕ2 ∈ H1(Ω), ϕ1 6= ϕ2,

〈B(ϕ1 − ϕ2) + F (t1, ϕ1)− F (t2, ϕ2), ϕ1 − ϕ2〉H1(Ω)

‖ϕ1 − ϕ2‖H1(Ω)
≥ C1‖ϕ1−ϕ2‖H1(Ω)−C2|t1−t2|,

where C1, C2 > 0 are constants independent of (ti, ϕi)i=1,2.

Proof. Let (ti, ϕi)i=1,2 ∈ [0, T ] ×H1(Ω) be arbitrary, but fixed with ϕ1 6= ϕ2. Then
(3.28) and Lemma 3.18 yield that, for all k > 0,

|〈F (t1, ϕ1)− F (t2, ϕ2), ϕ1 − ϕ2〉H1(Ω)|
≤ C

(
Ck‖ϕ1 − ϕ2‖22 + k‖ϕ1 − ϕ2‖2H1(Ω) + |t1 − t2| ‖ϕ1 − ϕ2‖H1(Ω)

)
.

(3.31)

Using the definition of B in (3.16), we infer from (3.31)

〈B(ϕ1 − ϕ2) + F (t1, ϕ1)− F (t2, ϕ2), ϕ1 − ϕ2〉
‖ϕ1 − ϕ2‖H1(Ω)

≥ (α− C k)‖ϕ1 − ϕ2‖H1(Ω) − C|t1 − t2|+ (β − α− CCk)
‖ϕ1 − ϕ2‖22
‖ϕ1 − ϕ2‖H1(Ω)

.

(3.32)
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We now choose k > 0 small enough such that C1 := α− C k > 0. Furthermore, if

β > α+ C Ck, (3.33)

cf. Assumption 3.16.2, then (3.32) gives the assertion with C1 = α−C k and C2 = C.
Note that value of k, and thus the constant C1 and the threshold for β, only depends
on the given data, see the proof of Lemma 3.18.

Theorem 3.20 (Unique solvability of (3.1)). Under Assumption 3.16, the equation
(3.18) admits a unique solution, and thus, (3.19) is uniquely solvable as well. More-
over, the optimization problem (3.1) admits a unique minimizer (ū, ϕ̄) ∈W 1,p

D (Ω)×
H1(Ω), which is characterized by (3.18) and (3.19), respectively.

Proof. Let (ti, di) ∈ [0, T ] × L2(Ω), i = 1, 2, be given and let ϕi denote solutions of
(3.18) associated with (ti, di), i = 1, 2. Note that the existence thereof is ensured by
Propositions 3.1 and 3.14. By assuming ϕ1 6= ϕ2, we obtain from Lemma 3.19 and
Cauchy Schwarz inequality the estimate

‖ϕ1 − ϕ2‖H1(Ω)

≤ C
( 〈B(ϕ1 − ϕ2) + F (t1, ϕ1)− F (t2, ϕ2), ϕ1 − ϕ2〉H1(Ω)

‖ϕ1 − ϕ2‖H1(Ω)
+ |t1 − t2|

)
= C

(
β

(d1 − d2, ϕ1 − ϕ2)2

‖ϕ1 − ϕ2‖H1(Ω)
+ |t1 − t2|

)
≤ C

(
‖d1 − d2‖2 + |t1 − t2|

)
.

(3.34)

Note that the estimate (3.34) holds trivially also for ϕ1 = ϕ2. If we set t1 = t2 and
d1 = d2, then (3.34) implies uniqueness for (3.18), and thus, for (3.19). Moreover,
we recall that (3.1) admits solutions, see Proposition 3.1. Since (3.19) constitutes
the necessary optimality condition for (3.1), by Proposition 3.14, we deduce that
(3.1) is uniquely solvable, too. The regularity and the characterization of the unique
solution via (3.18) and (3.19), respectively, is due to Proposition 3.14. The proof is
now complete.

The unique solvability of (3.18) leads to the following

Definition 3.21 (Solution operator of (3.18)). Let Assumption 3.16 be fulfilled. We
define the operator Φ : [0, T ]× L2(Ω)→ H1(Ω) as

Φ(t, d) :=
(
B + F (t, ·)

)−1
(βd).

As a result of (3.34) we have that, under Assumption 3.16, there exists a constant
K > 0 such that

‖Φ(t1, d1)− Φ(t2, d2)‖H1(Ω) ≤ K(‖d1 − d2‖2 + |t1 − t2|), (3.35)

holds true for all t1, t2 ∈ [0, T ] and d1, d2 ∈ L2(Ω), i.e., the operator Φ is globally
Lipschitz continuous.

3.2. Evolutionary Problem as Operator Differential Equation. This sec-
tion is devoted to proving existence and uniqueness for our complete damage model

14



(P). Throughout the section Assumption 3.16 is supposed to hold. Then, in view of
the results of Section 3.1, problem (P) can be reformulated as

− ∂dE(t,u(t), ϕ(t), d)
∣∣∣
d=d(t)

∈ ∂Rδ(ḋ(t)) f.a.a. t ∈ (0, T ), d(0) = d0, (3.36)

where u(t) = U(t, ϕ(t)) and ϕ(t) = Φ(t, d(t)). Due to (3.7), the evolutionary equation
(3.36) reads

− β(d(t)− ϕ(t)) ∈ ∂Rδ(ḋ(t)) f.a.a. t ∈ (0, T ), d(0) = d0. (3.37)

We approach (3.37) by showing that it is equivalent to the following operator differ-
ential equation, which can be solved by standard arguments.

Lemma 3.22 (Operator differential equation). The evolutionary equation (3.37) is
equivalent to

ḋ(t) =
1

δ
max{−β(d(t)− ϕ(t))− r, 0} f.a.a. t ∈ (0, T ), d(0) = d0. (3.38)

Proof. We begin by observing that Rδ(v) =
∫

Ω
Rδ(v(x)) dx for all v ∈ L2(Ω), where

the mapping Rδ : R→ [0,∞] is defined as

Rδ(η) :=

{
rη + δ

2η
2, if η ≥ 0,

∞, otherwise.

Thus, in view of [28, Corollary 3E], (3.37) is equivalent to ξ(t, x) ∈ ∂Rδ(ḋ(t, x)) f.a.a. (t, x) ∈
(0, T )× Ω, where we abbreviate ξ := −β(d− ϕ). Due the convexity and lower semi-
continuity of Rδ, we can apply a well known convex analysis result, which gives in
turn

ξ(t, x) ∈ ∂Rδ(ḋ(t, x))⇐⇒ ḋ(t, x) ∈ ∂R∗δ(ξ(t, x)) f.a.a. (t, x) ∈ (0, T )× Ω.

On the other hand, straightforward computation yields that the conjugate functional
R∗δ : R → R satisfies R∗δ(ζ) = 1

2δ max{ζ − r, 0}2 for all ζ ∈ R. Moreover, it is
differentiable with derivative (R∗δ)

′(ζ) = 1
δ max{ζ−r, 0} for all ζ ∈ R. This completes

the proof.

Since the max-function is a well known complementarity function, one can deduce
from Lemma 3.22 that (3.36) is equivalent to the complementarity system

0 ≤ δḋ(t) ⊥ −β(d(t)− ϕ(t))− r − δḋ(t) ≤ 0 a.e. in Ω, f.a.a. t ∈ (0, T ). (3.39)

In a completely analogous way, one can show that the evolution equation (2.2) is
equivalent to the complementarity system in [6, (18)], as already mentioned at the
end of Section 2.1. For this purpose we refer to [6, (13), (19) and (20)].

Theorem 3.23 (Existence and uniqueness for the evolutionary equation). Under As-
sumption 3.16 there exists a unique function d ∈ C1([0, T ];L2(Ω)) satisfying (3.36).
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Proof. Lemma 3.22 tells us that (3.36) is equivalent to the operator differential equa-
tion given by (3.38). We intend to solve the latter one by means of the Picard-Lindelöf
theorem. For this purpose, we define the function f : [0, T ]× L2(Ω)→ L2(Ω) as

f(t, d) :=
1

δ
max{−β(d− Φ(t, d))− r, 0}. (3.40)

Due to the Lipschitz continuity of max : L2(Ω)→ L2(Ω) with constant 1 and (3.35),
it holds for all (t1, d1), (t2, d2) ∈ [0, T ]× L2(Ω) that

‖f(t1, d1)− f(t2, d2)‖2 ≤
β

δ

(
‖Φ(t1, d1)− Φ(t2, d2)‖H1(Ω) + ‖d1 − d2‖2

)
≤ β

δ
(K + 1) ‖d1 − d2‖2 +

β

δ
K |t1 − t2|,

where K is the Lipschitz constant of Φ. Therefore, f is globally Lipschitz con-
tinuous, and we can conclude with [8, Theorem 7.2.6] that there exists a unique
d ∈ C1([0, T ];L2(Ω)) satisfying

ḋ(t) = f(t, d(t)) ∀ t ∈ [0, T ], d(0) = d0,

which in view of (3.40) gives the assertion.
Note that the continuity of ḋ w.r.t. time implies Lipschitz continuity of d w.r.t. time.
The latter one readily transfers to ϕ and u, as explained in the sequel. First of all,
(3.35) and the Lipschitz continuity of d imply the Lipschitz continuity of ϕ. Due to
H1(Ω) ↪→ Lr(Ω) with r <∞ and r = 6 for N = 2, respectively N = 3, the Lipschitz
continuity of u then follows from Proposition 3.8 with π ∈ (2, p) for N = 2 and
π = 6p/(p+ 6) > 2 for N = 3 so that u ∈ C0,1([0, T ];W 1,π

D (Ω)). The time-regularity
of ϕ and u can be further improved, as we will see in Section 5.
We summarize our results so far in the next theorem.
Theorem 3.24. Under Assumption 3.16, there exists a unique solution (u, ϕ, d) of
our viscous two-field gradient damage model in (P) satisfying d ∈ C1([0, T ];L2(Ω)),
ϕ ∈ C0,1([0, T ];H1(Ω)), u ∈ C0,1([0, T ];W 1,π

D (Ω)), u(t) ∈ W 1,p
D (Ω) f.a.a. t ∈ [0, T ],

and the following system of differential equations:

−div g(ϕ(t))Cε(u(t)) = `(t) in W−1,p
D (Ω) (3.41a)

−α∆ϕ(t) + β ϕ(t) +
1

2
g′(ϕ(t))C ε(u(t)) : ε(u(t)) = βd(t) in H1(Ω)∗ (3.41b)

ḋ(t)− 1

δ
max{−β(d(t)− ϕ(t))− r, 0} = 0, d(0) = d0. (3.41c)

4. Improved Spatial Regularity and Lipschitz Continuity of the Non-
local Damage. In this section, we show that the nonlocal damage variable possesses
higher regularity and satisfies a corresponding Lipschitz condition. We start with the
following result on the spatial regularity of ϕ.

4.1. Improved Spatial Regularity. Throughout this section we work with
an arbitrary, but fixed (t, d) ∈ [0, T ] × L2(Ω) and use for simplicity the notations
ϕ := Φ(t, d) and

f := β(d− ϕ) + αϕ− F (t, ϕ) ∈ H1(Ω)∗. (4.1)
16



Definition 4.1. We define the operator −∆ + I : H1(Ω)→ H1(Ω)∗ by

〈(−∆ + I)v, w〉H1(Ω) :=

∫
Ω

(∇v · ∇w + v w)dx, v, w ∈ H1(Ω).

The operator −∆ + I considered with different domains and ranges will be denoted by
the same symbol for the sake of simplicity.

We employ a classical boot-strapping argument to verify the improved regularity. For
this purpose consider the equation

(−∆ + I)v =
1

α
f in H1(Ω)∗. (4.2)

By construction of f and Theorem 3.20, ϕ is the unique solution of this equation.
Then, taking advantage of the fact that the linear form f possesses higher regularity
than H1(Ω)∗, we show by means of [13, Theorem 3] that ϕ ∈ W 1,q(Ω) with some
q > 2.

Lemma 4.2. Under Assumption 3.16 it holds f ∈W 1,%′(Ω)∗, where

1

%
:= max

{2

p
− 1

N
,

1

2
− 1

N

}
<

1

N
. (4.3)

Proof. By means of Sobolev embeddings we have W 1,%′(Ω) ↪→ L
N%′
N−%′ (Ω). In view of

(4.1), (3.17), and (3.23), one obtains

|〈f, ψ〉| ≤
(
‖β(d− ϕ) + αϕ‖2 + ‖g′(ϕ)Cε(U(t, ϕ)) : ε(U(t, ϕ))‖ p

2

)
‖ψ‖ N%′

N−%′

≤ C‖ψ‖W1,%′ ∀ψ ∈W 1,%′(Ω),

which implies f ∈ W 1,%′(Ω)∗, provided that Hölder’s inequality is applicable. The
latter is ensured, if

2

p
+
N − %′

N%′
≤ 1⇐⇒ 2

p
− 1

N
≤ 1

%
and

1

2
+
N − %′

N%′
≤ 1⇐⇒ 1

2
− 1

N
≤ 1

%
,

which is guaranteed by (4.3). From Assumption 3.16.1 and N < 4 we finally deduce
% > N .

Theorem 4.3 (Improved regularity of Φ(t, d)). Suppose that Assumption 3.16 holds
true. Then, there exists a q > 2 such that Φ(t, d) ∈ W 1,q(Ω) for every (t, d) ∈
[0, T ]× L2(Ω).

Proof. Since ϕ solves (4.2), the assertion is a direct consequence of [13, Theorem 3]
(in combination with [14, Theorem 5.2, 5.4]) and Lemma 4.2.

4.2. Improved Lipschitz Continuity. As a consequence of the higher spatial
regularity of the solution of (3.18) one expects that Φ satisfies a corresponding Lips-
chitz condition. For this reason, we now focus in the following on proving W 1,q(Ω)-
Lipschitz continuity for the solution map of (3.18). For the rest of this section, we
suppose that Assumption 3.16 holds and we let (ti, di) ∈ [0, T ]× L2(Ω) be arbitrary,
but fixed and ϕi := Φ(ti, di) ∈ W 1,q(Ω), where i = 1, 2. Similarly to (4.1), we
introduce the following abbreviation

ι :=
1

α

(
β(d1 − d2)− (β − α)(ϕ1 − ϕ2)− (F (t1, ϕ1)− F (t2, ϕ2))

)
. (4.4)
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Note that ι ∈ W 1,%′(Ω)∗ on account of Lemma 4.2. By construction, the difference
ϕ1 − ϕ2 solves

(−∆ + I)(ϕ1 − ϕ2) = ι in H1(Ω)∗

and analogously to the preceding section, it follows

‖ϕ1 − ϕ2‖W 1,ω(Ω) ≤ ‖(−∆ + I)−1‖L(W 1,ω′ (Ω)∗,W 1,ω(Ω))‖ι‖W 1,ω′ (Ω)∗

∀ 2 ≤ ω ≤ q = min{qΩ̄, %},
(4.5)

where qΩ̄ is the number given by [13, Theorem 3], see the proof of Theorem 4.3, and
% is given by (4.3).
However, the desired Lipschitz continuity condition cannot be directly proven by set-
ting ω = q in (4.5), as one cannot directly derive an estimate of the form ‖ι‖W 1,q′ (Ω)∗ ≤
C(‖d1−d2‖2 + |t1−t2|). Instead we will apply a finite number of boot-strapping steps
to prove the result. Let us shortly outline the rather technical proof. The main idea
in each of these steps is as follows: Given the Lipschitz continuity of Φ in W 1,µ(Ω)
with some µ ∈ [2, q], we search for ν as large as possible such that

‖ι‖W 1,ν′ (Ω)∗ ≤ L(‖ϕ1 − ϕ2‖W 1,µ(Ω) + ‖d1 − d2‖2 + |t1 − t2|),

where ν > µ. Then we employ (4.5) with ω = ν and use the Lipschitz continuity in
W 1,µ(Ω) to verify the result for ν. This procedure is repeated until q is reached. The
precise relation between ν and µ is characterized by the following
Lemma 4.4. Let µ ∈ [2, %] be given, where % is defined as in (4.3). Then there exists
a constant C > 0 such that

‖ι‖W 1,ν′ (Ω)∗ ≤ C(‖ϕ1−ϕ2‖W 1,µ(Ω)+‖d1−d2‖2+|t1−t2|) ∀ϕ1, ϕ2 ∈W 1,µ(Ω), (4.6)

where ν > 0 satisfies

1

ν
=

{
max

{
1
µ

+ 2
p
− 2

N
, 1

2
− 1

N

}
, if µ < N,

1
%
, if µ > N,

(4.7)

and
ν > N, if µ = N. (4.8)

Proof. We first apply Lemma 3.17 in combination with Sobolev embeddings, which
yields

W 1,µ(Ω) ↪→ Lr(Ω) with r =


Nµ
N−µ , if µ < N,

<∞, if µ = N,

∞, if µ > N.

(4.9)

Due to µ ≥ 2, there holds r ≥ 2p/(p−2), see (3.27), so that Lemma 3.17 is applicable.
For this purpose define ν via

1

ν
:= max

{1

r
+

2

p
− 1

N
,

1

2
− 1

N

}
. (4.10)

Since r ≥ 2p/(p− 2) and N < p, there holds 1
r + 2

p −
1
N < 1

2 such that ν > 2, giving
in turn that the corresponding conjugate exponent satisfies ν′ < 2 ≤ N , which will
be important in the sequel. From (4.10) it follows

1

r
+

2

p
+
N − ν′

Nν′
≤ 1 and

1

2
+
N − ν′

Nν′
≤ 1, (4.11)

18



and consequently, Lemma 3.17 is applicable with s = (Nν′)/(N − ν′) > 0. Together
with Hölder’s inequality with 1/s+ 1/s′ = 1 for the first two addends in ι, this gives

|〈ι, ψ〉| ≤ C
(
‖d1 − d2‖s′ + ‖ϕ1 − ϕ2‖s′ + |t1 − t2|+ ‖ϕ1 − ϕ2‖r

)
‖ψ‖s.

By virtue of (4.11), it follows that s ≥ 2 and thus s′ ≤ 2 ≤ r. Hence, we arrive at

|〈ι, ψ〉| ≤ C
(
‖d1 − d2‖2 + |t1 − t2|+ ‖ϕ1 − ϕ2‖r

)
‖ψ‖ Nν′

N−ν′
. (4.12)

Since ν′ < N as seen above, Sobolev embeddings give W 1,ν′(Ω) ↪→ L
Nν′
N−ν′ (Ω) and

thus, (4.12) and (4.9) imply

‖ι‖W1,ν′ (Ω)∗ ≤ C(‖ϕ1 − ϕ2‖W1,µ(Ω) + ‖d1 − d2‖2 + |t1 − t2|), (4.13)

which is already (4.6). It remains to verify (4.7) and (4.8). If µ < N , then (4.9) and
(4.10) yield

1

ν
= max

{ 1

µ
+

2

p
− 2

N
,

1

2
− 1

N

}
, (4.14)

which gives the first case in (4.7). On the other hand, if µ > N , then (4.9) implies

1

ν
= max

{2

p
− 1

N
,

1

2
− 1

N

}
=

1

%
, (4.15)

i.e., the second equation in (4.7). In case of µ = N , the situation is more delicate. If
1
r + 2

p −
1
N ≤

1
2 −

1
N , then 1

ν = 1
2 −

1
N and, since N = 2, 3, this gives ν > N as claimed.

In the second case, we have
1

ν
=

1

r
+

2

p
− 1

N
, (4.16)

where r > 0 can be chosen arbitrarily large, cf. (4.9). If we choose r = Np/(p−N) > 0,
then (4.16) results in 1

ν = 1
p , which implies ν = p > N . This concludes the proof.

Lemma 4.5. The explicit representation of the recursively defined sequence

ν0 = 2, νn =
1

1
νn−1

+ 2
p −

2
N

, n ≥ 1, (4.17)

is given by
νn =

2N p

4(N − p)n+N p
, n ∈ N0. (4.18)

Proof. For n = 0 the assertion is obviously true. For n ≥ 1 the claim follows by
induction and straightforward computation. Note that the assertion is also correct
for νn =∞, which might happen, since p > N .

Theorem 4.6 (Improved Lipschitz continuity of Φ). Under Assumption 3.16 there
exists L > 0 such that for all (ti, di)i=1,2 ∈ [0, T ]×L2(Ω) the following estimate holds

‖Φ(t1, d1)− Φ(t2, d2)‖W 1,q(Ω) ≤ L(‖d1 − d2‖2 + |t1 − t2|)

with q > 2 given by Theorem 4.3.

Proof. As before we abbreviate ϕi = Φ(ti, di), i = 1, 2. We apply an iterated boot-
strapping procedure as indicated above. As already seen in (3.35), the assertion is
correct with q = 2. Let us set ν0 = 2. We distinguish between the cases N = 2 and
N = 3.
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(i) N = 2
Setting µ := ν0 = 2 = N in Lemma 4.4 yields an estimate of the form (4.6) with
ν = ν1 > N because of (4.8). If ν1 ≥ q, then just apply (4.5) with ω = q, which gives
the assertion. Otherwise we employ (4.5) with ω = ν1 to obtain

‖ϕ1 − ϕ2‖W1,ν1 (Ω) ≤ C ‖ι‖W1,ν′1 (Ω)∗

≤ C(‖ϕ1 − ϕ2‖H1(Ω) + ‖d1 − d2‖2 + |t1 − t2|) by (4.6)

≤ C(‖d1 − d2‖2 + |t1 − t2|) by (3.35).

Now, we repeat this procedure. Since ν1 > N , a second application of Lemma 4.4,
this time with µ = ν1, gives (4.6) with ν = ν2 := % ≥ q. Then we again apply (4.5)
with ω = q, giving the claim for N = 2.

(ii) N = 3
In the three-dimensional case the situation is slighty more involved. In the first boot-
strapping step, we have µ = ν0 = 2 so that the first case in (4.7) applies. If the
maximum is attained by 1

2 −
1
N , then (4.6) holds with ν1 = 2N

N−2 = 6 > 3 = N . Now
we can argue in exactly the same way as in the second step of the two-dimensional
case to show the assertion.

If the maximum in (4.7) is attained by the first argument, then (4.6) is valid with
ν = ν1 := 1

1
ν0

+ 2
p−

2
N

. Now, if ν1 ≥ N , then we argue as in case of N = 2 to verify the

claim. If not, then, in the second boot-strapping iteration with µ = ν1, again the first
case in (4.7) applies. If the maximum is attained by 1

2 −
1
N , we argue as before to

prove the assertion. If this is not the case, we obtain (4.6) with ν = ν2 := 1
1
ν1

+ 2
p−

2
N

.

In this way, we either obtain an index n ∈ N, where νn ≥ N or the maximum in (4.7)
is attained by the second argument, so that we can terminate the boot-strapping
iteration with the previous arguments, or we create sequence of the form (4.17). For
such a sequence however, Lemma 4.5 gives the explicit representation in (4.18). Since
N < p, the denominator in this representation is decreasing for growing n. Therefore,
for some finite n ∈ N, νn will either satisfy νn ≥ N or even be negative, which means
that the maximum in (4.7) will be attained by the second argument. In both cases,
the previous arguments apply, which finally gives the assertion.

5. Differentiability of the Elliptic System. This section is dedicated to the
derivatives of the solution operators U and Φ, as introduced in Definitions 3.6 and
3.21. These results will also be essential for the limit analysis for β → ∞ in the
companion paper [21].

Differentiability of U . In the light of (3.19), the time dependence of U and Φ is
only due to the time dependence of `. Therefore, to show that the displacement and
nonlocal damage are continuously differentiable, we require the following additional

Assumption 5.1. From now on we assume that the applied volume and boundary
load satisfies ` ∈ C1([0, T ];W−1,p

D (Ω)).

Lemma 5.2 (Partial differentiability of U w.r.t. time). Under Assumption 5.1, the
operator U is partially differentiable w.r.t. time. Its partial derivative ∂tU belongs to
C([0, T ]×H1(Ω), V ) and satisfies the elliptic equation

Aϕ
(
∂tU(t, ϕ)

)
= ˙̀(t) for all (t, ϕ) ∈ [0, T ]×H1(Ω). (5.1)
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Proof. Let ϕ ∈ H1(Ω) be arbitrary, but fixed. From Lemma 3.3 we know that
A−1
ϕ ∈ L(W−1,p

D (Ω),W 1,p
D (Ω)) and therefore continuously Fréchet-differentiable. By

employing Definition 3.6, Assumption 5.1, and the chain rule, we thus obtain that
U(·, ϕ) is differentiable and the derivative fulfills (5.1). Completely analougously to
the proof of Lemma 3.9 one deduces in view of Assumption 5.1 that

∂tU(tn, ϕn)→ ∂tU(t, ϕ) in V

as (tn, ϕn)→ (t, ϕ) in R×H1(Ω).

Note that as a consequence of (3.4) and (5.1), one obtains on account of Assumption
5.1 the following estimate

‖∂tU(t, ϕ)‖W 1,p
D (Ω) ≤ c ∀ (t, ϕ) ∈ [0, T ]×H1(Ω), (5.2)

where c > 0 is independent of t and ϕ.

Lemma 5.3 (Partial differentiability of U w.r.t. ϕ). Let Assumption 3.16.1 be fulfilled.
Then there exists an index ν ∈ (2, p) such that, for every t ∈ [0, T ], the map U(t, ·) :
H1(Ω) → W 1,ν

D (Ω) is Fréchet differentiable and, for all ϕ, δϕ ∈ H1(Ω), the partial
derivative fulfills

Aϕ
(
∂ϕU(t, ϕ)(δϕ)

)
= div

(
g′(ϕ)(δϕ)Cε(U(t, ϕ)

)
in W−1,ν

D (Ω), (5.3)

where div again denotes the distributional vector valued divergence, cf. (3.20).

Proof. Let t ∈ [0, T ] and ϕ, δϕ ∈ H1(Ω) be arbitrary, but fixed, and set r := 2p/(p−2).
As shown at the beginning of the proof of Lemma 3.18, Assumption 3.16.1 guarantees
the existence of an index % such that r ∈ (2, %) and H1(Ω) ↪→ L%(Ω). For % > r, there
is another index κ with r < κ < %, say κ = (r + %)/2. Then we define ν through

1

ν′
= 1− 1

κ
− 1

p
. (5.4)

Since κ > r, this implies ν′ < 2, whence ν > 2. Moreover, (5.4) yields 1/ν′ < 1−1/p =
1/p′ so that ν′ > p′ and thus

ν ∈ (2, p). (5.5)

For the right-hand side in (5.3), Hölder’s inequality with 1/ν′ + 1/κ + 1/p = 1 and
Corollary 3.7 imply

‖ div
(
g′(ϕ)(δϕ)Cε(U(t, ϕ)

)
‖W−1,ν

D (Ω) ≤ ‖g
′(ϕ)‖∞‖δϕ‖κ‖Cε(U(t, ϕ))‖p

≤ C‖δϕ‖κ.
(5.6)

Due to (5.5), Lemma 3.3 is applicable with the exponent ν such that (5.6) implies
that the linear operator, defined by

W(δϕ) := A−1
ϕ div

(
g′(ϕ)(δϕ)Cε(U(t, ϕ),

is bounded and hence, continuous from Lκ(Ω) to W 1,ν
D (Ω) so that, by virtue of

H1(Ω) ↪→ Lκ(Ω),

W ∈ L(H1(Ω),W 1,ν
D (Ω)) (5.7)
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follows. As this operator is the candidate for the derivative, consider now the remain-
der term

Rϕ(δϕ) := U(t, ϕ+ δϕ)− U(t, ϕ)−W(δϕ). (5.8)

By employing Definitions 3.2 and 3.6, the above definition of W, a straightforward
computation yields

Aϕ(Rϕ(δϕ)) = div
(
g′(ϕ)(δϕ)Cε

(
U(t, ϕ+ δϕ)− U(t, ϕ)

))
+ div

((
g(ϕ+ δϕ)− g(ϕ)− g′(ϕ)(δϕ)︸ ︷︷ ︸

=: rϕ(δϕ)

)
Cε(U(t, ϕ+ δϕ))

)
. (5.9)

Next define s via 1/s = 1− 1/%− 1/ν′. Since ν′ < 2 as seen above, we obtain s > 2.
Moreover, because of κ < %, (5.4) yields

1

s
= 1− 1

%
− 1

ν′
> 1− 1

κ
− 1

ν′
=

1

p
=⇒ 2 < s < p.

Applying Hölder’s inequality with these exponents in combination with Corollary 3.7
and H1(Ω) ↪→ L%(Ω) then gives

‖Aϕ(Rϕ(δϕ))‖W−1,ν
D (Ω) ≤ C‖rϕ(δϕ)‖κ‖U(t, ϕ+ δϕ)‖W 1,p

D (Ω)

+ C‖g′(ϕ)‖∞‖δϕ‖%‖U(t, ϕ+ δϕ)− U(t, ϕ)‖W 1,s
D (Ω)

≤ C
(
‖rϕ(δϕ)‖κ + ‖δϕ‖H1(Ω)‖U(t, ϕ+ δϕ)− U(t, ϕ)‖W 1,s

D (Ω)

)
,

which together with (3.4) implies

‖Rϕ(δϕ)‖W 1,ν
D (Ω) ≤ C

(
‖rϕ(δϕ)‖κ+‖δϕ‖H1(Ω)‖U(t, ϕ+δϕ)−U(t, ϕ)‖W 1,s

D (Ω)

)
. (5.10)

We recall that H1(Ω) ↪→ L%(Ω) with % > κ, which allows us to deduce from Lemma
A.1 that g : H1(Ω)→ Lκ(Ω) is Fréchet differentiable. Together with Lemma 3.9 and
(5.10), this leads to

‖Rϕ(δϕ)‖W 1,ν
D (Ω)

‖δϕ‖H1(Ω)
→ 0, as ‖δϕ‖H1(Ω) → 0,

i.e., the Fréchet differentiability of U(t, ·) : H1(Ω)→W 1,ν
D (Ω). The derivative is given

by the operator W, whence equation (5.3).

Clearly, Lemma 5.3 implies that U(t, ·) is also Fréchet-differentiable from H1(Ω) to
V = W 1,2

D (Ω), and the corresponding derivative satisfies (5.3) as an equation in V ∗.
Furthermore, analogously to (5.6), Hölder’s inequality with 1/2+1/p+1/r = 1, where
again r = 2p/(p− 2), leads to

‖div
(
g′(ϕ)(δϕ)Cε(U(t, ϕ)

)
‖V ∗ ≤ C‖δϕ‖r.

Therefore, we deduce from (5.3) and (3.4) the following estimate, which turns out to
be useful in the next section, see the proof of Lemma 5.11 below:

Lemma 5.4. Let Assumption 3.16.1 hold. Then, for all ϕ, δϕ ∈ H1(Ω), there holds

‖∂ϕU(t, ϕ)(δϕ)‖V ≤ C ‖δϕ‖r
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with r = 2p/(p− 2).

Lemma 5.5 (Continuity of ∂ϕU). Under Assumption 3.16.1 the operator ∂ϕU : [0, T ]×
H1(Ω)→ L(H1(Ω), V ) is continuous.

Proof. Let (ti, ϕi)i=1,2 ∈ [0, T ]×H1(Ω) and δϕ ∈ H1(Ω) be arbitrary, but fixed with
δϕ 6= 0. Further, let us abbreviate u′i := ∂ϕU(ti, ϕi)δϕ and ui := U(ti, ϕi) for i = 1, 2.
Moreover, define f1 := Aϕ2

u′2 − Aϕ1
u′2 ∈ V ∗ and f2 := Aϕ1

u′1 − Aϕ2
u′2 ∈ V ∗ such

that

Aϕ1
(u′1 − u′2) = f1 + f2. (5.11)

Thanks to Lemma 5.3 there is an index ν ∈ (2, p) such that U(t2, ·) : H1(Ω) →
W 1,ν

D (Ω) is Fréchet differentiable. We set κ = 2ν/(ν − 2) ∈ (2p/(p− 2),∞) such that
1/κ+1/ν+1/2 = 1. Note that, in view of Assumption 3.16.1, we have the embedding
H1(Ω) ↪→ Lκ(Ω). Then, Hölder’s inequality yields

‖f1‖V ∗ ≤ C1‖g(ϕ2)− g(ϕ1)‖κ‖u′2‖W 1,ν
D (Ω) ≤ C1‖g(ϕ2)− g(ϕ1)‖κ ‖δϕ‖H1(Ω),

where we used (5.6) in combination with H1(Ω) ↪→ Lκ(Ω), (5.3), and Lemma 3.3 with
p̄ := ν for the last inequality. Thanks to Lemma A.1, this gives

sup
δϕ∈H1(Ω)
δϕ 6=0

‖f1‖V ∗
‖δϕ‖H1(Ω)

→ 0, as ϕ1 → ϕ2 in H1(Ω). (5.12)

From the definition of ui and u′i and equation (5.3) if follows that

Aϕiu
′
i = div

(
g′(ϕi)(δϕ)Cε(ui)

)
for i = 1, 2.

This allows us to rewrite f2 as

f2 = div
(
g′(ϕ1)(δϕ)Cε(u1)

)
− div

(
g′(ϕ1)(δϕ)Cε(u2)

)
+ div

(
g′(ϕ1)(δϕ)Cε(u2)

)
− div

(
g′(ϕ2)(δϕ)Cε(u2)

)
We again abbreviate r := 2p/(p − 2), which implies in view of Assumption 3.16.1
that there is an index % such that r ∈ (2, %) and H1(Ω) ↪→ L%(Ω), as shown at the
beginning of the proof of Lemma 3.18. By construction we have 1/r + 1/p+ 1/2 = 1
and, in view of r ∈ (2, %), there exists s ∈ (2, p) such that 1/% + 1/s + 1/2 = 1. By
applying Hölder’s inequality with these exponents and Corollary 3.7 we arrive at

‖f2‖V ∗ ≤ C2‖g′(ϕ1)(δϕ)‖%‖u1 − u2‖W 1,s
D (Ω)

+ ‖(g′(ϕ2)− g′(ϕ1))(δϕ)‖r‖u2‖W 1,p
D (Ω)

≤ C2‖δϕ‖H1(Ω)

(
‖u1 − u2‖W 1,s

D (Ω) + ‖g′(ϕ2)− g′(ϕ1)‖L(H1(Ω),Lr(Ω))

)
.

Note that for the second inequality we used again that g : H1(Ω)→ Lr(Ω) is Fréchet
differentiable due to Lemma A.1 and H1(Ω) ↪→ L%(Ω) with % > r. Lemmas 3.9 and
A.1 now ensure that

sup
δϕ∈H1(Ω)
δϕ 6=0

‖f2‖V ∗
‖δϕ‖H1(Ω)

→ 0, as (t1, ϕ1)→ (t2, ϕ2) in R×H1(Ω). (5.13)
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Altogether, it follows from (5.11), (5.12), (5.13) and (3.4) that

sup
δϕ∈H1(Ω)
δϕ 6=0

‖u′1 − u′2‖V
‖δϕ‖H1(Ω)

≤ C sup
δϕ∈H1(Ω)
δϕ 6=0

‖f1 + f2‖V ∗
‖δϕ‖H1(Ω)

→ 0

for (t1, ϕ1)→ (t2, ϕ2) in R×H1(Ω). This completes the proof.

We are now in the position to state the main result of this section.

Proposition 5.6 (Fréchet differentiability of the operator U). Under Assumptions
3.16.1 and 5.1 it holds U ∈ C1([0, T ]×H1(Ω);V ).

Proof. From Lemma 3.9 we know that U ∈ C([0, T ]×H1(Ω);V ), while Lemmas 5.2, 5.3
and 5.5 state that U possesses partial derivatives with ∂tU ∈ C([0, T ]×H1(Ω);V ) and
∂ϕU ∈ C([0, T ]×H1(Ω);L(H1(Ω), V )), respectively. Hence, we can apply [4, Theorem
3.7.1.], which gives the assertion.

Differentiability of Φ. To differentiate the operator Φ from Definition 3.21, we
employ the implicit function theorem. For this purpose, let us define the following:

Definition 5.7. Let Assumption 3.10 be fulfilled. We define the mapping Ψ : [0, T ]×
L2(Ω)×H1(Ω)→ H1(Ω)∗ by Ψ(t, d, ϕ) := Bϕ+ F (t, ϕ)− βd.
Note that ϕ = Φ(t, d) implies Ψ(t, d, ϕ) = 0. First we show that Ψ is continuously
Fréchet differentiable. To this end we need the following

Assumption 5.8. From now on we assume that g ∈ C2(R) and g′′ ∈ L∞(R).

Lemma 5.9. Let Assumptions 3.16.1, 5.1 and 5.8 hold. Then the function F :
[0, T ]×H1(Ω)→ H1(Ω)∗ from Definition 3.13 is continuously Fréchet differentiable.
Its derivative at (t, ϕ) ∈ [0, T ]×H1(Ω) in direction (δt, δϕ) ∈ R×H1(Ω) is given by

〈F ′(t, ϕ)(δt, δϕ), z〉H1(Ω) =
1

2

∫
Ω

g′′(ϕ)(δϕ)Cε(U(t, ϕ)) : ε(U(t, ϕ))z dx

+

∫
Ω

g′(ϕ)Cε(U(t, ϕ)) : ε
(
U ′(t, ϕ)(δt, δϕ)

)
z dx, z ∈ H1(Ω),

(5.14)

where U ′ is the Fréchet-derivative of U according to Proposition 5.6.

Proof. We prove the result in two steps, by splitting F into two products and applying
Lemma B.1 for these. To do so, let us introduce the following mappings:

H : (0, T )×H1(Ω)→ Lp/2(Ω), H(t, ϕ) := Cε(U(t, ϕ)) : ε(U(t, ϕ)) (5.15)

and

P1 : L∞(Ω)× Lp/2(Ω)→ H1(Ω)∗,

〈P1(y1, y2), z〉H1(Ω) :=
1

2

∫
Ω

y1 · y2 · z dx, z ∈ H1(Ω)
(5.16)

such that

F : (t, ϕ) 7→ P1

(
g′(ϕ),H(t, ϕ)

)
. (5.17)

Notice that these mappings are indeed well defined because of H1(Ω) ↪→ L2p/(p−2)(Ω)
by Assumption 3.16.1 and due to the mapping properties of U . We now prove the
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assertion by applying the product rule from Lemma B.1 to H and F in the form
(5.17). To this end, let s ∈ (N, p) be arbitrary, but fixed. Note that such an index
exists thanks to Assumption 3.16.1. Moreover, define ω and r through

1

ω
=

1

p
+

1

s
and

1

r
=

1

2
+

1

s
. (5.18)

Due to p > s > 2, there holds r < ω < p/2 so that H is well defined, if considered
with Lω(Ω) and Lr(Ω), respectively, as range.
(i) We first show that H is continuous as an operator with range in Lω(Ω) and
continuously Fréchet differentiable, if considered as an operator with range in Lr(Ω).
Concerning the continuity, we estimate similarly to (3.25) by using (5.18):

‖H(t1, ϕ1)−H(t2, ϕ2)‖ω ≤ C ‖U(t1, ϕ1)+U(t2, ϕ2)‖W 1,p
D (Ω)‖U(t1, ϕ1)−U(t2, ϕ2)‖W 1,s

D (Ω)

for all (ti, ϕi)i=1,2 ∈ [0, T ] × H1(Ω). The continuity of U in W 1,s
D (Ω), s < p, by

Lemma 3.9 in combination with Corollary 3.7 then gives the desired continuity of H.
To prove the differentiability, consider the mapping

P2 : W 1,s
D (Ω)× V 3 (u,v) 7→ Cε(u) : ε(v) ∈ Lr(Ω) (5.19)

such that

H(t, ϕ) = P2

(
U(t, ϕ),U(t, ϕ)

)
. (5.20)

In view of (5.18), P2 is bilinear and continuous. To apply Lemma B.1, we set

U := (0, T )×H1(Ω), X := R×H1(Ω), W := Lr(Ω),

P = P2, fi := U , Yi := W 1,s
D (Ω), Zi := V, i = 1, 2.

From Lemma 3.9 and Proposition 5.6 we know that U : (0, T ) ×H1(Ω) → W 1,s
D (Ω)

is continuous and U : (0, T ) × H1(Ω) → V is continuously Fréchet differentiable,
respectively. Hence, we can apply Lemma B.1 to (5.20), giving in turn that H :
(0, T )×H1(Ω)→ Lr(Ω) is continuously Fréchet differentiable with

H′(t, ϕ)(δt, δϕ) := 2Cε(U(t, ϕ)) : ε
(
U ′(t, ϕ)(δt, δϕ)

)
(5.21)

for all (t, ϕ) ∈ (0, T )×H1(Ω) and all (δt, δϕ) ∈ R×H1(Ω).
(ii) The result from the previous step allows us now to prove the continuously Fréchet
differentiability of F . We again apply the product rule from Lemma B.1, this time to
(5.17). To fix the setting, let κ > 0 satisfy

1

κ
< 1− 1

r
=

1

2
− 1

s
and

1

κ
<

1

2
− 1

2ω
=

1

2
− 1

2p
− 1

2s
. (5.22)

Since s > N and p > N , the right-hand sides in the above inequalities are strictly
larger than (N − 2)/(2N) and consequently, κ can be chosen such that

H1(Ω) ↪→ Lκ(Ω), (5.23)

which is assumed in the following. Given κ we define τ and ρ via

1

τ
+

1

ω
+

1

κ
= 1 and

1

ρ
+

1

r
+

1

κ
= 1. (5.24)
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Because of (5.22), these indices satisfy

0 < ρ <∞ and 0 < τ < κ. (5.25)

To apply Lemma B.1, we then choose

U := (0, T )×H1(Ω), X := R×H1(Ω), W := H1(Ω)∗,

P = P1, f1 := g′, Y1 := Lρ(Ω), Z1 := Lτ (Ω),

f2 := H, Y2 := Lω(Ω), Z2 := Lr(Ω),

where we considered g′ as a mapping on U with a little abuse of notation. From
the previous step, we already know that f2 = H fulfills the required continuity and
differentiability conditions. Moreover, due to (5.25) and (5.23), Assumption 5.8 to-
gether with Lemma A.1 yields that f1 = g′ is continuous from H1(Ω) to Lρ(Ω) and
continuously Fréchet-differentiable from H1(Ω) to Lτ (Ω). Finally, thanks to (5.24)
and (5.23), the bilinear form P1 from (B.3) satisfies

‖P (y1, y2)‖H1(Ω)∗ ≤ C‖y1‖τ‖y2‖ω ∀ (y1, y2) ∈ Lτ (Ω)× Lω(Ω),

‖P (y1, y2)‖H1(Ω)∗ ≤ C‖y1‖ρ‖y2‖r ∀ (y1, y2) ∈ Lρ(Ω)× Lr(Ω),

and is therefore continuous in the required spaces. Hence Lemma B.1 yields the
continuous Fréchet differentiability of F : (0, T )×H1(Ω)→ H1(Ω)∗ and (5.14), as a
result of (5.16), (5.15) and (5.21). Note that the derivative of F can be continued at
(0, ϕ) and (T, ϕ) for every ϕ ∈ H1(Ω) due to Lemma 3.9 and Proposition 5.6.

As an immediate consequence of Lemma 5.9 we obtain

Corollary 5.10 (Fréchet differentiability of Ψ). Under Assumptions 3.16.1, 5.1
and 5.8 it holds Ψ ∈ C1([0, T ]× L2(Ω)×H1(Ω), H1(Ω)∗).

Proof. The result directly follows from Definition 5.7 combined with Lemma 5.9 and
the fact that B ∈ L(H1(Ω), H1(Ω)∗).

The last result required for the application of the implicit function theorem is the
following

Lemma 5.11. Under Assumptions 3.16 and 5.8 the operator ∂ϕΨ(t, d, ϕ) : H1(Ω)→
H1(Ω)∗ is bijective for all (t, d, ϕ) ∈ [0, T ]× L2(Ω)×H1(Ω).

Proof. Throughout this proof let (t, d, ϕ) ∈ [0, T ]× L2(Ω)×H1(Ω) be arbitrary, but
fixed. On account of Definition 5.7, we have to show that, for every h ∈ H1(Ω)∗, the
equation

Bδϕ+ ∂ϕF (t, ϕ)δϕ = h (5.26)

admits a unique solution δϕ ∈ H1(Ω). We prove the result by means of the Lax-
Milgram lemma. Thanks to B, ∂ϕF (t, ϕ) ∈ L(H1(Ω), H1(Ω)∗) one obtains

|〈Bδϕ+ ∂ϕF (t, ϕ)(δϕ), z〉H1(Ω)| ≤ C‖δϕ‖H1(Ω)‖z‖H1(Ω) ∀ δϕ, z ∈ H1(Ω),

whence the boundedness of B+∂ϕF (t, ϕ). We now address the coercivity thereof. To
this end, let z ∈ H1(Ω) be arbitrary, but fixed. By the definition of the (directional)
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derivative combined with the linearity of B, we have

〈Bz + ∂ϕF (t, ϕ)z, z〉H1(Ω) = 〈Bz, z〉H1(Ω) + lim
τ↘0

〈F (t, ϕ+ τz)− F (t, ϕ), z〉H1(Ω)

τ

= lim
τ↘0

〈B(ϕ+ τz − ϕ) + F (t, ϕ+ τz)− F (t, ϕ), τz〉H1(Ω)

τ2

≥ c lim
τ↘0

‖ϕ+ τz − ϕ‖2H1(Ω)

τ2
= c‖z‖2H1(Ω),

where the last inequality follows from the strong monotonicity of B+F (t, ·), cf. Lemma
3.19. Lax-Milgram’s Lemma thus gives the unique solvability of (5.26) as claimed.
Proposition 5.12 (Fréchet differentiability of the operator Φ). Let Assumptions
3.16, 5.1 and 5.8 hold. Then Φ ∈ C1([0, T ] × L2(Ω), H1(Ω)), and its derivative at
(t, d) ∈ [0, T ]× L2(Ω) in direction (δt, δd) ∈ R× L2(Ω) is given by

BΦ′(t, d)(δt, δd) + F ′(t, ϕ)
(
δt,Φ′(t, d)(δt, δd)

)
= βδd, (5.27)

with the abbreviation ϕ := Φ(t, d).

Proof. Let (t, d) ∈ (0, T ) × L2(Ω) be arbitrary, but fixed. We apply the implicit
function theorem to Ψ as given in Definition 5.7, cf. e.g. [32, Theorem 4.B(d)]. Due to
Corollary 5.10 and Lemma 5.11, Ψ is continuously Fréchet-differentiable and ∂ϕΨ(t, d)
is continuously invertible by Banach’s inverse theorem. Thus the implicit function
theorem is applicable and implies that Φ is as smooth as Ψ, i.e. continuously Fréchet-
differentiable from (0, T )× L2(Ω) to H1(Ω), and its derivative is given by

Φ′(t, d)(δt, δd) = −[∂ϕΨ(t, d, ϕ)]−1∂(t,d)Ψ(t, d, ϕ)(δt, δd),

which is equivalent to (5.27) in view of Definition 5.7.
It remains to prove that the derivative can be continuously extended to t = 0 and
t = T . From Corollary 5.10 we know that ∂(t,d)Ψ and ∂ϕΨ can be continuously
extended to (0, d, ϕ) with ϕ = Φ(0, d). Furthermore, in the light of Lemma 5.11, we
are allowed to define

Φ′(0, d)(δt, δd) := −[∂ϕΨ(0, d, ϕ)]−1∂(t,d)Ψ(0, d, ϕ)(δt, δd).

The continuity of the inversion L(H1(Ω), H1(Ω)∗) 3 A 7→ A−1 ∈ L(H1(Ω)∗, H1(Ω))
on the set of linear isomorphisms, see e.g. [29, Ch. III.8], then yields the continuity of
Φ′ at (0, d). In the exactly same way one shows the continuity Φ′ at (T, d).
We collect the above findings in our final theorem on the regularity of the solution to
our viscous two-field gradient damage model:
Theorem 5.13. Let Assumptions 3.16, 5.1 and 5.8 be fulfilled. Then there exists
a unique solution (u, ϕ, d) of the problem (P), satisfying d ∈ C1([0, T ];L2(Ω)), ϕ ∈
C0,1([0, T ];W 1,q(Ω)) ∩ C1([0, T ];H1(Ω)), u ∈ C([0, T ];W 1,s

D (Ω)) ∩ C1([0, T ];V ) with
q > 2 and s ∈ (2, p), and the system of differential equations in (3.41).
Proof. In Theorem 3.24 we already established that the unique solution of (P) satisfies
(3.41), as well as the regularity of the local damage. Since u(t) = U(t, ϕ(t)) and ϕ(t) =
Φ(t, d(t)), the additional regularity results follow from Theorem 4.6, Proposition 5.12,
Lemma 3.9, and Proposition 5.6 in combination with the chain rule.
Remark 5.14. We point out that in the two-dimensional case one can show, by pro-
ceeding as above and by assuming g′′ ∈ C0,1(R), that U ∈ C1([0, T ]×W 1,q(Ω);W 1,p

D (Ω))
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and Φ ∈ C1([0, T ] × L2(Ω);W 1,q(Ω)), with q > 2 given by Theorem 4.3. This is
mainly due to the Sobolev embedding W 1,q(Ω) ↪→ L∞(Ω), combined with the fact
that g, g′ : W 1,q(Ω) → L∞(Ω) are continuously Fréchet differentiable. Therefore, in
the two-dimensional case, the unique solution (u, ϕ, d) of the problem (P), satisfies
d ∈ C1([0, T ];L2(Ω)), ϕ ∈ C1([0, T ];W 1,q(Ω)) and u ∈ C1([0, T ];W 1,p

D (Ω)).

Appendix A. Nemytskii Operators. In this section, we enumerate some useful
properties of the Nemytskii-operators associated with g and its derivative g′. Recall
that the mapping g : R → [ε, 1], with ε > 0, is supposed to satisfy Assumption 2.9,
i.e., g ∈ C1,1(R).

Lemma A.1. The mappings g and g′ possess the following properties:

1. For all ρ ∈ [1,∞], the Nemytskii-operators g : Lρ(Ω) → L∞(Ω) and g′ :
Lρ(Ω) → L∞(Ω) are well defined and Lipschitz continuous from Lρ(Ω) to
Lρ(Ω).

2. The operators g, g′ : L1(Ω)→ L%(Ω) are continuous for all % ∈ [1,∞).
3. The operator g : Lρ(Ω) → Lτ (Ω) is continuously Fréchet differentiable for

1 ≤ τ < ρ < ∞. If we assume that the map g satisfies g ∈ C2(R) with
g′′ ∈ L∞(R), then the operator g′ : Lρ(Ω) → Lτ (Ω) is continuously Fréchet
differentiable as well.

Proof. The first assertion is due to [11, Theorem 1 (iii),(iv)] and the Lipschitz conti-
nuity of g′ : R→ R, while the second statement is a direct result of [11, Theorem 4].
The continuous Fréchet differentiability follows from [11, Theorems 4 and 7].

Appendix B. Product Rule.

This appendix is dedicated to a generalization of the well known product rule in
the sense that the spaces, where the inner functions are continuous and continuously
differentiable, respectively, may differ.

Lemma B.1. Let X, W and Yi, Zi, i = 1, 2, be Banach spaces with Yi ⊂ Zi.
Moreover, let U ⊂ X be an open set and fi : U → Yi, i = 1, 2, be continuous mappings,
which are continuously Fréchet differentiable, when considered as mappings from U
to Zi. Additionally, let P : Z1 × Y2 → W be a product, i.e., a continuous bilinear
mapping, and assume that P possesses the same properties, when considered as a
mapping from Y1 × Z2 to W . Then the map

h : x ∈ U → P (f1(x), f2(x)) ∈W

is continuously Fréchet differentiable with

h′(x)(δx) = P (f ′1(x)(δx), f2(x)) + P (f1(x), f ′2(x)(δx)) ∀x ∈ U, ∀ δx ∈ X. (B.1)

Proof. Let x ∈ U be arbitrary, but fixed and δx ∈ X with ‖δx‖X 6= 0 small enough
such that x+ δx ∈ U . straightforward computation yields

‖R(δx)‖W :=

:= ‖h(x+ δx)− h(x)− P (f ′1(x)(δx), f2(x))− P (f1(x), f ′2(x)(δx))‖W
≤ ‖P (f1(x+ δx), f2(x))− P (f1(x), f2(x))− P (f ′1(x)(δx), f2(x))‖W

+ ‖P (f1(x+ δx), f2(x+ δx))− P (f1(x+ δx), f2(x))− P (f1(x+ δx), f ′2(x)(δx))‖W
+ ‖P (f1(x+ δx), f ′2(x)(δx))− P (f1(x), f ′2(x)(δx))‖W .
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Since P : Z1×Y2 →W , P : Y1×Z2 →W are continuous bilinear mappings, we obtain
in view of the Fréchet differentiability of fi : U → Zi for every i ∈ {1, 2}, combined
with the continuity of f1 : U → Y1 that

‖R(δx)‖W
‖δx‖X

≤ C
(‖Rf1(δx)‖Z1

‖δx‖X
‖f2(x)‖Y2 +

‖Rf2(δx)‖Z2

‖δx‖X
‖f1(x+ δx)‖Y1

+ ‖f1(x+ δx)− f1(x)‖Y1

‖f ′2(x)(δx)‖Z2

‖δx‖X

)
→ 0, as ‖δx‖X → 0,

where we denote Rfi(δx) := fi(x + δx) − fi(x) − f ′i(x)(δx) for every i ∈ {1, 2}.
Therefore, h is Fréchet differentiable at x ∈ U , with derivative given by (B.1). In
order to show the continuity thereof, let {xn} ⊂ U with xn → x in X be given. By
employing the properties of P we obtain for all δx ∈ X

‖P (f ′1(xn)(δx), f2(xn))− P (f ′1(x)(δx), f2(x))‖W
≤ ‖P (f ′1(xn)(δx)− f ′1(x)(δx), f2(xn))‖W + ‖P (f ′1(x)(δx), f2(xn)− f2(x))‖W
≤ C

(
‖f ′1(xn)(δx)− f ′1(x)(δx)‖Z1

‖f2(xn)‖Y2
+ ‖f ′1(x)(δx)‖Z1

‖f2(xn)− f2(x)‖Y2

)
≤ C

(
‖f ′1(xn)− f ′1(x)‖L(X,Z1)‖δx‖X‖f2(xn)‖Y2

+ ‖f ′1(x)‖L(X,Z1)‖δx‖X‖f2(xn)− f2(x)‖Y2

)
.

The continuity of f ′1 : U → L(X,Z1) and f2 : U → Y2 thus implies

sup
‖δx‖X=1

‖P (f ′1(xn)(δx), f2(xn))− P (f ′1(x)(δx), f2(x))‖W

≤ C
(
‖f ′1(xn)− f ′1(x)‖L(X,Z1)‖f2(xn)‖Y2

+ ‖f ′1(x)‖L(X,Z1)‖f2(xn)− f2(x)‖Y2

)
→ 0, as xn → x.

(B.2)

Completely analogously we obtain

sup
‖δx‖X=1

‖P (f1(xn), f ′2(xn)(δx))− P (f1(x), f ′2(x)(δx))‖W → 0, as xn → x. (B.3)

Finally, (B.1), (B.2), and (B.3) result in

sup
‖δx‖X=1

‖h′(xn)(δx)− h′(x)(δx)‖W → 0 as xn → x in X,

which completes the proof.
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