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Abstract: We study connections between four different types of
results that are concerned with vector-valued functions u : Ω → R3

of class L2(Ω) on a domain Ω ⊂ R3: Coercivity results in H1(Ω)
relying on div and curl, the Helmholtz decomposition, the construc-
tion of vector potentials, and the global div-curl lemma.
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1. Introduction

The original motivation of this text was to derive a variant of the div-curl
lemma. This important lemma treats the convergence properties of products of
two weakly convergent sequences of functions. Besides other applications, the
lemma plays an important role in homogenization theory, in particular in non-
periodic homogenization problems. At some places, the name “compensated
compactness” is used to refer to the div-curl lemma. We will use below the
name “global” div-curl lemma to indicate that we are not satisfied with the
distributional convergence of the product of functions, but that we want to
obtain the convergence of the integral of the product.

The usual proof of the div-curl lemma is based on the construction of vector
potentials, see e.g. [JKO94]. In the global div-curl lemma, the construction
of potentials must be performed taking special care of appropriate boundary
conditions. The proof of the div-curl lemma becomes shorter if it is based on a
Helmholtz decomposition result. Once more, the global div-curl lemma requires
a careful analysis of the boundary conditions.

Both, the construction of vector potentials and the proof of the Helmholtz
decomposition, can be obtained from coercivity results involving divergence
and curl of a function u : R3 ⊃ Ω → R3. We have not been able to find a
clear description of this connection in the literature. Moreover, the literature
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2 Friedrichs inequality and consequences

discusses the coercivity results usually in a form that not strong enough to
obtain the above-mentioned consequences.

In this text we present coercivity results in various forms and provide sketches
of their proofs. We demonstrate how the other results can be obtained quite
directly from the coercivity estimates. Moreover, we obtain these other results
in a strong form, i.e. with a good control of boundary data. To summarize, we
treat the following closely connected subjects and describe their most relevant
connections:

(1) Coercivity results relying on div and curl
(2) The Helmholtz decomposition
(3) Construction of vector potentials
(4) The global div-curl lemma

More specifically, we will show the following: Let Ω be a domain for which the
coercivity estimate of Item (1) holds. Then Ω permits statements as in Items
(2)–(4) in a strong form.

Let us describe more clearly what is meant by the above items (1)–(4).

(1) The coercivity regards inequalities that allow to estimate, in the space
L2(Ω), all derivatives of a field u : Ω → R3 in terms of its divergence div u :
Ω→ R and its rotation curl u : Ω→ R3.

(2) In the Helmholtz decomposition we are interested in constructing, given
f ∈ L2(Ω,R3), two functions φ and w such that f = ∇φ + w with divw = 0.
In strong Helmholtz decomposition results, we want to write curl ψ instead of
w and impose boundary conditions on ψ.

(3) Construction of vector potentials: Given a field f : Ω→ R3 with div f =
0, we want to find a potential ψ : Ω→ R3 such that f = curl ψ, again imposing
boundary conditions on ψ.

(4) In the div-curl lemma one considers sequences fk ⇀ f and pk ⇀ p as
k →∞ in L2(Ω,R3). The additional information is that both ‖div fk‖L2(Ω) and
‖ curl pk‖L2(Ω) are bounded sequences. One is interested in the product fk · pk.
In the standard div-curl lemma, one obtains the distributional convergence fk ·
pk → f · p as k → ∞. We are interested in the global div-curl lemma, which
provides

∫
Ω
fk · pk →

∫
Ω
f · p as k →∞.

We note that the coercivity result (1) requires quite strong assumptions on
Ω ⊂ R3 (the regularity C1,1 and simply connectedness or, alternatively, the
convexity of Ω). On the other hand, given (1), the results (2)–(4) can be derived
easily in strong forms. In particular, we obtain these results with a control of
the boundary data and with natural estimates.

Applications. As already mentioned, the div-curl lemma plays a crucial role in
the derivation of homogenization limits, in particular if one follows the Russian
approach, which is well adapted to perform stochastic homogenization limits, see
[JKO94]. A recent application is the non-periodic homogenization of plasticity
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equations. For such nonlinear non-periodic problems, the so-called “needle-
problem approach” was developed in [SV11]. The crucial step in this approach
is to find, given a sequence of functions uε on a domain Ω, a triangulation
of Ω such that the global div-curl lemma can be applied on every simplex of
the triangulation. The method was applied to perform the homogenization of
plasticity equation in [HS15, HS14].

An observation. Since our proofs are based on coercivity estimates, we start
with an observation regarding divergence and curl of functions.

Remark 1.1. Let Ω ⊂ R3 be a bounded domain. We consider functions u :
Ω → R3 with vanishing boundary values, u ∈ H1

0 (Ω). For such functions,
the control of curl u and div u in L2(Ω) is equivalent to the control of the full
gradient in L2(Ω). Indeed, for u ∈ H1

0 (Ω) (i.e.: all components of u vanish along
the boundary), the following calculation is valid∫

Ω

{
|∇ · u|2 + | curl u|2

}
=

∫
Ω

[−∇(∇ · u) + curl curl u] · u

=

∫
Ω

[−∆u] · u =

∫
Ω

|∇u|2 .
(1.1)

Remark 1.1 indicates that all derivatives of u are controlled by ∇ · u and
curl u — at least up to contributions from boundary integrals.

We note that Remark 1.1 has some similarity with the trivial Korn’s in-
equality (Korn’s inequality for functions with vanishing boundary values): The
integral over squared gradients is (up to a factor 2) identical to the integral
over squared symmetrized gradients. This is similar to equation (1.1). Korn’s
inequality (the non-trivial version) shows that, indeed, the full gradient of u
can be estimated in terms of the symmetrized gradient of u.

2. Notation

In the following, Ω ⊂ R3 always denotes a bounded open set, further prop-
erties will be specified when needed. For Lipschitz domains Ω, we denote the
exterior normal by ν : ∂Ω→ R3 (ν is defined almost everywhere on the bound-
ary).

We use the space H(Ω, curl) := {u ∈ L2(Ω,R3) | curl u ∈ L2(Ω,R3)}, where
curl u is understood in the distributional sense. The norm on this space is
‖u‖L2 + ‖ curl u‖L2 . The subspace of functions with vanishing boundary condi-
tion is H0(Ω, curl) = {u ∈ H(Ω, curl) | ν × u|∂Ω = 0}. We emphasize that, since
only the curl of u is controlled, only tangential boundary data can be evaluated
in the sense of traces. Since trace estimates require Lipschitz boundaries, we
define the space H0(Ω, curl) with a weak formulation as follows:
(2.1)

H0(Ω, curl) :=

{
u ∈ H(Ω, curl)

∣∣∣∣∫
Ω

curl u · η =

∫
Ω

u · curl η ∀η ∈ H1(Ω,R3)

}
.
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Similarly, the space of functions with divergence in L2(Ω) can be defined as:
H(Ω, div) := {u ∈ L2(Ω,R3) | div u ∈ L2(Ω,R3)} and the corresponding space
with vanishing boundary data is H0(Ω, div) = {u ∈ H(Ω, div) | ν · u|∂Ω = 0},
defined as
(2.2)

H0(Ω, div) :=

{
u ∈ H(Ω, div)

∣∣∣∣∫
Ω

(div u) η = −
∫

Ω

u · ∇η ∀η ∈ H1(Ω,R)

}
.

We emphasize that the index 0 enforces in both cases that certain components
of the vector field vanish on the boundary; these are tangential components in
the case of H0(Ω, curl) and normal components in the case of H0(Ω, div).

Following [ABDG98], we use the space X(Ω) := H(Ω, curl) ∩H(Ω, div) and
the two subspaces

XN(Ω) := H0(Ω, curl) ∩H(Ω, div) = {u ∈ X(Ω) | ν × u|∂Ω = 0} ,(2.3)

XT (Ω) := H(Ω, curl) ∩H0(Ω, div) = {u ∈ X(Ω) | ν · u|∂Ω = 0} .(2.4)

We note that the boundary values ν × u|∂Ω are well defined in the sense of
distributions for functions u ∈ H(Ω, curl). Similarly, ν · u|∂Ω is well defined in
the sense of distributions for functions u ∈ H(Ω, div).

3. Friedrichs inequality

Many references are available for the following coercivity estimate. See e.g. (11)
in [Lei68] or Corollary 2.2 in [Cos91], or Theorems 2.9 and 2.12 in [ABDG98].

We emphasize that the coercivity estimate of Theorem 3.1 remains valid on
convex Lipschitz domains (the regularity ∂Ω ∈ C1,1 is replaced by the convexity
requirement), see Theorem 2.17 in [ABDG98].

Theorem 3.1 (Coercivity estimate). Let Ω be a bounded Lipschitz domain with
∂Ω ∈ C1,1. Then there exists a coercivity constant CC > 0 such that

(3.1) ‖u‖2
H1 ≤ CC

∫
Ω

{
|∇ · u|2 + | curl u|2 + |u|2

}
for every u ∈ XT (Ω). The constant CC can be chosen such that (3.1) holds also
for every u ∈ XN(Ω).

On the proof. The proof of (3.1) relies on the fact that for u in either XT (Ω) or
XN(Ω) critical boundary terms in the calculation (1.1) cancel. The remaining
terms are products containing the curvature of the boundary and squares of
values of u on the boundary. It is important that, in the boundary integrals,
no terms containing derivatives of u remain. Moreover, for convex domains, the
remaining terms have the good sign (see Lemma 2.11 in [ABDG98]). Combining
the calculation (1.1) with a trace estimate for u and an interpolation, one obtains
(3.1). The full proof requires density results in the spaces XT (Ω) and XN(Ω).

�
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Our next step is to improve inequality (3.1) so that the L2(Ω)-norm of u does
not appear on the right hand side. We call the result a Friedrichs inequality.

Let us describe why we call the result a Friedrichs inequality: The above
sketch of proof (more precisely, the positivity of boundary contributions for
convex domains) suggests that the following inequality holds on convex domains
with CF = 1:

(3.2) ‖∇u‖2
L2(Ω,R3) ≤ CF

∫
Ω

{
|∇ · u|2 + | curl u|2

}
Inequality (3.2) is known as Friedrichs second inequality, see e.g. Theorem 3.1
in [Sar82]. Using a general constant CF in (3.2) is necessary for non-convex
domains. We note that (3.2) for Lp(Ω)-spaces is treated in [vW92] with methods
from potential theory. Regarding the result in space dimension 2 we refer to
[KN84], Theorem 4.3.

We want to improve (3.2) and estimate the full H1-norm.

Corollary 3.2 (Friedrichs inequality). Let Ω be a simply connected bounded
Lipschitz domain. We assume that (3.1) holds (we recall that ∂Ω ∈ C1,1 or
convexity of Ω is sufficient). Then there exists a constant CF > 0 such that

(3.3) ‖u‖2
H1(Ω,R3) ≤ CF

∫
Ω

{
|∇ · u|2 + | curl u|2

}
holds for all functions u in the space XT (Ω). The same estimate holds for every
u ∈ XN(Ω).

Proof. We argue by contradiction. Let (uk)k be a sequence with ‖uk‖H1(Ω) = 1
for every k and with ∇·uk → 0 and curl uk → 0 in L2(Ω). Rellich compactness
allows to extract a subsequence and to find u ∈ H1(Ω) such that uk ⇀ u in
H1(Ω) and uk → u in L2(Ω). Weak limits coincide with distributional limits,
hence ∇ · u = 0 and curl u = 0.

The curl-free function u has a potential, u = ∇Φ for some Φ ∈ H1(Ω).
This fact is known as Poincaré lemma, we use at this point that Ω is simply
connected. The potential can be constructed with line integrals; the extension to
functions u ∈ L2(Ω) is straightforward using density of smooth functions. The
potential Φ solves ∆Φ = 0 because of ∇ · u = 0. Furthermore, the boundary
condition u ∈ XT (Ω) implies that Φ has a vanishing normal derivative on ∂Ω.
The boundary condition u ∈ XN(Ω) implies that tangential components of ∇Φ
vanish on the boundary, hence Φ can be chosen in H1

0 (Ω). In both cases, due
to ∆Φ = 0, the potential Φ is a constant function and u vanishes.

The fact uk → u = 0 in L2(Ω) implies that the three terms on the right hand
side of (3.1) vanish in the limit k → ∞ for the sequence uk. Inequality (3.1)
yields ‖uk‖H1 → 0, which is the desired contradiction. �
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4. Helmholtz decomposition

We formulate a strong Helmholtz decomposition result in Theorem 4.2. In
order to explain why we call Theorem 4.2 a strong Helmholtz decomposition
result, let us first state and prove an elementary version.

Proposition 4.1 (Elementary Helmholtz decomposition). Let Ω ⊂ R3 be a
bounded domain. Then there exists a constant CH > 0 such that, for every
vector field f ∈ L2(Ω,R3), the following holds:

(1) Imposing a boundary condition for w. There exist φ : Ω→ R and
w : Ω→ R3 such that

f = ∇φ+ w , φ ∈ H1(Ω,R) ,(4.1)

w ∈ W0 :=

{
w ∈ L2(Ω)

∣∣∣∣∫
Ω

w · ∇ϕ = 0 ∀ϕ ∈ H1(Ω)

}
.(4.2)

(2) Imposing a boundary condition for φ. There exist φ : Ω→ R and
w : Ω→ R3 such that

f = ∇φ+ w , φ ∈ H1
0 (Ω,R) ,(4.3)

w ∈ W :=

{
w ∈ L2(Ω)

∣∣∣∣∫
Ω

w · ∇ϕ = 0 ∀ϕ ∈ H1
0 (Ω)

}
.(4.4)

Both decompositions are valid with the estimate

(4.5) ‖φ‖H1(Ω) + ‖w‖L2(Ω) ≤ CH‖f‖L2(Ω) .

Proof. For Item (1), we define φ ∈ H1(Ω) as the solution of the Neumann
problem

(4.6)

∫
Ω

∇φ · ∇ϕ =

∫
Ω

f · ∇ϕ ∀ϕ ∈ H1(Ω) .

The solution exists by the Lax-Milgram theorem in the space of H1-functions
with vanishing mean value. With this choice of φ, the remainder w := f −∇φ
satisfies w ∈ W0 by definition.

For Item (2), we define φ ∈ H1
0 (Ω) as the solution of the Dirichlet problem

(4.7)

∫
Ω

∇φ · ∇ϕ =

∫
Ω

f · ∇ϕ ∀ϕ ∈ H1
0 (Ω) .

The solution exists by the Lax-Milgram theorem in H1
0 (Ω). With this choice of

φ, the remainder w := f −∇φ satisfies w ∈ W by definition.
In both cases, due to the solution estimate of the Lax-Milgram theorem, the

norm of φ in H1(Ω) and, hence, the norm of w in L2(Ω) are controlled by the
norm of f in L2(Ω). �

We next show a stronger Helmholtz decomposition result. Here, we write the
solennoidal function w as the curl of a vector potential ψ. Furthermore, we can
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prescribe a boundary condition for the vector potential. Again, all norms are
controlled by the datum f .

Theorem 4.2 (Helmholtz decomposition with vector potential). Let Ω ⊂ R3

be a simply connected bounded Lipschitz domain with boundary ∂Ω of class
C1,1. Then there exists a constant CH > 0 such that, for every vector field
f ∈ L2(Ω,R3), we have:

(1) Imposing a boundary condition for ψ. There exist φ : Ω→ R and
ψ : Ω→ R3 such that

f = ∇φ+ curlψ , φ ∈ H1(Ω,R) , ∇ · ψ = 0 , ψ ∈ XN(Ω) .(4.8)

(2) Imposing a boundary condition for φ. There exist φ : Ω→ R and
ψ : Ω→ R3 such that

f = ∇φ+ curlψ , φ ∈ H1
0 (Ω,R) , ∇ · ψ = 0 , ψ ∈ XT (Ω) .(4.9)

In both cases, the decomposition satisfies the estimate

(4.10) ‖φ‖H1(Ω) + ‖ψ‖H1(Ω) ≤ CH‖f‖L2(Ω) .

Remark 4.3. Many parts of Theorem 4.2 remain valid under the following
weaker assumption (A1) on Ω:

(A1) Let Ω be a bounded Lipschitz domain such that the Friedrichs
inequality (3.3) holds.

Item (1) of the Theorem remains valid without any changes in the proof. In-
stead, our proof of Item (2) makes use of the C1,1-regularity of the boundary.

In order to clearify the connection with Proposition 4.1, we note the following:
With ψ as in Item (1) above, there holds w := curl ψ ∈ W0 (as in Item (1) of
Proposition 4.1). Indeed, for ϕ ∈ H1(Ω),

(4.11)

∫
Ω

w · ∇ϕ =

∫
Ω

curl ψ · ∇ϕ =

∫
Ω

ψ · curl ∇ϕ = 0 .

Proof. Proof of Item (1).

Step 1. Construction of φ. In this first step, we compensate the divergence
∇ · f and the normal boundary data f · ν with a scalar potential φ (as in (4.6)
in the proof of Item (1) of Proposition 4.1). We define φ ∈ H1(Ω,R) as the
solution with vanishing average of the Neumann problem

(4.12)

∫
Ω

∇φ · ∇ϕ =

∫
Ω

f · ∇ϕ ∀ϕ ∈ H1(Ω,R) .

The solution φ satisfies the estimate (4.10). In the rest of the proof our aim is

to write the function f̃ := f −∇φ ∈ W0 as the curl of a vector potential.

Step 2. Construction of ψ. We introduce the bilinear form

(4.13) b(u, v) :=

∫
Ω

{(∇ · u)(∇ · v) + (curl u) · (curl v)}



8 Friedrichs inequality and consequences

on the space XN(Ω) of (2.3). We consider the following auxiliary problem: Find
ψ ∈ XN(Ω) such that

(4.14) b(ψ, ϕ) =

∫
Ω

f̃ · curl ϕ ∀ϕ ∈ XN(Ω) .

The bilinear form b is coercive on XN(Ω) by the Friedrichs coercivity estimate
(3.3). This implies the solvability of problem (4.14) by some ψ ∈ XN(Ω). We
note that the solution ψ ∈ XN(Ω) satisfies the estimate (4.10).

Step 3. The divergence of ψ. We claim that ψ satisfies ∇ · ψ = 0.
To verify this claim, we solve, for arbitrary η ∈ L2(Ω,R), the Dirichlet prob-

lem ∆Φ = η with Φ ∈ H1
0 (Ω). We want to use ϕ := ∇Φ as a test-function in

(4.14). The construction and the regularity Φ ∈ H1(Ω) imply ϕ ∈ X(Ω) (the
distributional curl vanishes, since ϕ is a gradient, and the distributional diver-
gence is η). Concerning the boundary condition we calculate, for test functions
ξ ∈ H2(Ω), ∫

Ω

curl ϕ · ξ =

∫
Ω

0 · ξ = 0 ,

and, exploiting that Φ has vanishing boundary values,∫
Ω

ϕ · curl ξ =

∫
Ω

∇Φ · curl ξ =

∫
Ω

Φ ∇ · curl ξ = 0 .

By density, the equality of the two expressions remains valid for all test-functions
ξ ∈ H1(Ω). By definition of XN(Ω), this provides ϕ = ∇Φ ∈ XN(Ω). From
now on, we may therefore use ϕ as a test function in (4.14).

Relation (4.14) allows to calculate

0 =

∫
Ω

f̃ · curl ϕ = b(ψ, ϕ)

=

∫
Ω

{(∇ · ψ) (∇ · ϕ) + (curl ψ) · (curl ϕ)} =

∫
Ω

(∇ · ψ) η .

Since η was arbitrary, we obtain ∇ · ψ = 0.

Step 4. Properties of the remainder. We introduce the remainder R :=
f̃ − curl ψ and claim that R vanishes.

We start with the observation that the property ∇ · ψ = 0 simplifies relation
(4.14), which now reads

(4.15)

∫
Ω

R · curl ϕ =

∫
Ω

(f̃ − curl ψ) · curl ϕ = 0 ∀ϕ ∈ XN(Ω) .

This shows curl R = 0 in the sense of distributions.
Furthermore, R is a solennoidal field: The divergence of f̃ vanishes by the

construction in Step 1, and the divergence of curl ψ also vanishes.



Ben Schweizer, September 23, 2016 9

We finally want to check the normal boundary condition for R. For every
ϕ ∈ H1(Ω) holds, using ψ ∈ XN(Ω) in the last step,∫

Ω

R · ∇ϕ =

∫
Ω

f̃ · ∇ϕ−
∫

Ω

curl ψ · ∇ϕ (4.12)
= −

∫
Ω

curl ψ · ∇ϕ = 0 .

This shows R ∈ XT (Ω).
The Friedrichs estimate (3.3) on the space XT (Ω) allows to conclude from

curl R = 0 and divR = 0 the equality R = 0. This shows the decomposition
result f = ∇φ+ curlψ.

Proof of Item (2). The proof of Item (2) follows along the same lines. In
Step 1, the scalar potential φ is constructed as the solution φ ∈ H1

0 (Ω) of the

Dirichlet problem ∆φ = ∇·f . We consider the function f̃ = f −∇φ, which has
vanishing divergence (but, in general, not vanishing normal boundary data). In
Step 2 we consider once more the bilinear form

(4.16) b(u, v) :=

∫
Ω

{(∇ · u)(∇ · v) + (curl u) · (curl v)} ,

but now on the space XT (Ω); the bilinear form is now b : XT (Ω) × XT (Ω) →
R. The vector potential ψ is once more constructed with the Lax-Milgram
theorem; now ψ ∈ XT (Ω) satisfies the identity of (4.14) for every test-function
ϕ ∈ XT (Ω). Step 3 can be performed as above and we obtain ∇ · ψ = 0; the
test function ϕ = ∇Φ must now be constructed by solving a Neumann problem
for Φ in order to have ϕ ∈ XT (Ω).

We provide some more details concerning Step 4: As in the proof of Item
(1), we define the remainder R := f̃ − curl ψ and show that R vanishes. By

construction of f̃ , there holds ∇ · R = 0. The fact ∇ · ψ = 0 simplifies the
identity in (4.14) and we find, in analogy to relation (4.15),

(4.17)

∫
Ω

R · curl ϕ = 0 ∀ϕ ∈ XT (Ω) .

This equality shows curl R = 0 in the sense of distributions.
Because of curl R = 0, the equality of (4.17) is also satisfied for every function

ϕ ∈ XN(Ω). Indeed, the formal calculation for this fact is∫
Ω

R · curl ϕ =

∫
Ω

curl R · ϕ = 0 .

The integration by parts is justified by definition of XN(Ω). A rigorous proof
is obtained by first regularizing R and then considering the limit.

An arbitrary function ϕ ∈ H1(Ω) can be written as the sum ϕ = ϕN + ϕT
with ϕN ∈ XN(Ω) and ϕT ∈ XT (Ω) (the proof of this fact can easily been
performed using charts under the regularity assumption ∂Ω ∈ C1,1). By linearity
of the expression in ϕ we obtain that the equality of (4.17) is satisfied for every
function ϕ ∈ H1(Ω). Since curl R vanishes, this shows R ∈ XN(Ω). The
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Friedrichs estimate (3.3) on the space XN(Ω) allows to conclude R = 0 and
hence the decomposition result. �

5. Construction of vector potentials

We next present a consequence on the existence of vector potentials: Given
f with ∇ · f = 0, we look for a vector potential ψ such that curl ψ = f .

Classically, the construction of ψ is performed with Fourier transformation
methods, see [GR79]. In this approach, little regularity on ∂Ω is needed (Lip-
schitz is sufficient). On the other hand, without further arguments, one cannot
prescribe boundary conditions for the potential ψ; see also [JKO94], Lemma
4.4. The results of [GR79] are stated and proved in [ABDG98].

The latter reference includes many extensions. In particular, very general do-
mains can be considered. The notion of pseudo-Lipschitz domains is introduced
and the existence of vector potentials is shown on pseudo-Lipschitz domains (do-
mains with cuts that are not Lipschitz domains can still be pseudo-Lipschitz
domains). The results of [ABDG98] include boundary conditions, see Theorems
3.12 and 3.17 of that reference.

The following result makes a strong statement on the existence of vector
potentials. We note that we have to assume a high regularity of the domain.
Our emphasis is on the fact that, essentially, the result can be obtained from
Friedrichs inequality (3.3). We use the boundary regularity only in Item (2),
compare Remark 4.3.

Corollary 5.1. Let Ω ⊂ R3 be a simply connected bounded Lipschitz domain
with ∂Ω ∈ C1,1. Then there exists a constant CV > 0 such that, for every
f ∈ L2(Ω,R3), we have:

(1) f with boundary condition. If f has vanishing divergence and van-
ishing normal boundary data, i.e. f ∈ W0 of (4.2), then there exists a
vector potential ψ ∈ XN(Ω) with

f = curlψ , ‖ψ‖H1(Ω) ≤ CV ‖f‖L2(Ω) .(5.1)

(2) f without boundary condition. If f has vanishing divergence, i.e.
f ∈ W of (4.4), then there exists a vector potential ψ ∈ XT (Ω) with

f = curlψ , ‖ψ‖H1(Ω) ≤ CV ‖f‖L2(Ω) .(5.2)

Proof. Item (1). We use the Helmholtz decomposition according to (4.8), f =
∇φ+ curlψ with φ ∈ H1(Ω,R) and ψ ∈ XN(Ω). Upon multiplication with the
gradient ∇ϕ of a test function ϕ ∈ H1(Ω), we obtain

0
f∈W0

=

∫
Ω

f · ∇ϕ =

∫
Ω

(∇φ+ curlψ) · ∇ϕ ψ∈XN=

∫
Ω

∇φ · ∇ϕ .

This shows that φ solves the homogeneous Neumann problem ∆φ = 0 and is
therefore constant. This shows ∇φ = 0 and hence f = curlψ.
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Item (2). The proof is analogous to that of Item (1). We now use the
Helmholtz decomposition according to (4.9), f = ∇φ+curlψ with φ ∈ H1

0 (Ω,R)
and ψ ∈ XT (Ω). Testing f = ∇φ+curlψ with the gradient∇ϕ of a test function
ϕ ∈ H1

0 (Ω), we obtain that φ solves the homogeneous Dirichlet problem ∆φ = 0.
This shows φ = 0 and hence ∇φ = 0. We obtain f = curlψ and have therefore
found the vector potential. �

6. Global div-curl lemma

One of our motivations to study the above classical decomposition results is
the div-curl lemma. Most often, this lemma is formulated in a local version,
with the claim that the product fk · pk of two weakly convergent sequences
converges in the sense of distributions. We are interested here in global results,
i.e. in results that provide the convergence of the integrals

∫
Ω
fk · pk.

Lemma 6.1 (Global div-curl lemma). Let Ω ⊂ R3 be a simply connected
bounded Lipschitz domain with ∂Ω ∈ C1,1. Let fk ⇀ f in L2(Ω,R3) and pk ⇀ p
in L2(Ω,R3) be two weakly convergent sequences. We assume that the distribu-
tional derivatives satisfy, for some C > 0,

‖∇ · fk‖L2(Ω) ≤ C , ‖ curl pk‖L2(Ω) ≤ C ,(6.1)

for every k ∈ N. Let furthermore be one of the two boundary conditions (i) or
(ii) be satisfied for every k ∈ N:

(i) fk · ν|∂Ω = 0
(ii) pk × ν|∂Ω = 0

Then there holds, as k →∞,

(6.2)

∫
Ω

fk · pk →
∫

Ω

f · p .

Let us include two remarks concerning the proof of the above lemma. Con-
cerning boundary condition (i), we could rely the proof also on the convexity
of the domain Ω and work without the assumption ∂Ω ∈ C1,1. In the proof of
boundary condition (ii), we do not exploit the boundary condition ψ ∈ XT (Ω)
on ψ. This means that case (ii) can be proved also with a weaker version of
Theorem 4.2.

Proof. Proof for boundary condition (i). We write pk as pk = ∇φk+curl ψk with
potentials as in Theorem 4.2, Item (1), i.e. with ψk ∈ XN(Ω) and wk := curl ψk.
We recall that wk ∈ W0 and hence wk ∈ XT (Ω) is satisfied, compare (4.11).

We claim that wk := curl ψk converges strongly in L2(Ω). Indeed, we have
boundedness of wk in L2(Ω) by boundedness of pk in L2(Ω), furthermore the ob-
vious boundedness of ∇ ·wk = 0. Finally, the boundedness of curl wk = curl pk
in L2(Ω) holds by (6.1). The coercivity inequality (3.1) in XT (Ω) provides
boundedness of wk in H1(Ω) and hence the compactness in L2(Ω).
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With this compactness property for wk and the strong convergence φk → φ
in L2(Ω) (which follows from the compact Rellich embedding H1(Ω) ⊂ L2(Ω))
we can calculate∫

Ω

fk · pk =

∫
Ω

fk · (∇φk + curl ψk) =

∫
Ω

(−∇ · fk)φk + fk · curl ψk

→
∫

Ω

(−∇ · f)φ+ f · curl ψ =

∫
Ω

f · (∇φ+ curl ψ) =

∫
Ω

f · p .

We used in the last step that the limits φ and ψ are indeed the Helmholtz
decomposition functions for the limit p. This provides the claim for boundary
condition (i).

Proof for boundary condition (ii). We now decompose fk as fk = ∇φk +
curl ψk using Theorem 4.2, Item (2) (but we will not exploit ψk ∈ XT (Ω)).
The a priori bound ‖ψk‖H1(Ω) ≤ C0 from (4.10) allows to select a subsequence
k →∞ with the strong convergence ψk → ψ in L2(Ω).

The functions φk ∈ H1
0 (Ω) solve a Dirichlet problem: For every ϕ ∈ H1

0 (Ω)
there holds ∫

Ω

∇φk · ∇ϕ =

∫
Ω

(fk − curl ψk) · ∇ϕ = −
∫

Ω

∇ · fk ϕ .

This is the weak form of the Dirichlet problem ∆φk = ∇· fk. Since the solution
map H−1(Ω) → H1

0 (Ω) of this Dirichlet problem is linear and continous, the
strong convergence of ∇ · fk in H−1(Ω) implies the strong convergence ∇φk →
∇φ in L2(Ω).

After this preparation we can calculate, using boundary condition (ii) for pk
and for p, in the limit k →∞,∫

Ω

fk · pk =

∫
Ω

(∇φk + curl ψk) · pk =

∫
Ω

∇φk · pk + ψk · curl pk

→
∫

Ω

∇φ · p+ ψ · curl p =

∫
Ω

∇φ · p+ curl ψ · p =

∫
Ω

f · p .

This was the claim in (6.2). �

Corollary 6.2 (The usual div-curl lemma on arbitrary domains). Let Ω ⊂ R3

be an open set and let pk and fk be sequences with fk ⇀ f and pk ⇀ p in
L2(Ω,R3). We assume the div- and curl-control of (6.1). Then fk · pk → f · p
in the sense of distributions on Ω.

Proof. Upon subtracting f and p from the sequences, we can assume p = 0 and
f = 0. The distributional convergence is a local property, it suffices to show
that, for an arbitrary open ball B ⊂ B̄ ⊂ Ω and an arbitrary smooth function
ϕ ∈ C∞c (B,R) there holds

(6.3)

∫
B

fk · pk ϕ→ 0 .
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The relation (6.3) is a direct consequence of the global div-curl lemma 6.1 (ii),
applied to the sequences fk and pk ϕ. The sequence pk ϕ converges weakly to
0, has L2(B)-bounded curl and satisfies the homogeneous tangential boundary
condition. The ball B has a C1,1-boundary. Lemma 6.1 provides (6.3) and thus
the claim. �

7. Comments and generalizations

We emphasize that there is another route to prove the above div-curl result.
One can start the analysis from the simple Helmholtz decomposition of Propo-
sition 4.1. This requires no properties of Ω. When needed, one can use Theorem
3.12 or 3.17 of [ABDG98] to write a solennoidal field w as a curl, w = curl ψ.
This requires less regularity on Ω than our Corollary 5.1 (essentially, Lipschitz
domains with cuts are allowed). We make this observation more precise with
the following remark.

Remark 7.1 (Global div-curl lemma on Lipschitz domains). The statement of
Lemma 6.1 remains valid on general bounded Lipschitz domains Ω.

Proof. Let us start with the boundary condition (i). We proceed as in the proof
of Lemma 6.1 (i) and decompose pk. We use the simple Helmholtz decomposi-
tion of Proposition 4.1, Item (1), and write pk = ∇φk + wk with φk ∈ H1(Ω)
and wk ∈ W0. We use the existence result for vector potentials from Theorem
3.17 of [ABDG98]: there exists a potential ψk ∈ XN(Ω) with wk = curl ψk. The
boundary condition for ψk allows to conclude strong convergence of wk from∫

Ω

|wk|2 =

∫
Ω

wk · curl ψk =

∫
Ω

curl wk · ψk =

∫
Ω

curl pk · ψk

→
∫

Ω

curl p · ψ =

∫
Ω

w · curl ψ =

∫
Ω

|w|2 .

The proof for boundary condition (ii) follows closely the one of Lemma 6.1
(ii) and uses no boundary conditions for the potentials ψk. We decompose
fk = ∇φk + wk with φk ∈ H1

0 (Ω) and exploit the strong convergence of ∇φk.
The functions wk ∈ W are written as wk = curlψk. In the calculation of the
integral, we can integrate by parts in the term (curl ψk)·pk, due to the boundary
condition for pk. �

We use this opportunity to include a simple remark: In the case of higher
integrability properties of the functions, general domains and the case without
boundary conditions can be treated.

Remark 7.2 (Global div-curl lemma on arbitrary domains). The statement of
Lemma 6.1 without boundary conditions on either pk or fk remains valid on
general bounded domains Ω if the sequence fk (or the sequence pk) is bounded
in Lq(Ω) for some q > 2.



14 Friedrichs inequality and consequences

Proof. The sequence fk · pk is bounded in the reflexive space L1+δ(Ω) for some
δ > 0. It therefore converges weakly in L1+δ(Ω) to its distributional limit,
which is f · p by Corollary 6.2. The weak convergence implies the convergence
of integrals (6.2). This proves the claim. �
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