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Abstract

We consider a class of doubly nonlinear history-dependent problems
associated with the equation ∂tk ∗ (b(v) − b(v0)) = div a(x,Dv) + f .
Our assumptions on the kernel k include the case k(t) = t−α/Γ(1−α),
in which case the left-hand side becomes the fractional derivative of or-
der α ∈ (0, 1) in the sense of Riemann-Liouville. Existence of entropy
solutions is established for general L1−data and Dirichlet boundary
conditions. Uniqueness of entropy solutions has been shown in a pre-
vious work.

1 Introduction

Let Ω be a bounded domain of Rd, d ≥ 1. The present work is concerned

with the existence of solutions to the history-dependent initial boundary
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Key words and phrases. Integro-differential equations; Kernels of type PC; Fractional time
derivative.
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value problem

∂t(k ∗ (b(v)− b(v0)))− div a(x,Dv) = f in QT

v = 0 on Σ.

(1.1)

Here, T > 0, QT := (0, T ) × Ω is the space-time cylinder, Σ := (0, T ) × ∂Ω,

where ∂Ω denotes the boundary of Ω, Dv stands for the gradient of v with

respect to the spatial variable, k ∈ L1
loc(R+) is a singular kernel and k ∗ v

denotes the convolution on the positive half-line with respect to the time

variable,

(k ∗ v)(t) :=

∫ t

0

k(t− s)v(s) ds, t > 0.

We consider the above problem for L1−data, i.e.,

f ∈ L1(QT ), and v0 : Ω→ R is measurable with b(v0) = u0 ∈ L1(Ω).

The kernel k is assumed to be of type PC, i.e., k is nonnegative, nonincreas-

ing, and there exists a kernel l ∈ L1
loc(R+) such that (k ∗ l)(t) = 1 for every

t > 0.

We will further assume that the kernel k satisfies additional technical condi-

tions which are introduced in the next section.

However, our assumptions on k cover the case of a fractional derivative in

time, i.e., k(t) = t−α/Γ(1−α), α ∈ (0, 1). In this case, the integro-differential
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operator in (1.1) becomes the fractional derivative of order α in the sense of

Riemann-Liouville. Recall that the latter is, for sufficiently smooth v, defined

as

∂αt v(t) := ∂t

∫ t

0

(t− s)−α

Γ(1− α)
v(s) ds, 0 < α < 1. (1.2)

The problem (1.1) then interpolates between the elliptic and the parabolic

problem. Note that both limiting cases, the purely elliptic case with α =

0, k ≡ 1, and the purely parabolic case with α = 1, k = δ0 are not considered

in the present work.

Another example of a kernel which satisfies our assumptions is given by

the time-fractional case with exponential weight, i.e., k(t) = t−αe−µt/Γ(1 −

α), α ∈ (0, 1), µ > 0.

We assume further that the function a : Ω× Rd → Rd is Carathéodory, i.e.,

a(·, ξ) : Ω → Rd is measurable for all ξ ∈ Rd, and a(x, ·) : Rd → Rd is a

continuous vector field for almost every x ∈ Ω. Moreover, for some p > 1,

and p′ := p/(p − 1) we assume that a is monotone, coercive and satisfies a

growth condition, i.e.,

(A1) (a(x, ξ) − a(x, ζ)) · (ξ − ζ) ≥ 0 ∀ξ, ζ ∈ Rd, ξ 6= ζ and almost every

x ∈ Ω,

(A2) ∃c > 0 such that a(x, ξ) · ξ ≥ c|ξ|p, ∀ξ ∈ Rd and almost every x ∈ Ω,

(A3) ∃Λ > 0, j ∈ Lp′(Ω) such that |a(x, ξ)| ≤ Λ(j(x) + |ξ|p−1) ∀ξ ∈ Rd and
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almost every x ∈ Ω.

Concerning the function b : R→ R, we assume that

(B1) b is continuous, strictly increasing, and satisfies the condition b(0) = 0,

e.g., b(r) = arctan(r), b(r) = |r|m−2r,m > 1. Note that we do not allow b to

be partially constant, in which case (1.1) partially degenerates to an elliptic

problem.

Time fractional diffusion equations of order 0 < α < 1 can be used to model

anomalous diffusion, see [19] and the references therein for more information.

Another application of (1.1) is the transport of fluids in porous media with

memory. In some geothermal areas, the fluids may precipitate minerals in the

pores of the medium, thus diminishing their size. The decrease of permeabil-

ity leads to a history dependence which according to [6] can be represented

by a fractional derivative in time.

Let us recall, see e.g. [2, Appendix I], that even for the elliptic problem with

k ≡ 1 one cannot expect existence of a weak solution for general L1−data.

Moreover, even if there exists a weak solution, this solution is in general

not unique, see [20],[21]. Concerning the history-dependent problem (1.1), it

has been shown in [16, Section 3.1] that the problems of nonexistence and

nonuniqueness of weak solutions to the elliptic problem carry over to the

time-fractional case with k(t) = t−α/Γ(1− α).

In order to overcome these problems, the notion of entropy solution has been

introduced by V. Jakubowski et al. in [17]. Note that (1.1) is a special case
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of the problems considered in the cited article. The authors prove uniqueness

of entropy solution but existence is only shown in the case b = Id.

In the present article we will show existence of an entropy solution to the

problem (1.1) for general b satisfying (B1). The main idea of our existence

proof is a modification of the regularization method by R. Landes, see [18].

Recall that for v ∈ Lp(0, T ;W 1,p
0 (Ω)) the regularization in time vµ of v intro-

duced by R. Landes is, for µ > 0, defined as

vµ(t) :=
1

µ

∫ t

−∞
e

1
µ

(s−t)v(s) ds, 0 < t < T,

where v is extended by some v0 ∈ W 1,p
0 (Ω) for s < 0. It has been used

to prove existence of solutions for a variety of problems, see e.g. [10] for a

parabolic equation, or [1] for an elliptic-parabolic problem without history

dependence. See also [3, 4] for more recent applications.

We introduce a different regularization in time which adapts to the nonlocal

nature of the problem (1.1) and makes use of special properties of PC-kernels,

see Definition 2.2.

We conclude these introductory remarks by giving the definition of the en-

tropy solution. For K > 0 we denote by TK the truncation function defined

by

TK(r) := min(−K,max(r,K)), r ∈ R.
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We will frequently use the notation TK,L := TL − TK , for L > K > 0. Let

Lip(R) be the set of all Lipschitz-continuous real-valued functions,

P := {S ∈ C1(R) : S ′(t) ≥ 0 for every t > 0, suppS ′ is compact, S(0) = 0}.

and define for ϕ ∈ R, S ∈ C(R), and b satisfying (B1),

BS,ϕ(r) :=

∫ r

0

S(%− ϕ) db(%), r ∈ R. (1.3)

Definition 1.1. For n ∈ N let k1,n := (k − n)+ and k2,n := k − k1,n. A

measurable function v : QT → R is called entropy solution to the problem

(1.1) if b(v) ∈ L1(0, T ;L1(Ω)), TK(v) ∈ Lp(0, T ;W 1,p
0 (Ω)) for all K > 0, and

there holds

−
∫
QT

k1,n ∗ (BS,ϕ(v)−BS,ϕ(v0))ξt +

∫
QT

∂t[k2,n ∗ (b(v)− b(v0))]S(v − ϕ)ξ

+

∫
QT

a(x,Dv) ·DS(v − ϕ)ξ ≤
∫
QT

fS(v − ϕ)ξ

(1.4)

for all ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω), ξ ∈ D([0, T )), ξ ≥ 0, S ∈ P , and all n ∈ N.

Note that the uniqueness proof of V. Jakubowski et al. is based on the

stronger assumption that the inequality (1.4) holds true for all nonnegative,

nonincreasing functions k1, k2 ∈ L1
loc([0,∞)) satisfying k1 + k2 = k, and

k2(0+) < ∞, see [17, Definition 1]. However, by going through the cited

6



uniqueness proof, one verifies that the entropy solution remains unique if the

entropy inequality is only valid for all k1,n, k2,n, n ∈ N.

In the next section we give a short introduction to kernels of type PC. The

main emphasis lies on the fundamental identity for integro-differential op-

erators, which plays a crucial role in the existence proof. Moreover, some

examples of PC-kernels are given which satisfy our additional assumptions.

Section 3 is concerned with the existence of entropy solutions. In particu-

lar, we show that the generalized solution of the associated abstract Volterra

equation is an entropy solution.

2 Kernels of Type PC

Kernels of type PC have been introduced by R. Zacher in [25]. In the first

part of this section we recap the basic properties of those kernels. See also

[22],[23], and [24] for a similar exposition. The second part of this section is

devoted to examples of PC-kernels satisfying our additional assumptions.

Definition 2.1. A kernel k ∈ L1
loc([0,∞)) is called to be of type PC if it is

nonnegative, nonincreasing, and there exists a kernel l ∈ L1
loc([0,∞)) such

that

(k ∗ l)(t) = 1 ∀ t > 0. (2.1)
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In this case, we write (k, l) ∈ PC.

For (k, l) ∈ PC we denote by rλ, sλ the solutions to the scalar-valued

Volterra equations

sλ(t) + λ−1(l ∗ sλ)(t) = 1, t > 0, λ > 0, (2.2)

and

rλ(t) + λ−1(l ∗ rλ)(t) = λ−1l(t), t > 0, λ > 0. (2.3)

Note that the variation of constants formula for Volterra integral equations

[14, Part 1, Chapter 2, Theorem 3.5] yields

sλ(t) = 1−
∫ t

0

rλ(τ) dτ, t > 0, λ > 0. (2.4)

Let X be a real Banach space, (k, l) ∈ PC, and define

W 1,p
0=0(0, T ;X) := {v ∈ W 1,p(0, T ;X) : v(0) = 0}, 1 ≤ p <∞.

Then the operator L defined by

Lu = ∂t(k ∗ u), D(L) = {u ∈ Lp(0, T ;X) : k ∗ u ∈ W 1,p
0=0(0, T ;X)} (2.5)

is known to be m-accretive in Lp(0, T ;X), see [7, Theorem 3.1]. Its resolvent
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JLλ = (I + λL)−1, λ > 0, and its Yosida approximation Lλ = LJLλ , λ > 0, can

be written in the form

JLλ v = rλ ∗ v, Lλv = ∂t(kλ ∗ v), (2.6)

where kλ := λ−1sλ, see [22, Theorem 2.1]. Note that (2.6) entails k ∗ rλ =

kλ. By [8, Theorem 2.2], we see that (k, l) ∈ PC implies that l is com-

pletely positive. In particular, sλ and thus kλ are nonnegative and nonin-

creasing [8, Proposition 2.1]. Moreover, it follows from (2.4) that sλ, kλ ∈

W 1,1(0, T ), s′λ = −rλ, and ‖rλ‖L1(0,T ) ≤ 1.

For v ∈ Lp(0, T ;X) we have

(k ∗ l ∗ v)(t) = 1 ∗ v =

∫ t

0

v(s) ds ∈ W 1,p
0=0(0, T ;X), t > 0,

which entails l ∗ v ∈ D(L) for every v ∈ Lp(0, T ;X). In view of (2.6) it

follows

Lλ(l ∗ v) = ∂t(kλ ∗ l ∗ v) = ∂t(k ∗ rλ ∗ l ∗ v) = rλ ∗ v → L(l ∗ v) = v

in Lp(0, T ;X) as λ → 0, which shows rλ ∗ v → v in Lp(0, T ;X) for any

v ∈ Lp(0, T ;X). In particular,

kλ = rλ ∗ k → k in L1(0, T ), (2.7)
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as λ→ 0.

We are now in a position to introduce our modification of the time regular-

ization from R. Landes.

Definition 2.2. Let X be a real Banach space, X∗ its dual, and 1 ≤ p′ <∞.

For v ∈ Lp′(0, T ;X∗) let vµ ∈ Lp
′
(0, T ;X∗) be defined by

vµ(t) =

∫ T

t

rµ(τ − t)v(τ) dτ, t ∈ (0, T ), µ > 0. (2.8)

In the sequel the index µ is used in this meaning only.

Note that if p′ = p/(p − 1), then vµ = JL
∗

µ v, where L∗ : D(L∗) ⊂

Lp
′
(0, T ;X∗)→ Lp

′
(0, T ;X∗) is the adjoint of the operator L defined in (2.5).

As a consequence, we have vµ → v in Lp′(0, T ;X∗) for any v ∈ Lp′(0, T ;X∗)

as µ→ 0. The following lemma is needed in our proof of existence.

Lemma 2.3. Let µ > 0, and assume that v ∈ L∞(QT ). Then vµ ∈ L∞(QT )

and

‖vµ‖L∞(QT ) ≤ ‖v‖L∞(QT ).

Proof. Since L∞(QT ) ⊂ Lp(QT ) ∼= Lp(0, T ;Lp(Ω)) for any p ∈ [1,∞) we

have vµ ∈ Lp(0, T ;Lp(Ω)) for all p ∈ [1,∞). If we set rµ(t) := 0 if t /∈ (0, T )

and define r∨µ (t) := rµ(−t) it follows

vµ(t) =

∫
R
r∨µ (t− τ)v(τ) dτ.
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Thus, Young’s inequality and ‖rµ‖L1(0,T ) ≤ 1 yield

‖vµ‖Lp(0,T ;Lp(Ω)) ≤ ‖rµ‖L1(0,T )‖v‖Lp(0,T ;Lp(Ω)) ≤ ‖v‖Lp(0,T ;Lp(Ω)) (2.9)

for all p ∈ [1,∞). Identifying Lp(0, T ;Lp(Ω)) with Lp(QT ) and passing to

the limit with p→∞ yields the result.

We next formulate the fundamental identity for integro-differential opera-

tors of the form ∂t(k ∗ u).

Lemma 2.4. Let T > 0 and U be an open subset of R. Let further k ∈

W 1,1(0, T ), H ∈ C1(U), and v ∈ L1(0, T ) with v(t) ∈ U for almost all t ∈

(0, T ). Suppose that the functions H(v), H ′(v)v and H ′(v)(k ∗ v) belong to

L1(0, T ). Then we have for almost all t ∈ (0, T )

H ′(v(t))∂t(k ∗ v)(t) = ∂t(k ∗H(v))(t) + (H ′(v(t))v(t)−H(v(t)))k(t)

+

∫ t

0

(H(v(t− s))−H(v(t))−H ′(v(t))[v(t− s)− v(t)])[−k′(s)] ds.

(2.10)

Taking into account that ∂t(k ∗ u) = k(0)u + k′ ∗ u and ∂t(k ∗ H(u)) =

k(0)H(u)+k′∗H(u), the fundamental identity follows from a straightforward

computation. Note that the last term on the right-hand side is nonnegative

in case H is convex and k is nonincreasing so that (2.10) reads as

H ′(v(t))∂t(k ∗ v)(t) ≥ ∂t(k ∗H(v))(t) + (H ′(v(t))v(t)−H(v(t)))k(t).
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Due to a lack of regularity, the fundamental identity is not applicable to

kernels of type PC. However, if k(t) = Γ(1−α)−1t−α, α ∈ (0, 1), and H(r) =

1
2
r2, a similar inequality is also valid, see [11, Lemma 3.1]. The following

lemmas are an immediate consequence of (2.10) and will frequently be used

in the sequel.

Lemma 2.5. Let v ∈ L∞(0, T ), k a PC-kernel, and, for λ > 0, let kλ be

the kernel of the Yosida approximation of the operator defined in (2.5), and

assume that b satisfies (B1). Then we have for all K > 0 and almost all

t > 0

∂t[kλ ∗ b(v)](t)TK(v(t))

= ∂t[kλ ∗
∫ v

0

TK(σ) db(σ)](t) + [Tk(v(t))b(v(t))−
∫ v(t)

0

TK(σ) db(σ)]kλ(t)

+

∫ t

0

[

∫ v(t−s)

v(t)

TK(σ) db(σ)− Tk(v(t))(b(v(t− s))− b(v(t)))][−k′λ(s)] ds

≥ ∂t[kλ ∗
∫ v

0

TK(σ) db(σ)](t).

(2.11)

Proof. Let K > 0, and u ∈ ran(b) which is open, as b is strictly increas-

ing. We define H(u) :=
∫ u

0
TK ◦ b−1(σ) dσ. Consequently, H(b(v(t))) =∫ v(t)

0
TK(σ) db(σ) and H ′(b(v(t)) = TK(v(t)) for a.e. t > 0. Since kλ ∈

W 1,1
loc (R+), we may apply the fundamental identity (2.10) which shows the

first equality. The monotonicity of TK ◦b−1 entails that H is convex. Since kλ

is nonincreasing, it therefore follows that the last term in (2.11) is nonnega-
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tive. Due to the monotonicity of b and the normalization condition b(0) = 0,

we may conclude that the second term on the right in (2.11) is nonnegative

as well, which concludes the proof of the lemma.

Lemma 2.6. Let the assumptions of Lemma 2.5 hold. Then

S(v(t)− ϕ)∂t[kλ ∗ (b(v)− b(v0))](t) ≥ ∂t[kλ ∗
∫ v

v0

S(σ − ϕ) db(σ)](t)

for all S ∈ P, and all ϕ, v0 ∈ R.

Proof. For S ∈ P and ϕ, v0 ∈ R we define H(u) :=
∫ u

0
S ◦ (b−1(σ)− ϕ)dσ −∫ v0

0
S(σ − ϕ) db(σ), u ∈ ran(b). The fundamental identity yields

S(v(t)− ϕ)∂t[kλ ∗ (b(v)− b(v0))](t) = ∂t[kλ ∗
∫ v(t)

v0

S(σ − ϕ) db(σ)

+
[
S(v(t)− ϕ)(b(v(t))− b(v0))−

∫ v(t)

v0

S(σ − ϕ) db(σ)
]
kλ(t)

+

∫ t

0

[ ∫ v(t−s)

v(t)

S(σ − ϕ) db(σ)

− S(v(t)− ϕ)(b(v(t− s))− b(v(t)))
][
− k′λ(s)

]
ds

(2.12)

for almost every t ∈ (0, T ). Since u 7→
∫ u

0
S ◦ (b−1(σ)−ϕ)dσ is convex and kλ

is nonnegative and nonincreasing, we may conclude that the last two terms

are nonnegative and the lemma is proven.

We next formulate our assumptions on the kernel k which are needed in our

proof of existence. Let k be a kernel of type PC and for λ > 0 let kλ be the
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kernels which arise in the characterisation (2.6) of the Yosida approximation.

We assume that k satisfies the following conditions.

(K1) There exist constants C1, C2 > 0 such that

0 ≤ kλ(t) ≤ C1k(t) + C2, λ > 0, t ∈ (0, T ).

(K2) k ∈ ACloc((0, T ]) and there exist constants C1, C2 > 0 such that

0 ≤ −k′λ(t) ≤ −C1k
′(t) + C2, λ > 0, t ∈ (0, T ).

Moreover, the convergence k′λ(t) → k′(t) as λ → 0 holds for almost

every t ∈ (0, T ).

We conclude this section by studying some examples of PC-kernels satisfying

(K1) and (K2).

Example 2.7. The most prominent example of a pair (k, l) ∈ PC is given

by

k(t) = g1−α(t), and l(t) = gα(t), t > 0,

where α ∈ (0, 1) and gβ denotes the Riemann-Liouville kernel

gβ(t) =
tβ−1

Γ(β)
, t > 0, β > 0. (2.13)
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In this case, the operator defined by (2.5) describes the fractional time deriva-

tive of order α in the sense of Riemann-Liouville. Applying the Laplace

transform to equation (2.2) we get

ŝλ(τ) =
τα−1

τα + λ−1
, Re τ > 0, λ > 0, (2.14)

which shows sλ(t) = Eα(−λ−1tα), where Eα is the Mittag-Leffler function

given by Eα(t) =
∑∞

n=0
tn

Γ(αn+1)
, see e.g. [15, Section 7]. Using another

known representation of the Mittag-Leffler function [15, Section 7], it follows

sλ(t) =
sin(απ)

π

∫ ∞
0

e−rt
λ−1rα−1

λ−2 + r2α + 2λ−1rα cos(απ)
dr, t > 0, λ > 0,

which can also be found in the monograph of J. Prüss [9, table 4.1]. Thus,

kλ(t) =
sin(απ)

π

∫ ∞
0

e−rt
rα−1

1 + λ2r2α + 2λrα cos(απ)
dr, t > 0, λ > 0,

and

k′λ(t) = −sin(απ)

π

∫ ∞
0

e−rt
rα

1 + λ2r2α + 2λrα cos(απ)
dr, t > 0, λ > 0.

Using the identity Γ(α)Γ(1− α) = π
sin(απ)

we see that

k(t) =
sin(απ)

π

∫ ∞
0

e−rtrα−1 dr, k′(t) = −sin(απ)

π

∫ ∞
0

e−rtrα dr t > 0.

Thus, k′λ(t)→ k′(t) for all t > 0 as λ→ 0. If α ∈ (0, 1
2
], it easily follows that

15



0 ≤ kλ(t) ≤ k(t) and 0 ≤ −k′λ(t) ≤ −k′(t) for all t > 0 and all λ > 0. If

α ∈ (1
2
, 1), a simple study of functions shows

1 + λ2r2α + 2λrα cos(απ) ≥ 1− cos2(απ), λ > 0, r > 0,

which shows that

0 ≤ kλ(t) ≤
1

1− cos2(απ)
k(t), 0 ≤ −k′λ(t) ≤ −

1

1− cos2(απ)
k′(t)

for all λ > 0 and all t > 0.

Example 2.8. Another example for a pair (k, l) ∈ PC is the time-fractional

case with exponential weight, i.e.,

k(t) = g1−α(t)e−µt, l(t) = gα(t)e−µt + µ(1 ∗ [gα(·)e−µ·])(t), t > 0,

where µ > 0 and α ∈ (0, 1). If we apply the Laplace transform on (2.2) we

may conclude that

ŝλ(z) =
1

z + λ−1(z + µ)1−α , Re(z) > 0, λ > 0.

Note that ŝλ is holomorphic on C\((−∞,−µ]∪{−wλ}), where−wλ ∈ (−µ, 0)

denotes the unique solution of λz + (z + µ)1−α = 0. We will show that sλ is
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given by

sλ(t) =
sin(απ)

π

∫ ∞
µ

e−rt
λ−1(r − µ)α−1

λ−2 + 2rλ−1(r − µ)α−1 cos(απ) + r2(r − µ)2(α−1)
dr

+
(µ− ωλ)α

λ−1(1− α) + (µ− ωλ)α
e−ωλt, t > 0, λ > 0.

To this end, we modify the proof of Lemma 2.1 in [5]. Let δ > 0 such that

ωλ + δ < µ and ωλ − δ > 0. Cauchy’s integral formula yields

ŝλ(p) =
1

2πi

∫
C
ωλ,φ

δ,R

ŝλ(z)

z − p
dz, Re(p) > 0, (2.15)

where p is assumed to be inside the contour Cωλ,φ
δ,R made of two line segments

I± := {z − ωλ ∈ C : δ ≤ |z| ≤ R, arg(z) = ±φ}, φ ∈ (
π

2
, π),

and two arcs

Cδ := {z − ωλ ∈ C : |z| = δ, | arg(z)| ≤ φ}, φ ∈ (
π

2
, π),

CR := {z − ωλ ∈ C : |z| = R, | arg(z)| ≤ φ}, φ ∈ (
π

2
, π).

Note that for z = reiφ, r > 0, φ ∈ (−π, π), we have

|z + λ−1(z + µ)1−α| ≥ |r − λ−1|reiφ + µ|1−α|, λ > 0,
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Re

Im

π − φ
−ωλ−µ p

δ

R

Figure 1: The contour Cωλ,φ
δ,R

which implies for fixed λ > 0

|ŝλ(z)| ≤ 1

r − λ−1|r + µ|1−α
(2.16)

for all r > 0 sufficiently large. Thus, it follows ŝλ(z) → 0 uniformly in φ as

|z| → ∞. As a consequence, we may pass to the limit in (2.15) with R→∞

to obtain

ŝλ(p) =
1

2πi

∫
C
ωλ,φ

δ,∞

ŝλ(z)

z − p
dz, Re(p) > 0.
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Re

Im

φ→ π

−ωλ−µ p

δ

Figure 2: The contour Cωλ,φ
δ,∞ and γδ

Consequently,

ŝλ(p) =
1

2πi

∫ ∞
δ

eiφŝλ(−ωλ + reiφ)

p+ ωλ − reiφ
− e−iφŝλ(−ωλ + re−iφ)

p+ ωλ − re−iφ
dr

+
1

2πi

∫ φ

−φ

δieiσŝλ(−ωλ + δeiσ)

p+ ωλ − δeiσ
dσ.

Note that the inequality (2.16) entails that the first integral converges abso-

lutely. As Re(p) > 0 it follows Re(p+ωλ−re±iφ) > 0 and Re(p+ωλ−δeiσ) > 0

for all φ ∈ (π
2
, π) and all σ ∈ (−π, π). Thus,

1

p+ ωλ − re±iφ
=

∫ ∞
0

e−t(p+ωλ−re
±iφ) dt,
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and

1

p+ ωλ − δeiσ
=

∫ ∞
0

e−t(p+ωλ−δe
iσ) dt.

By Fubini’s theorem, we may therefore conclude that

ŝλ(p) =

∫ ∞
0

fλ(t)e
−pt dt, (2.17)

where

fλ(t) =
1

2πi

∫ ∞
δ

eiφ+t(−ωλ+reiφ)ŝλ(−ωλ + reiφ)

− e−φi+t(−ωλ+re−iφ)ŝλ(−ωλ + re−iφ) dr

+
1

2πi

∫ φ

−φ
δieiσ+t(−ωλ+δeiσ)ŝλ(−ωλ + δeiσ) dσ.

Since

(z + µ)1−α = |z + µ|1−αe(1−α) arg(z+µ)i, z ∈ C \ (−∞,−µ],

we obtain that ŝλ(z) = ŝλ(z) for all z ∈ C \ (−∞,−µ]. Consequently,

ŝλ(−ωλ + reiφ) = ŝλ(−ωλ + re−iφ), r > δ, φ ∈ (
π

2
, π),
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which implies that

fλ = − 1

π

∫ ∞
δ

Im(e−iφ+t(−ωλ+re−iφ)ŝλ(−ωλ + re−iφ)) dr

+
1

2πi

∫ φ

−φ
δieiσ+t(−ωλ+δeiσ)ŝλ(−ωλ + δeiσ) dσ.

(2.18)

If we assume for the moment that the limit

Fλ(r) := lim
φ→π

ŝλ(−wλ + re−iφ)

exists for almost every r > 0 and take into account that (r, φ) 7→ ŝλ(−ωλ +

re−iφ) is bounded on (δ,∞) × (−π, π), we may pass to the limit in (2.18)

with φ→ π to obtain

fλ(t) =
1

π

∫ ∞
δ

e−t(r+ωλ)Im(Fλ(r)) dr +
e−tωλ

2πi

∫
γδ

etz ŝλ(−ωλ + z) dz, (2.19)

where γδ denotes the circle with radius δ and centre −ωλ, see Figure 2. By

the definition of ωλ, the second integrand has an isolated singularity at z = 0.

The residual theorem yields

e−tωλ

2πi

∫
γδ

etz ŝλ(−ωλ + z) dz

= e−ωλtresz ŝλ(−ωλ + ·) =
(µ− ωλ)α

λ−1(1− α) + (µ− ωλ)α
e−ωλt.

(2.20)
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Since

ŝλ(z) =
(z + µ)α−1

z(z + µ)α−1 + λ−1
, z ∈ C \ ((−∞,−µ] ∪ {−ωλ}), (2.21)

and

lim
φ→π

(−ωλ + re−iφ + µ)α−1 =


(µ− ωλ − r)α−1, 0 < r < µ− ωλ

|µ− ωλ − r|α−1e(1−α)πi, r > µ− ωλ

it follows that limφ→π ŝλ(−ωλ + re−iφ) exists for almost all r > 0 and

Im(Fλ(r))

=


0, r < µ− ωλ

sin(απ)λ−1(r−µ+ωλ)α−1

λ−2+2(r+ωλ)λ−1(r−µ+ωλ)α−1 cos(απ)+(r+ωλ)2(r−µ+ωλ)2(α−1) , r > µ− ωλ.

If we combine this result with (2.19),(2.20) and (2.17), we obtain

sλ(t) =
(µ− ωλ)α

λ−1(1− α) + (µ− ωλ)α
e−ωλt

+
sin(απ)

π

∫ ∞
µ

e−rt
λ−1(r − µ)α−1

λ−2 + 2rλ−1(r − µ)α−1 cos(απ) + r2(r − µ)2(α−1)
dr.

The above formula implies the asymptotic behavior already discovered in [24]

but, to the best of our knowledge, the explicit representation of sλ is a new
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result. Since kλ = λ−1sλ, it follows

kλ(t) =
(µ− ωλ)α

(1− α) + λ(µ− ωλ)α
e−ωλt

+
sin(απ)

π

∫ ∞
µ

e−rt
(r − µ)α−1

1 + 2rλ(r − µ)α−1 cos(απ) + λ2r2(r − µ)2α−2
dr.

and

k′λ(t) =− ωλ ·
(µ− ωλ)α

(1− α) + λ(µ− ωλ)α
e−ωλt

− sin(απ)

π

∫ ∞
µ

e−rt
r(r − µ)α−1

1 + 2rλ(r − µ)α−1 cos(απ) + λ2r2(r − µ)2α−2
dr.

As before, the identity Γ(α)Γ(1− α) = π
sin(απ)

shows that

k(t) =
sin(απ)

π

∫ ∞
µ

e−rt(r − µ)α−1 dr,

and

k′(t) = −sin(απ)

π

∫ ∞
µ

e−rtr(r − µ)α−1 dr

for all t > 0. Since −ωλ ∈ (−µ, 0) was defined as the unique solution of

λz + (z + µ)1−α = 0, we see that ωλ → µ as λ→ 0. It follows

k′λ(t)→ −
sin(απ)

π

∫ ∞
µ

e−rtr(r − µ)α−1 dr = k′(t)
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for every t > 0. Moreover, if α ∈ (0, 1
2
], we see that

0 ≤ kλ(t) ≤ k(t) +
µα

1− α
, and 0 ≤ −k′λ(t) ≤ −k′(t) +

µ1+α

1− α

for all t > 0 and all λ > 0. If α ∈ (1
2
, 1), it follows

0 ≤ kλ(t) ≤
1

1− cos2(απ)
k(t) +

µα

1− α
,

and

0 ≤ −k′λ(t) ≤ −
1

1− cos2(απ)
k′(t) +

µ1+α

1− α

for all λ > 0 and all t > 0. In particular, the kernel k(t) = g1−α(t)e−µt

satisfies the conditions (K1) and (K2) for all α ∈ (0, 1) and all µ ≥ 0.

3 Existence

This section is devoted to the existence of entropy solutions to the problem

(1.1). To this end, we define the operator Ab∞ ⊂ L1(Ω)× L1(Ω) by

(b(v), w) ∈ Ab∞ ⇔ v ∈ W 1,p
0 (Ω) ∩ L∞(Ω), w ∈ L1(Ω),

and
∫

Ω

a(x,Dv) ·Dφ =

∫
Ω

wφ

for all φ ∈ W 1,p
0 (Ω) ∩ L∞(Ω).
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It is well known that Ab∞ is an accretive operator in L1(Ω) and that its graph

closure Ab := Ab∞ in L1(Ω) × L1(Ω) is a possibly multivalued m-accretive

operator in L1(Ω). According to [2], the operator Ab can be characterized by

(b(v), w) ∈ Ab ⇔ b(v), w ∈ L1(Ω), TK(v) ∈ W 1,p
0 (Ω) ∩ L∞(Ω) for all K > 0,

and
∫

Ω

a(x,Dv) ·DTK(v − φ) ≤
∫

Ω

wTK(v − φ)

for all φ ∈ W 1,p
0 (Ω) ∩ L∞(Ω).

(3.1)

If we take φ = Tl(v) ± h(v)ξ ∈ W 1,p
0 (Ω) ∩ L∞(Ω), l > 0, as a test function

in (3.1), where h ∈ W 1,∞(R) is compactly supported, ξ ∈ W 1,p
0 (Ω) ∩ L∞(Ω),

and pass to the limit first with l → ∞ and then with K → ∞, we see that

(b(v), w) ∈ Ab implies

∫
Ω

a(x,Dv) ·D(h(v)ξ) =

∫
Ω

wh(v)ξ, (3.2)

see also [12]. Since the above equation holds true for all h ∈ W 1,∞(R)

compactly supported, and all ξ ∈ W 1,p
0 (Ω) ∩ L∞(Ω), we may choose ξ =

S(v − ϕ), where S ∈ P , ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω), and h = hl, where

hl(r) = min((l + 1− |r|)+, 1), r ∈ R, l > 0.
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Passing to the limit with l → ∞ in (3.2) then shows that (b(v), w) ∈ Ab

implies

∫
Ω

a(x,Dv) ·DS(v − ϕ) =

∫
Ω

wS(v − ϕ)ξ (3.3)

for all S ∈ P and all ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω). Recall that by [13, Theorem 1],

the abstract Volterra equation

∂t[k ∗ (u− b(v0))](t) + Ab(u(t)) 3 f(t) (3.4)

admits for b(u0) ∈ D(Ab) and f ∈ L1(0, T ;L1(Ω)) a unique generalized

solution u ∈ L1(0, T ;L1(Ω)). For the special case b = Id it has been shown in

[17, Theorem 7] that this generalized solution is an entropy solution to (1.1).

It is a priori not clear in which sense the generalized solution satisfies (1.1)

for general b . Note that b = Id entails that Ab is m-completely accretive,

in which case the generalized solution satisfies the equation for sufficiently

smooth data in the sense of distributions, a fact on which the cited existence

proof relies on.

In order to overcome this difficulty, let (fλ)λ>0 ⊂ L∞(QT ), (vλ0 )λ>0 ⊂ L∞(Ω),

such that

fλ → f in L1(QT ),

b(vλ0 )→ b(v0) in L1(Ω),
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as λ→ 0. We consider the approximating problem

Lλ(uλ − b(vλ0 ))(t) + Ab(uλ(t)) 3 fλ(t), u(0) = b(vλ0 ), t ∈ (0, T ), λ > 0,

(3.5)

where Lλ is the Yosida approximation of the operator L defined in (2.5) with

X = L1(Ω) and p > 1. According to [13, Theorem 5] the problem (3.5)

admits a unique strong solution uλ = b(vλ), i.e., uλ ∈ L1(0, T ;L1(Ω)), and

there exists a function wλ ∈ L1(0, T ;L1(Ω)) such that wλ(t) ∈ Ab(uλ(t)) for

almost every t ∈ (0, T ) and

Lλ(uλ − b(vλ0 ))(t) + wλ(t) = fλ(t) (3.6)

for almost every t ∈ (0, T ). Moreover, uλ → u ∈ L1(0, T ;L1(Ω)), where u is

the generalized solution to the problem (1.1). The main result of this paper

is the following.

Theorem 3.1. Let v0 : Ω → R be measurable with u0 = b(v0) ∈ L1(Ω) and

f ∈ L1(QT ). Then the generalized solution u to (3.4) is of the form u = b(v),

where v is an entropy solution to (1.1).

Proof. Let uλ = b(vλ) be the strong solution to (3.5) and u be the generalized

solution to (3.4). Our first aim is to show the existence of a measurable func-

tion v : QT → R satisfying b(v) = u and, selecting a subsequence if necessary,

vλ → v a.e. on QT . Since uλ → u in L1(QT ) we can extract a subsequence,
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still denoted by uλ, such that uλ = b(vλ) → u a.e. on QT . Let (t, x) ∈ QT

such that uλ(t, x) → u(t, x) and assume that u(t, x) ∈ ran(b) = (b−, b
+),

where b−, b+ ∈ R, b− < b+. Since b is strictly increasing and continuous, it

follows vλ(t, x)→ v(t, x) for some v(t, x) ∈ R satisfying b(v(t, x)) = u(t, x). If

u(t, x) /∈ ran(b), we may assume without loss of generality that u(t, x) = b+

which clearly implies vλ(t, x) → ∞ =: v(t, x). It remains to show that

|v(t, x)| <∞ for almost every (t, x) ∈ QT . To this end, we choose for K > 0

the truncation TK(vλ(t)) as a test function in (3.5) to find

∫
Ω

∂t[kλ ∗ (b(vλ)− b(vλ0 ))](t)TK(vλ(t))

+

∫
Ω

a(x,Dvλ(t)) ·DTK(vλ(t)) ≤
∫

Ω

fλ(t)TK(vλ(t)),

(3.7)

for almost every t ∈ (0, T ). Here, we used the representation (2.6) of the

Yosida approximation and the characterisation (3.1) of Ab. If we apply

Lemma 2.5 to the first term in (3.7), integrate in time over (0, T ), taking

into account the coercivity condition (A2) of a, this results in

∫
Ω

[kλ ∗
∫ vλ

0

TK(σ) db(σ)](T )

+

∫
QT

[Tk(vλ(t))b(vλ(t))−
∫ vλ(t)

0

TK(σ) db(σ)]kλ(t)

+

∫
QT

∫ t

0

[

∫ vλ(t−s)

vλ(t)

TK(σ) db(σ)

− Tk(vλ(t))(b(vλ(t− s))− b(vλ(t)))][−k′λ(s)] ds

+ c

∫
QT

|DTk(vλ(t))|p ≤ K‖fλ‖L1(QT ) +K

∫
QT

kλ(t)|b(vλ0 )| ≤ KC

(3.8)
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for some constant C = C(f, k, v0, b) > 0 independent of λ. Since all terms on

the left-hand side in (3.8) are nonnegative, it follows by Poincaré’s inequality

that

|{|vλ| ≥ K}| ≤ 1

Kp

∫
QT

|TK(vλ)|p ≤
C

Kp

∫
QT

|DTK(vλ)|p ≤ CK1−p,

where C is a positive constant independent of λ. Passing to the limit with

λ→ 0 and using vλ → v a.e. on QT yield

|{|v| ≥ K}| ≤ CK1−p K→∞−→ 0,

which shows that |{|v| = ∞}| = 0. Consequently, |v| < ∞ a.e. on QT and

therefore b(v(t, x)) = u(t, x) for almost every (t, x) ∈ QT .

By (3.8), we see that (DTK(vλ))λ>0 is a bounded sequence in Lp(QT )d. Thus,

(TK(vλ))λ>0 is a bounded sequence in Lp(0, T ;W 1,p
0 (Ω)), and we may assume

that there exists vK ∈ Lp(0, T ;W 1,p
0 (Ω)) such that TK(vλ) ⇀ vK weakly in

Lp(0, T ;W 1,p
0 (Ω)) as λ→ 0 along an appropriately chosen subsequence. Since

TK(vλ)→ TK(v) a.e. on QT , we obtain vK = TK(v) and therefore TK(vλ) ⇀

TK(v) weakly in Lp(0, T ;W 1,p
0 (Ω)) as λ→ 0. Moreover, the growth condition

(A3) entails that (a(x,DTK(vλ)))λ>0 is a bounded sequence in Lp
′
(QT )d.

Thus, there exist χK ∈ Lp
′
(QT )d and a subsequence, still denoted the same
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way, such that

a(x,DTK(vλ)) ⇀ χK

weakly in Lp′(QT )d. Our next aim is to prove that χK = a(x,DTK(v)). For

l > 0 we denote by hl the function defined by

hl(u) = min((l + 1− |u|)+, 1), u ∈ R.

We are going to show that, up to subsequences,

lim inf
l→∞

lim inf
µ→0

lim inf
λ→0

∫
Qτ

∂t[kλ ∗ (b(vλ)− b(vλ0 ))]

× (TK(vλ)− hl(vλ)TK(v)µ) ≥ 0

(3.9)

for almost every τ ∈ (0, T ). Here, TK(v)µ ∈ Lp(0, T ;W 1,p
0 (Ω)) is the time

regularization of TK(v) introduced in Definition 2.2, and Qτ := (0, τ) × Ω.

As kλ → k in L1(0, T ) and b(vλ0 ) → b(v0) in L1(Ω) it follows kλb(vλ0 ) →

kb(v0) in L1(QT ). By Lemma 2.3, we see that TK(vλ) − hl(vλ)TK(v)µ is

uniformly bounded by 2K and since it converges a.e. on QT towards TK(v)−

hl(v)TK(v)µ we may conclude that

∫
Qτ

kλb(v
λ
0 )[TK(vλ)− hl(vλ)TK(v)µ]

λ→0−→
∫
Qτ

kb(v0)[TK(v)− hl(v)TK(v)µ]
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for every τ ∈ (0, T ). Since TK(v)µ → TK(v) in Lp(0, T ;W 1,p
0 (Ω)), we obtain

∫
Qτ

kb(v0)[TK(v)− hl(v)TK(v)µ]
µ→0−→

∫
Qτ

kb(v0)[TK(v)− hl(v)TK(v)]

for every τ ∈ (0, T ). As hl(u) → 1 for every u ∈ R, we see by Lebesgue’s

theorem that

∫
Qτ

kb(v0)[TK(v)− hl(v)TK(v)]
l→∞−→ 0

for every τ ∈ (0, T ). Thus, it remains to show that

lim inf
l→∞

lim inf
µ→0

lim inf
λ→0

∫
Qτ

∂t(kλ ∗ b(vλ))(TK(vλ)− hl(vλ)TK(v)µ) ≥ 0

for almost every τ ∈ (0, T ). If we apply the fundamental identity (2.10) to

∂t(kλ ∗ b(vλ))hl(vλ), and, for some τ > 0, integrate the resulting equality over
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Qτ we get

−
∫
Qτ

∂t(kλ ∗ b(vλ))hl(vλ)TK(v)µ

=−
∫
Qτ

∂t(kλ ∗
∫ vλ

0

hl(σ) db(σ))TK(v)µ

−
∫
Qτ

[
hl(vλ)b(vλ)−

∫ vλ

0

hl(σ) db(σ)
]
kλTK(v)µ

−
∫
Qτ

∫ t

0

[ ∫ vλ(t−s)

vλ(t)

hl(σ) db(σ)

− hl(vλ(t))(b(vλ(t− s))− b(vλ(t)))
][
− k′λ(s)

]
ds TK(v)µ

=:− I1
λ,µ,l − I2

λ,µ,l − I3
λ,µ,l.

(3.10)

Define, for l ∈ R, the functions T+
l,l+1(r) := Tl,l+1(max(r, 0)), and T−l,l+1(r) :=

Tl,l+1(−max(−r, 0)). Since hl(σ) = T−l,l+1(σ)− T+
l,l+1(σ) + 1 it follows

I2
λ,µ,l =

∫
Qτ

[
T−l,l+1(vλ)b(vλ)−

∫ vλ

0

T−l,l+1(σ) db(σ)
]
kλTK(v)µ

−
∫
Qτ

[
T+
l,l+1(vλ)b(vλ)−

∫ vλ

0

T+
l,l+1(σ) db(σ)

]
kλTK(v)µ
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and

I3
λ,µ,l =

∫
Qτ

∫ t

0

[ ∫ vλ(t−s)

vλ(t)

T−l,l+1(σ) db(σ)

− T−l,l+1(vλ(t))(b(vλ(t− s))− b(vλ(t)))
][
− k′λ(s)

]
dsTK(v)µ

−
∫
Qτ

∫ t

0

[ ∫ vλ(t−s)

vλ(t)

T+
l,l+1(σ) db(σ)

− T+
l,l+1(vλ(t))(b(vλ(t− s))− b(vλ(t)))

][
− k′λ(s)

]
dsTK(v)µ.

Here, we used that

b(vλ)−
∫ vλ

0

1 db(σ) = 0

and

∫ vλ(t−s)

vλ(t)

1 db(σ)− (b(vλ(t− s))− b(vλ(t))) = 0.

We will show that

lim sup
l→∞

lim sup
µ→0

lim sup
λ→0

(I2
λ,µ,l + I3

λ,µ,l) = 0.

For l > 0 we choose Tl,l+1(vλ) as a test function in (3.5). If we use that
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Tl,l+1(vλ) = T1(vλ − Tl(vλ)), it follows by (3.1), (A2), and Lemma 2.5 that

c

∫
Qτ

|DTl,l+1(vλ)|p +

∫
Qτ

[
Tl,l+1(vλ)b(vλ)−

∫ vλ

0

Tl,l+1(σ) db(σ)
]
kλ

+

∫
Qτ

∫ t

0

[ ∫ vλ(t−s)

vλ(t)

Tl,l+1(σ) db(σ)

+ Tl,l+1(vλ(t))(b(vλ(t− s))− b(vλ(t)))
][
− k′λ(s)] ds

≤
∫
Qτ∩{|vλ|>l}

|fλ|+
∫
Qτ∩{|vλ|>l}

kλ|b(vλ0 )|

(3.11)

for every τ ∈ (0, T ). Since vλ → v a.e. on QT and |v| < ∞ a.e. on QT it

follows

lim
l→∞

lim sup
λ→0

∫
Qτ∩{|vλ|>l}

|fλ|+
∫
Qτ∩{|vλ|>l}

kλ|b(vλ0 )| = 0.

As all terms on the left-hand side in (3.11) are nonnegative, we may therefore

conclude that, for every τ ∈ (0, T ),

lim
l→∞

lim sup
λ→0

∫
Qτ

|DTl,l+1(vλ)|p = 0, (3.12)

lim
l→∞

lim sup
λ→0

∫
Qτ

[
Tl,l+1(vλ)b(vλ)−

∫ vλ

0

Tl,l+1(σ) db(σ)
]
kλ = 0,

lim
l→∞

lim sup
λ→0

∫
Qτ

∫ t

0

[ ∫ vλ(t−s)

vλ(t)

Tl,l+1(σ) db(σ)

+ Tl,l+1(vλ(t))(b(vλ(t− s))− b(vλ(t)))
][
− k′λ(s)] ds = 0.

It is easily seen that the corresponding results hold true in case Tl,l+1 is
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replaced by T±l,l+1. In view of Lemma 2.3, it therefore follows

lim sup
l→∞

lim sup
µ→0

lim sup
λ→0

(I2
λ,µ,l + I3

λ,µ,l) = 0.

It remains to show that

lim inf
l→∞

lim inf
µ→0

lim inf
λ→0

∫
Qτ

∂t(kλ ∗ b(vλ))TK(vλ)− I1
λ,µ,l ≥ 0,

for almost every τ ∈ (0, T ). If we integrate (2.11) over Qτ for some τ ∈ (0, T ),

we obtain∫
Qτ

∂t(kλ ∗ b(vλ))TK(vλ)

=

∫
Ω

[kλ ∗
∫ vλ

0

TK(σ) db(σ)](τ)

+

∫
Qτ

[
TK(vλ(t))b(vλ(t))−

∫ vλ(t)

0

TK(σ) db(σ))
]
kλ(t) dt

+

∫
Qτ

∫ t

0

[ ∫ vλ(t−s)

vλ(t)

TK(σ) db(σ)

− TK(vλ(t))(b(vλ(t− s))− b(vλ(t)))
][
− k′λ(s)

]
dsdt.

(3.13)

As it is our intention to pass to the limit with λ→ 0 in the preceding equality,

note that the convergence vλ → v a.e. on QT implies
∫ vλ

0
TK(σ) db(σ) →∫ v

0
TK(σ) db(σ) a.e. on QT . By the definition of the truncation functions TK ,

we have |
∫ vλ

0
TK(σ) db(σ)| ≤ K|b(vλ)|, and since b(vλ) → b(v) in L1(QT ),

we may suppose at least for a subsequence, still denoted the same way, that
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(b(vλ))λ>0 is dominated by an L1(QT )−function. By Lebesgue’s theorem, we

obtain

∫ vλ

0

TK(σ) db(σ)→
∫ v

0

TK(σ) db(σ) (3.14)

in L1(QT ), and

∫
Ω

∫ vλ

0

TK(σ) db(σ)→
∫

Ω

∫ v

0

TK(σ) db(σ)

in L1(0, T ). As kλ → k in L1(0, T ), we may therefore conclude by Young’s

inequality that

∫
Ω

[kλ ∗
∫ vλ

0

TK(σ) db(σ)](·) λ→0−→
∫

Ω

[k ∗
∫ v

0

TK(σ) db(σ)](·).

in L1(0, T ) and, selecting a subsequence if necessary, a.e. on (0, T ). Note

that the convergence (3.14) remains true, if the function TK is replaced by

any S ∈ P . In particular, we have

∫ vλ

0

S(σ − ϕ) db(σ)
λ→0−→

∫ v

0

S(σ − ϕ) db(σ) = BS,ϕ(v) in L1(QT ) (3.15)

for all ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω) and all S ∈ P . In order to pass to the limit in

the remaining integrals of (3.13), note that the nonnegativity of all terms in
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(3.8) entails

∫
Qτ

[
TK(vλ(t))b(vλ(t))−

∫ vλ(t)

0

TK(σ) db(σ))
]
kλ(t) dt

+

∫
Qτ

∫ t

0

[ ∫ vλ(t−s)

vλ(t)

TK(σ) db(σ)

− TK(vλ(t))(b(vλ(t− s))− b(vλ(t)))
][
− k′λ(s)

]
dsdt ≤ C

for all τ ∈ (0, T ) and some constant C = C(K) independent of λ. As the

kernel k satisfies (K1) and (K2), the lemma of Fatou yields

[
TK(v)b(v)−

∫ v

0

TK(σ) db(σ)
]
k ∈ L1(QT ), (3.16)

and

χ(0,t)

[ ∫ v(t−s)

v(t)

TK(σ) db(σ)− TK(v(t))(b(v(t− s))− b(v(t)))
][
− k′(s)

]
∈ L1((0, T )×Qt).

(3.17)
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Moreover, we may pass to the limit in (3.13) with λ→ 0 which leads to

lim inf
λ→0

∫
Qτ

∂t(kλ ∗ b(vλ))TK(vλ)

≥
∫

Ω

[k ∗
∫ v

0

TK(σ) db(σ)](τ)

+

∫
Qτ

[
TK(v(t))b(v(t))−

∫ v(t)

0

TK(σ) db(σ))
]
k(t)

+

∫
Qτ

∫ t

0

[ ∫ v(t−s)

v(t)

TK(σ) db(σ)

− TK(v(t))(b(v(t− s))− b(v(t)))
][
− k′(s)

]
ds

(3.18)

for almost every τ ∈ (0, T ). On the other hand, the compact support of hl

implies that

∂t(kλ ∗
∫ vλ

0

hl(σ) db(σ)) ∈ Lp′(0, T ;W−1,p′(Ω)).

Thus,

I1
λ,µ,l =

∫
Qτ

∂t(kλ ∗
∫ vλ

0

hl(σ) db(σ))TK(v)µ

= 〈Lλ
∫ vλ

0

hl(σ) db(σ), JL
∗

µ TK(v)〉Lp′ (0,τ ;W−1,p′ (Ω))×Lp(0,τ ;W 1,p
0 (Ω))

= 〈LµJLλ
∫ vλ

0

hl(σ) db(σ), TK(v)〉Lp′ (0,τ ;W−1,p′ (Ω))×Lp(0,τ ;W 1,p
0 (Ω))

(3.19)

for every τ ∈ (0, T ). Here, we used that v ∈ D(L) entails JLµLv = LJLµ v for
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any µ > 0. In particular,

JLµLλv = LJLµ J
L
λ v = LµJ

L
λ v

for all v ∈ Lp
′
(0, T ;W−1,p′(Ω)) and all λ, µ > 0. As hl is compactly sup-

ported, we may conclude that
( ∫ vλ

0
hl(σ) db(σ)

)
λ>0

is uniformly bounded.

By Lebesgue’s theorem, it follows

∫ vλ

0

hl(σ) db(σ)→
∫ v

0

hl(σ) db(σ) in Lp
′
(QT ).

Since JLλ is a bounded operator satisfying JLλ v → v in Lp′(0, T ;W−1,p′(Ω)) for

all v ∈ Lp′(0, T ;W−1,p′(Ω)) as λ → 0, the continuous embedding Lp′(Ω) ↪→

W−1,p′(Ω) yields

JLλ

∫ vλ

0

hl(σ) db(σ)→
∫ v

0

hl(σ) db(σ) in Lp
′
(0, T ;W−1,p′(Ω)).

Thus, the continuity of the Yosida approximation Lµ implies

I1
λ,µ,l

λ→0−→ 〈Lµ
∫ v

0

hl(σ) db(σ), TK(v)〉Lp′ (0,τ ;W−1,p′ (Ω))×Lp(0,τ ;W 1,p
0 (Ω))

=

∫
Qτ

∂t(kµ ∗
∫ v

0

hl(σ) db(σ))TK(v)

for every τ ∈ (0, T ). As it is our intention to apply the fundamental

identity (2.10) to the term ∂t(kµ ∗
∫ v

0
hl(σ) db(σ))TK(v), we define gl(u) :=
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∫ u
0
hl(σ) db(σ), u ∈ R and

H(u) :=

∫ u

0

TK ◦ g−1
l (σ) dσ, u ∈ ran(gl).

Using the transformation σ 7→ gl(σ), we see that

H(gl(v(t))) =

∫ v(t)

0

TK(σ) dgl(σ), t ∈ (0, T ).

By the definition of gl, the measure dgl is absolutely continuous with re-

spect to db and the Radon-Nikodym derivative is given by hl. Thus, the

fundamental identity yields

−
∫
Qτ

∂t(kµ ∗
∫ v

0

hl(σ) db(σ))TK(v)

= −
∫

Ω

(kµ ∗
∫ v

0

TK(σ)hl(σ) db(σ))(τ)

−
∫
Qτ

[
TK(v(t))

∫ v(t)

0

hl(σ) db(σ)−
∫ v(t)

0

TK(σ)hl(σ) db(σ)
]
kµ(t)

−
∫
Qτ

∫ t

0

[ ∫ v(t−s)

v(t)

TK(σ)hl(σ) db(σ)

− TK(v(t))

∫ v(t−s)

v(t)

hl(σ) db(σ)
][
− k′µ(s)

]
ds.

(3.20)

Since kµ → k in L1(0, T ), it follows from Young’s inequality that

∫
Ω

[kµ ∗
∫ v

0

TK(σ)hl(σ) db(σ)]
µ→0−→

∫
Ω

[k ∗
∫ v

0

TK(σ)hl(σ) db(σ)]

40



in L1(0, T ), and, selecting a subsequence if necessary, a.e. on (0, T ). Since

hl(u)→ 1 for every u ∈ R, and 0 ≤ hl ≤ 1, we see that

∫ v

0

TK(σ)hl(σ) db(σ)→
∫ v

0

TK(σ) db(σ)

a.e. on QT . Since the function b satisfies (B1) and 0 ≤ hl ≤ 1, it follows

0 ≤
∫ v

0

TK(σ)hl(σ) db(σ) ≤
∫ v

0

TK(σ) db(σ)

a.e. on QT . Since the kernel k is nonnegative, Lebesgue’s theorem implies

∫
Ω

[k ∗
∫ v

0

TK(σ)hl(σ) db(σ)]
l→∞−→

∫
Ω

[k ∗
∫ v

0

TK(σ) db(σ)].

in L1(0, T ) and, selecting a subsequence if necessary, a.e. on (0, T ). In

order to pass to the limit in the remaining integrals of (3.20), note that the

condition (B1) and 0 ≤ hl ≤ 1 also imply

0 ≤ TK(v)

∫ v

0

hl(σ) db(σ)−
∫ v

0

TK(σ)hl(σ) db(σ)

≤ TK(v)b(v)−
∫ v

0

TK(σ) db(σ)
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a.e. on QT , and

0 ≤
∫ v(t−s)

v(t)

TK(σ)hl(σ) db(σ)− TK(v(t))

∫ v(t−s)

v(t)

hl(σ) db(σ)

≤
∫ v(t−s)

v(t)

TK(σ) db(σ)− TK(v(t))(b(v(t− s))− b(v(t)))

a.e. on (0, T )×Qt. By (3.16) and (3.17) we have

[
TK(v)b(v)−

∫ v

0

TK(σ) db(σ)
]
k ∈ L1(QT ),

and

χ(0,t)

[ ∫ v(t−s)

v(t)

TK(σ) db(σ)−TK(v(t))(b(v(t− s))− b(v(t)))
][
− k′(s)

]
∈ L1((0, T )×Qt).

Since kµ is nonnegative, nonincreasing and satisfies (K1) and (K2), we may

therefore apply Lebesgue’s theorem to obtain

lim
l→∞

lim
µ→0

∫
Qτ

[
TK(v(t))

∫ v(t)

0

hl(σ) db(σ)

−
∫ v(t)

0

TK(σ)hl(σ) db(σ)
]
kµ(t)

=

∫
Qτ

[
TK(v(t))b(v(t))−

∫ v(t)

0

TK(σ) db(σ)
]
k(t)
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for every τ ∈ (0, T ), and

lim
l→∞

lim
µ→0

∫
Qτ

∫ t

0

[ ∫ v(t−s)

v(t)

TK(σ)hl(σ) db(σ)

− TK(v(t))

∫ v(t−s)

v(t)

hl(σ) db(σ)
][
− k′µ(s)

]
ds

=

∫
Qτ

∫ t

0

[ ∫ v(t−s)

v(t)

TK(σ) db(σ)

− TK(v(t))(b(v(t− s))− b(v(t)))
][
− k′(s)

]
ds.

for every τ ∈ (0, T ). Thus, passing to the limit in (3.19) yields

lim
l→∞

lim
µ→0

lim
λ→0

I1
λ,µ,l

=

∫
Ω

[k ∗
∫ v

0

TK(σ) db(σ)](τ)

+

∫
Qτ

[
TK(v(t))b(v(t))−

∫ v(t)

0

TK(σ) db(σ))
]
k(t)

+

∫
Qτ

∫ t

0

[ ∫ v(t−s)

v(t)

TK(σ) db(σ)

− TK(v(t))(b(v(t− s))− b(v(t)))
][
− k′(s)

]
ds

(3.21)

for almost every τ ∈ (0, T ). By (3.18) and (3.21), we obtain

lim inf
l→∞

lim inf
µ→0

lim inf
λ→0

∫
Qτ

∂t(kλ ∗ b(vλ))TK(vλ)− I1
λ,µ,l ≥ 0

for almost every τ ∈ (0, T ) which concludes the proof of (3.9).

Fix τ > 0 such that (3.9) holds. If we choose TK(vλ)−hl(vλ)TK(v)µ as a test
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function in (3.5), and integrate over Qτ , we obtain by using (3.1) and (3.2)

∫
Qτ

∂t[kλ ∗ (b(vλ)− b(vλ0 ))](TK(vλ)− hl(vλ)TK(v)µ)

+

∫
Qτ

a(x,Dvλ) ·D[TK(vλ)− hl(vλ)TK(v)µ]

≤
∫
Qτ

fλ(TK(vλ)− hl(vλ)TK(v)µ).

Since

lim
l→∞

lim
µ→0

lim
λ→0

∫
Qτ

fλ(TK(vλ)− hl(vλ)TK(v)µ) = 0,

we see that (3.9) entails

lim sup
l→∞

lim sup
µ→0

lim sup
λ→0

∫
Qτ

a(x,Dvλ) ·D[TK(vλ)− hl(vλ)TK(v)µ] ≤ 0.

(3.22)

As |h′l(u)| = 1 if |u| ∈ (l, l+ 1) and h′(u) = 0 if |u| > l+ 1 or |u| < l, we have

∫
Qτ

a(x,Dvλ) ·D[(hl(vλ)− 1)TK(vλ)]

≤
∫
Qτ

(hl(vλ)− 1)a(x,Dvλ) ·DTK(vλ)

+

∫
Qτ∩{l<|vλ|<l+1}

|a(x,Dvλ) ·DvλTK(vλ)|.

Note that the first integral equals zero if l > K. If we apply the growth
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condition (A3) and Hölder’s inequality, it follows

∫
Qτ∩{l<|vλ|<l+1}

|a(x,Dvλ) ·DvλTK(vλ)| ≤ C

∫
Qτ∩{l<|vλ|<l+1}

|Dvλ|p,

for some constant C = C(j,K) > 0 independent of λ. Consequently, (3.12)

shows that the inequality (3.22) implies

lim sup
l→∞

lim sup
µ→0

lim sup
λ→0

∫
Qτ

a(x,Dvλ) ·D[hl(vλ)(TK(vλ)− TK(v)µ)] ≤ 0.

(3.23)

The growth condition (A3), Lemma 2.3 and Hölder’s inequality imply the

existence of a constant C = C(j,K) such that

−
∫
Qτ

h′l(vλ)a(x,Dvλ) ·Dvλ[(TK(vλ)− TK(v)µ)]

≤ C

∫
Qτ∩{l<|vλ|<l+1}

|Dvλ|p.

According to (3.23), it follows

lim sup
l→∞

lim sup
µ→0

lim sup
λ→0

∫
Qτ

hl(vλ)a(x,Dvλ) ·D[TK(vλ)− TK(v)µ] ≤ 0.

(3.24)
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Since hl(vλ) = 0 on {|vλ| > l + 1}, we see that

∫
Qτ∩{|vλ|>K}

hl(vλ)a(x,Dvλ) ·DTK(v)µ

=

∫
Qτ∩{|vλ|>K}

hl(vλ)a(x,DTl+1(vλ)) ·DTK(v)µ

=

∫
Qτ∩{|vλ|>K}∩{|v|6=K}

hl(vλ)a(x,DTl+1(vλ)) ·DTK(v)µ

+

∫
Qτ∩{|vλ|>K}∩{|v|=K}

hl(vλ)a(x,DTl+1(vλ)) ·DTK(v)µ.

(3.25)

As 1{|vλ|>K} → 1{|v|>K} a.e. on {|v| 6= K} and a(x,DTl+1(vλ)) ⇀ χl+1 in

Lp
′
(Qτ )

d the first integral on the right hand side converges to

∫
Qτ∩{|v|>K}

hl(v)χl+1 ·DTK(v)µ

as λ→ 0. Since 1{|vλ|>K}a(x,DTl+1(vλ)) is bounded in Lp′(Qτ ∩{|v| = K})d

there exists χ̃l+1 ∈ Lp
′
(Qτ∩{|v| = K})d and a subsequence, still indicated the

same way, such that 1{|vλ|>K}a(x,DTl+1(vλ)) ⇀ χ̃l+1 in Lp
′
(Qτ∩{|v| = K})d.

Thus, the second integral on the right hand side in (3.25) converges to

∫
Qτ∩{|v|=K}

hl(v)χ̃l+1 ·DTK(v)µ,

as λ → 0. Since TK(v)µ → TK(v) in Lp(0, T ;W 1,p
0 (Ω)) as µ → 0 it follows
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from (3.25) that

lim
µ→0

lim
λ→0

∫
Qτ∩{|vλ|>K}

hl(vλ)a(x,Dvλ) ·DTK(v)µ

=

∫
Qτ∩{|v|>K}

hl(v)χl+1 ·DTK(v) +

∫
Qτ∩{|v|=K}

hl(v)χ̃l+1 ·DTK(v) = 0,

where we used that DTK(v) = 0 on {|v| ≥ K}. Consequently, (3.24) is

equivalent to

lim sup
l→∞

lim sup
µ→0

lim sup
λ→0

∫
Qτ

hl(vλ)a(x,DTK(vλ)) ·D[(TK(vλ)− TK(v)µ)] ≤ 0.

If l > K, we have hl(vλ) = 1 on {|vλ| ≤ K} and we may conclude that

lim sup
µ→0

lim sup
λ→0

∫
Qτ

a(x,DTK(vλ)) ·D[(TK(vλ)− TK(v)µ)] ≤ 0.

Since DTK(v)µ → DTK(v) in Lp(QT )d and a(x,DTK(vλ)) ⇀ χK in Lp′(QT )d,

it follows that

lim sup
λ→0

∫
Qτ

a(x,DTK(vλ)) ·DTK(vλ) ≤
∫
Qτ

χK ·DTK(v). (3.26)

The monotonicity condition (A1) entails

∫
Qτ

(a(x,DTK(vλ))− a(x,H)) · (DTK(vλ)−H) ≥ 0

for all H ∈ Lp(Qτ )
d and all λ > 0. If we pass to the limit with λ→ 0 in the
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preceding inequality, using DTK(vλ) ⇀ DTK(v) in Lp(QT )d and (3.26), we

obtain

∫
Qτ

(χK − a(x,H)) · (DTK(v)−H) ≥ 0

for all H ∈ Lp(Qτ )
d. As the operator A : Lp(Qτ )

d → Lp
′
(Qτ )

d defined

by Av = a(·, v) is maximal monotone, it follows χK = a(x,DTK(v)) in

Lp
′
(Qτ )

d. Since the inquality (3.9) holds true for almost every τ ∈ (0, T ), and

a(x,DTK(v)) ⇀ χK in Lp′(QT ), we may conclude that χK = a(x,DTK(v))

in Lp′(QT )d.

We are now in a position to prove that u = b(v) is an entropy solution to

(1.1). Let S ∈ P , ξ ∈ D([0, T )), ξ ≥ 0, ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω). If we choose

S(vλ − ϕ)ξ as a test function in (3.5) and integrate in time over (0, T ), we

obtain

∫
QT

∂t[kλ ∗ (b(vλ)− b(vλ0 ))]S(vλ − ϕ)ξ

+

∫
QT

a(x,Dvλ) ·DS(vλ − ϕ)ξ =

∫
QT

fλS(vλ − ϕ)ξ,

where we used (3.2). For n ∈ N we define k1,λ,n := (kλ − n)+ and k2,λ,n :=

kλ− k1,λ,n. Note that k1,λ,n + k2,λ,n = kλ and that kλ → k in L1(0, T ) implies

k1,λ,n → k1,n and k2,λ,n → k2,n in L1(0, T ), where k1,n, k2,n are as in the
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definition of the entropy solution. If we apply Lemma 2.6 to k1,λ,n it follows

−
∫
QT

k1,λ,n ∗
∫ vλ

vλ0

S(σ − ϕ) db(σ)ξt

+

∫
QT

∂t[k2,λ,n ∗ (b(vλ)− b(vλ0 ))]S(vλ − ϕ)ξ

+

∫
QT

a(x,Dvλ) ·DS(vλ − ϕ)ξ ≤
∫
QT

fλS(vλ − ϕ)ξ.

(3.27)

By (3.15), we have
∫ vλ

0
S(σ − ϕ) db(σ) →

∫ v
0
S(σ − ϕ) db(σ) = BS,ϕ(v) in

L1(QT ) and
∫ vλ0

0
S(σ − ϕ) db(σ)→

∫ v0
0
S(σ − ϕ) db(σ) in L1(Ω). Thus,

−
∫
QT

k1,λ,n ∗
∫ vλ

vλ0

S(σ − ϕ) db(σ)ξt
λ→0−→ −

∫
QT

[k1,n ∗ (BS,ϕ(v)−BS,ϕ(v0))ξt.

The triangle inequality yields

‖∂tk2,λ,n ∗ (b(vλ)− b(vλ0 ))− ∂tk2,n ∗ (b(v)− b(v0))‖L1(QT )

≤ ‖∂tk2,λ,n ∗ [(b(vλ)− b(vλ0 ))− (b(v)− b(v0))]‖L1(QT )

+ ‖∂tk2,λ,n ∗ (b(v)− b(v0))− ∂tk2,n ∗ (b(v)− b(v0))‖L1(QT )

=: Anλ +Bn
λ .

As k2,λ,n ∈ W 1,1(0, T ) satisfies 0 ≤ k2,λ,n(0) ≤ n for all λ > 0 and n ∈ N, it

follows by Young’s inequality that

Anλ ≤ n‖b(vλ)− b(vλ0 )− (b(v)− b(v0))‖L1(QT )

+ ‖k′2,λ,n‖L1(0,T )‖b(vλ)− b(vλ0 )− (b(v)− b(v0))‖L1(QT )
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for all λ > 0 and n ∈ N. Since k′2,λ,n is nonnegative and nonincreasing, we

have

‖k′2,λ,n‖L1(0,T ) ≤ k2,λ,n(0) ≤ n

for all λ > 0 and n ∈ N, which shows that Anλ → 0 as λ → 0. Moreover, we

see that supλ>0(var[0,T ]k2,λ,n) ≤ n for every n ∈ N. Thus, we may conclude by

[13, Lemma 3.4] that Bn
λ → 0 as λ→ 0. It follows ∂tk2,λ,n ∗ [b(vλ)− b(vλ0 )]→

∂tk2,n ∗ [b(v) − b(v0)] in L1(QT ) as λ → 0. Since S ∈ P is a bounded,

continuous function, we therefore obtain

∫
QT

∂t[k2,λ,n ∗ (b(vλ)− b(vλ0 ))]S(vλ − ϕ)ξ

λ→0−→
∫
QT

∂t[k2,n ∗ (b(v)− b(v0))]S(v − ϕ)ξ.

In order to pass to the limit in the third integral on the left-hand side in

(3.27), let R > 0 such that suppS ′ ⊂ [−R,R] and define K := ‖ϕ‖∞ + R.
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By the monotonicity assumption (A1) it follows

∫
QT

a(x,Dvλ) ·DS(vλ − ϕ)ξ

=

∫
QT

a(x,DTK(vλ)) ·D[TK(vλ)−DTK(v)]S ′(vλ − ϕ)ξ

+

∫
QT

a(x,DTK(vλ)) ·DTK(v)S ′(vλ − ϕ)ξ

−
∫
QT

a(x,DTK(vλ)) ·DϕS ′(vλ − ϕ)ξ

≥
∫
QT

a(x,DTK(v)) ·D[TK(vλ)−DTK(v)]S ′(vλ − ϕ)ξ

+

∫
QT

a(x,DTK(vλ)) ·D[TK(v)− ϕ]S ′(vλ − ϕ)ξ.

As S ′ is for every S ∈ P a bounded, continuous function, the convergence

vλ → v almost everywhere on QT and Lebesgue’s theorem imply

D[TK(v)− ϕ]S ′(vλ − ϕ)→ DS(v − ϕ) in Lp(QT )d

and

a(x,DTK(v))S ′(vλ − ϕ)→ a(x,DTK(v))S ′(v − ϕ) in Lp
′
(QT )d.

Since a(x,DTK(vλ)) ⇀ a(x,DTK(v)) weakly in Lp
′
(QT )d and DTK(vλ) ⇀

DTK(v) weakly in Lp(QT )d, we may pass to the limit in the preceding in-
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equality to obtain

lim inf
λ→0

∫
QT

a(x,Dvλ) ·DS(vλ − ϕ)ξ ≥
∫
QT

a(x,Dv) ·DS(v − ϕ)ξ.

Since, by Lebesgue’s theorem,

∫
QT

fλS(vλ − ϕ)ξ
λ→0−−→

∫
QT

fS(v − ϕ)ξ,

we may conclude that v is an entropy solution to (1.1).
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