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Abstract This paper is concerned with an optimal control problem governed by a non-

smooth semilinear elliptic equation. We show that the control-to-state mapping is direc-

tionally di�erentiable and precisely characterize its Bouligand subdi�erential. By means of

a suitable regularization, �rst-order optimality conditions including an adjoint equation

are derived and afterwards interpreted in light of the previously obtained characterization.

In addition, the directional derivative of the control-to-state mapping is used to establish

strong stationarity conditions. While the latter conditions are shown to be stronger, we

demonstrate by numerical examples that the former conditions are amenable to numerical

solution using a semi-smooth Newton method.

1 introduction

In this paper, we consider the following non-smooth semilinear elliptic optimal control problem

min

u ∈L2(Ω),y ∈H 1

0
(Ω)

J (y,u)

s.t. − ∆y +max(0,y) = u in Ω,

 (P)

where Ω ⊂ Rd
, d ∈ N, is a bounded domain and J is a smooth objective; for precise assumptions

on the data, we refer to Assumption 1.1 below. The semilinear PDE in (P) models the de�ection

of a stretched thin membrane partially covered by water (see [18]); a similar equation arises in

free boundary problems for a con�ned plasma; see, e.g., [18, 31, 35].

The salient feature of (P) is of course the occurrence of the non-smooth max-function in

the equality constraint in (P). This causes the associated control-to-state mapping u 7→ y
to be non-smooth as well, and hence standard techniques for obtaining �rst-order necessary

optimality conditions that are based on the adjoint of the Gâteaux-derivative of the control-to-

state mapping cannot be applied. One remedy to cope with this challenge is to apply generalized
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di�erentiability concepts for the derivation of optimality conditions. Such concepts and the

resulting conditions can be roughly grouped in two classes:

(i) (generalized) directional derivatives, leading to “purely primal” optimality conditions

stating that the directional derivatives of the reduced objective in feasible directions are

non-negative;

(ii) various notions of subdi�erentials, leading to abstract optimality conditions stating that

zero is contained in a suitable subdi�erential of the reduced objective.

For an introductory treatment of generalized derivatives and their relation in �nite and/or in�nite

dimensions, we refer to, e.g., the textbooks [5, 29, 32, 34]; a more general, in�nite-dimensional,

treatment can be found in [25]. However, with the exception of the convex setting, concrete

(and, in particular, numerically tractable) characterizations of these abstract conditions are only

available in a restricted set of situations; see, e.g., [6, 11, 20, 26]. To be more precise, it is frequently

unclear if these abstract optimality conditions – whether of type (i) or (ii) – are equivalent to

optimality systems involving dual variables. (We recall that even in the convex setting, deriving

such systems from conditions of type (ii) requires regularity conditions of, e.g., Slater type,

which do not hold in all cases. Such regularity conditions are even more restrictive for Clarke

and limiting subdi�erentials.) For selected optimal control problems governed by variational

inequalities (VIs), purely primal optimality conditions of type (i) have been transformed into

optimality systems known as strong stationarity conditions. We refer to [23, 24, 27, 38, 39] for

obstacle-type problems, to [12] for static elastoplasticity, to [21] for bilevel optimal control of

ODEs, and to [8] for VIs of the second kind. In [22], the equivalence of strong stationarity to

purely primal conditions of type (i) is shown for optimal control of non-smooth semilinear

parabolic equations. Concerning the comparison of conditions of type (ii) with optimality

systems involving dual variables for optimal control of non-smooth problems, the literature is

comparatively scarce. Frequently, regularization and relaxation methods, respectively, are used

to derive optimality systems, and there are numerous contributions in this �eld; we only refer

to [1, 2, 13, 17, 33, 36] and the references therein. A limit analysis for vanishing regularization

then yields an optimality system for the original non-smooth problem which is usually of

intermediate strength and less rigorous compared to strong stationarity. A classi�cation of

the di�erent optimality systems involving dual variables for the case of optimal control of the

obstacle problem can be found in [10, 14]. In [15, 27, 40], optimality conditions for the case of VIs

of the �rst kind are obtained by using limiting normal cones. As shown in [10, Thm. 5.7], this

approach does in general not lead to optimality conditions which are more rigorous than what is

obtained by regularization (even if the limiting normal cone in the spirit of Mordukhovich is used).

On the other hand, it is known for the case of �nite-dimensional mathematical programs with

equilibrium constraints that under suitable assumptions, the optimality conditions obtained via

regularization are equivalent to zero being in the Clarke subdi�erential of the reduced objective;

see, e.g., [4, Sec. 2.3.3]. The latter two results show that a comparison of an optimality system

involving dual variables with conditions of type (ii) is in general far from evident, and we are

not aware of any contributions in this direction for the case of optimal control of non-smooth

PDEs. This is of particular interest, however, since optimality conditions of type (ii) may be

satis�ed by accumulation points of sequences generated by optimization algorithms; see [16].
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The aim of our paper is to investigate this connection for the particular optimal control

problem (P). For this purpose, we turn our attention to the Bouligand subdi�erential of the

control-to-state mapping, de�ned as the set of limits of Jacobians of smooth points in the

spirit of, e.g., [28, Def. 2.12] or [19, Sec. 1.3]. Note that in in�nite-dimensional spaces, one has

to pay attention to the topology underlying these limit processes so that multiple notions

of Bouligand subdi�erentials arise, see De�nition 3.1 below. We will precisely characterize

these subdi�erentials and use this result to interpret the optimality conditions arising in the

regularization limit. We emphasize that the regularization and the associated limit analysis are

not novel and fairly straightforward. The main contribution of our work is the characterization

of the Bouligand subdi�erential as a set of linear PDE solution operators; see Theorem 3.16. This

characterization allows a comparison of the optimality conditions obtained by regularization

with standard optimality conditions of type (ii) (speci�cally, involving Bouligand and Clarke

subdi�erentials), which shows that the former are surprisingly strong; cf. Theorem 4.7. On

the other hand, it is well-known that one loses information in the regularization limit, and the

same is observed in case of (P). In order to see this, we establish another optimality system,

which is equivalent to a purely primal optimality condition of type (i). It will turn out that the

optimality system derived in this way is indeed stronger than the one obtained via regularization

since it contains an additional sign condition for the adjoint state. It is, however, not clear how

to solve these strong stationarity conditions numerically. In contrast to this, the optimality

system arising in the regularization limit allows a reformulation as a non-smooth equation

that is amenable to solution by semi-smooth Newton methods. We emphasize that we do not

employ the regularization procedure for numerical computations, but directly solve the limit

system instead. Our work includes �rst steps into this direction, but the numerical results are

preliminary and give rise to future research.

Let us �nally emphasize that our results and the underlying analysis are in no way limited to

the PDE in (P). Instead, the arguments can easily be adapted to more general cases involving

a piecewise C1
-function rather than the max-function and a (smooth) divergence-gradient-

operator instead of the Laplacian. However, in order to keep the discussion as concise as possible

and to be able to focus on the main arguments, we restrict the analysis to the speci�c PDE under

consideration.

The outline of the paper is as follows: This introduction ends with a short subsection on

our notation and the standing assumptions. We then turn to the control-to-state mapping,

showing that it is globally Lipschitz and directionally di�erentiable and characterizing points

where it is Gâteaux-di�erentiable. Section 3 is devoted to the characterization of the Bouligand

subdi�erentials. We �rst state necessary conditions that elements of the subdi�erentials have

to ful�ll. Afterwards, we prove that these are also su�cient, which is by far more involved

compared to showing their necessity. In Section 4, we �rst shortly address the regularization

and the corresponding limit analysis. Then we compare the optimality conditions arising in the

regularization limit with our �ndings from Section 3. The section ends with the derivation of

the strong stationarity conditions. Section 5 deals with the numerical solution of the optimality

system derived via regularization. The paper ends with an appendix containing some technical

lemmas whose proofs are di�cult to �nd in the literature.
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1.1 notation and standing assumptions

Let us shortly address the notation used throughout the paper. In what follows, Ω always

denotes a bounded domain. By 1M : Rd → {0, 1} we denote the characteristic function of a set

M ⊂ Rd
. By λd we denote the d-dimensional Lebesgue measure. Given a (Lebesgue-)measurable

function v : Ω → R, we abbreviate the set {x ∈ Ω : v(x) = 0} by {v = 0}; the sets {v > 0} and

{v < 0} are de�ned analogously. Note that in what follows, we always work with the notion of

Lebesgue measurability (e.g., when talking about Lp-spaces or representatives), although we

could equivalently work with Borel measurability here. As usual, the Sobolev space H 1

0
(Ω) is

de�ned as the closure of C∞c (Ω) with respect to the H 1
-norm. Moreover, we de�ne the space

Y := {y ∈ H 1

0
(Ω) : ∆y ∈ L2(Ω)}.

Equipped with the scalar product

(y ,v)Y :=

∫
Ω

(
∆y ∆v + ∇y · ∇v + y v

)
dx ,

Y becomes a Hilbert space. Here and in the remainder of this paper, ∆ = div ◦∇ : H 1

0
(Ω) →

H−1(Ω) denotes the distributional Laplacian. Note that Y is compactly embedded in H 1

0
(Ω) since,

for any sequence (yn) ⊂ Y with yn ⇀ y in Y , we have

‖yn − y ‖
2

H 1(Ω)
= −

∫
Ω
∆(yn − y) (yn − y) dx + ‖yn − y ‖

2

L2(Ω)
→ 0

by the compact embedding of H 1

0
(Ω) into L2(Ω) (cf. [9, Thm. 7.22]). Since Y is isometrically

isomorphic to the subset

{(y,ω,δ ) ∈ L2(Ω;Rd+2) : ∃v ∈ H 1

0
(Ω) with y = v,ω = ∇v,δ = ∆v a.e. in Ω}

of the separable space L2(Ω;Rd+2), it is separable as well. Note that the solution operator

S : u 7→ y associated with the PDE −∆y +max(0,y) = u in (P) is bijective as a function from

L2(Ω) to Y (cf. Proposition 2.1 below). The space Y is thus the natural choice for the image space

of the control-to-state mapping appearing in problem (P). If the boundary ∂Ω possesses enough

regularity (a C1,1
-boundary would be su�cient here), then Y is isomorphic to H 1

0
(Ω) ∩ H 2(Ω)

by the classical regularity theory for the Laplace operator, cf. [9, Lem. 9.17].

With a little abuse of notation, in what follows we will denote the Nemytskii operator induced

by the max-function (with di�erent domains and ranges) by the same symbol. In the same

way, we will denote by max
′(y ;h) the directional derivative of y 7→ max(0,y) in the point y in

direction h, both considered as a scalar function and as the corresponding Nemytskii operator.

Throughout the paper, we will make the following standing assumptions.

Assumption 1.1. The set Ω ⊂ Rd
, d ∈ N, is a bounded domain. The objective functional J :

Y × L2(Ω) → R in (P) is weakly lower semi-continuous and continuously Fréchet-di�erentiable.

Note that we do not impose any regularity assumptions on the boundary of Ω.

4



2 directional differentiability of the control-to-state mapping

We start the discussion of the optimal control problem (P) by investigating its PDE constraint,

showing that it is uniquely solvable and that the associated solution operator is directionally

di�erentiable.

Proposition 2.1. For all u ∈ H−1(Ω), there exists a unique solution y ∈ H 1

0
(Ω) to

− ∆y +max(0,y) = u . (PDE)

Moreover, the solution operator S : u 7→ y associated with (PDE) is well-de�ned and globally
Lipschitz continuous as a function from L2(Ω) to Y .

Proof. The arguments are standard. First of all, Browder and Minty’s theorem on monotone

operators yields the existence of a unique solution in H 1

0
(Ω). If u ∈ L2(Ω), then a simple

bootstrapping argument impliesy ∈ Y . To prove the Lipschitz continuity of the solution mapping

S , we consider two arbitrary but �xed u1,u2 ∈ L
2(Ω) with associated solutions y1 := S(u1) and

y2 := S(u2). Using again the monotonicity, we obtain straightforwardly that ‖y1 − y2‖H 1 ≤

C‖u1 − u2‖L2 holds with some absolute constant C > 0. From (PDE) and the global Lipschitz

continuity of the max-function, we now infer

‖∆(y1 − y2)‖L2 = ‖max(0,y1) −max(0,y2) − u1 + u2‖L2 ≤ (C + 1)‖u1 − u2‖L2 .

The above shows that S is even globally Lipschitz as a function from L2(Ω) to Y and completes

the proof. �

Theorem 2.2 (directional derivative of S). Letu,h ∈ L2(Ω) be arbitrary but �xed, sety := S(u) ∈ Y ,
and let δh ∈ Y be the unique solution to

− ∆δh + 1{y=0}max(0,δh) + 1{y>0}δh = h. (2.1)

Then it holds

hn ⇀ h in L2(Ω), tn → 0
+ =⇒

S(u + tnhn) − S(u)

tn
⇀ δh in Y

and

hn → h in L2(Ω), tn → 0
+ =⇒

S(u + tnhn) − S(u)

tn
→ δh in Y .

In particular, the solution operator S : L2(Ω) → Y associated with (PDE) is Hadamard directionally
di�erentiable with S ′(u;h) = δh ∈ Y in all points u ∈ L2(Ω) in all directions h ∈ L2(Ω).

Proof. First observe that for every h ∈ L2(Ω), (2.1) admits a unique solution δh ∈ Y by exactly

the same arguments as in the proof of Proposition 2.1. Note moreover that (2.1) is equivalent to

−∆δh +max
′(y ;δh) = h.
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Now let u,h ∈ L2(Ω) be arbitrary but �xed and let (tn) ⊂ (0,∞) and (hn) ⊂ L2(Ω) be sequences

with tn → 0 and hn ⇀ h in L2(Ω). We abbreviate yn := S(u + tnhn) ∈ Y . Subtracting the

equations for y and δh from the one for yn yields

−∆
(yn − y

tn
− δh

)
= hn − h +

max(0,y + tnδh) −max(0,yn)

tn

−

(
max(0,y + tnδh) −max(0,y)

tn
−max

′(y ;δh)
)
. (2.2)

Testing this equation with (yn −y)/tn − δh and using the monotonicity of the max-operator, we

obtain that there exists a constant C > 0 independent of n withyn − y
tn

− δh


H 1(Ω)

≤ ‖hn − h‖H−1(Ω) +

max(0,y + tnδh) −max(0,y)

tn
−max

′(y ;δh)

L2(Ω)
.

Now the compactness of L2(Ω) ↪→ H−1(Ω) and the directional di�erentiability of max : L2(Ω) →
L2(Ω) (which directly follows from the directional di�erentiability of max : R → R and

Lebesgue’s dominated convergence theorem) give

yn − y

tn
− δh → 0 in H 1

0
(Ω). (2.3)

As max : L2(Ω) → L2(Ω) is also Lipschitz continuous and thus Hadamard-di�erentiable, (2.3)

implies

max(0,yn) −max(0,y)

tn
−max

′(y ;δh) → 0 in L2(Ω). (2.4)

Hence, (2.2) yields that the sequence (yn − y)/tn − δh is bounded in Y and thus (possibly

after transition to a subsequence) converges weakly in Y . Because of (2.3), the weak limit is

zero and therefore unique so that the whole sequence converges weakly to zero. This implies

the �rst assertion. If now hn converges strongly to h in L2(Ω), then (2.2), (2.3) and (2.4) yield

∆((yn − y)/tn − δh) → 0 in L2(Ω). From the de�nition of the norm ‖ · ‖Y , it now readily follows

that (yn − y)/tn − δh → 0 in Y . This establishes the second claim. �

Theorem 2.2 allows a precise characterization of points where S is Gâteaux-di�erentiable.

This will be of major importance for the study of the Bouligand subdi�erentials in the next

section.

Corollary 2.3 (characterization of Gâteaux-di�erentiable points). Let u ∈ L2(Ω) be arbitrary but
�xed. Then the following are equivalent:

(i) y = S(u) satis�es λd ({y = 0}) = 0.

(ii) S : L2(Ω) → Y is Gâteaux-di�erentiable in u, i.e., h 7→ S ′(u;h) ∈ L(L2(Ω),Y ).

(iii) S ′(u;h) = −S ′(u;−h) holds for all h ∈ L2(Ω).

If one of the above holds true, then the directional derivative δh = S ′(u;h) ∈ Y in a direction
h ∈ L2(Ω) is uniquely characterized as the solution to

− ∆δh + 1{y>0}δh = h. (2.5)
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Proof. In view of (2.1), it is clear that if λd ({y = 0}) = 0, then S is Gâteaux-di�erentiable in u
and the Gâteaux derivative is the solution operator for (2.5). Further, (ii) trivially implies (iii). It

remains to prove that (iii) implies (i). To this end, we note that if S ′(u;h) = −S ′(u;−h) for all

h ∈ L2(Ω), then (2.1) implies

1{y=0}max(0,−S ′(u;h)) + 1{y=0}max(0, S ′(u;h)) = 1{y=0} |S
′(u;h)| = 0 (2.6)

for all h ∈ L2(Ω). Consider now a functionψ ∈ C∞(Rd ) withψ > 0 in Ω andψ ≡ 0 in Rd \ Ω,

whose existence is ensured by Lemma a.1. Since h ∈ L2(Ω) was arbitrary, we are allowed to

choose

h := −∆ψ + 1{y>0}ψ + 1{y=0}max(0,ψ ) ∈ L2(Ω),

such that S ′(u;h) = ψ by virtue of (2.1). Consequently, we obtain from (2.6) that 1{y=0}ψ = 0.

Sinceψ > 0 in Ω, this yields λd ({y = 0}) = 0 as claimed. �

3 bouligand subdifferentials of the control-to-state mapping

This section is devoted to the main result of our work, namely the precise characterization of

the Bouligand subdi�erentials of the PDE solution operator S from Proposition 2.1.

3.1 definitions and basic properties

We start with the rigorous de�nition of the Bouligand subdi�erential. In the spirit of [28,

Def. 2.12], it is de�ned as the set of limits of Jacobians of di�erentiable points. However, in

in�nite dimensions, we have of course to distinguish between di�erent topologies underlying

this limit process, as already mentioned in the introduction. This gives rise to the following

Definition 3.1 (Bouligand subdi�erentials of S). Letu ∈ L2(Ω) be given. Denote the set of smooth

points of S by

D := {v ∈ L2(Ω) : S : L2(Ω) → Y is Gâteaux-di�erentiable in v}.

In what follows, we will frequently call points in D Gâteaux points.

(i) The weak-weak Bouligand subdi�erential of S in u is de�ned by

∂ww
B S(u) := {G ∈ L(L2(Ω),Y ) : there exists (un) ⊂ D such that

un ⇀ u in L2(Ω) and S ′(un)h ⇀ G h in Y for all h ∈ L2(Ω)}.

(ii) The weak-strong Bouligand subdi�erential of S in u is de�ned by

∂ws
B S(u) := {G ∈ L(L2(Ω),Y ) : there exists (un) ⊂ D such that

un ⇀ u in L2(Ω) and S ′(un)h → G h in Y for all h ∈ L2(Ω)}.

(iii) The strong-weak Bouligand subdi�erential of S in u is de�ned by

∂swB S(u) := {G ∈ L(L2(Ω),Y ) : there exists (un) ⊂ D such that

un → u in L2(Ω) and S ′(un)h ⇀ G h in Y for all h ∈ L2(Ω)}.
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(iv) The strong-strong Bouligand subdi�erential of S in u is de�ned by

∂ssB S(u) := {G ∈ L(L2(Ω),Y ) : there exists (un) ⊂ D such that

un → u in L2(Ω) and S ′(un)h → G h in Y for all h ∈ L2(Ω)}.

Remark 3.1. Based on the generalization of Rademacher’s theorem to Hilbert spaces (see [23,

Thm. 1.2]) and the generalization of Alaoglu’s theorem to the weak operator topology, one can

show that ∂ww
B S(u) and ∂swB S(u) are non-empty for every u ∈ L2(Ω); see also [7]. In contrast to

this, it is not clear a priori if ∂ws
B S(u) and ∂ssB S(u) are non-empty, too. However, Theorem 3.16 at

the end of this section will imply this as a byproduct.

From the de�nitions, we obtain the following useful properties.

Lemma 3.2.

(i) For all u ∈ L2(Ω) it holds

∂ssB S(u) ⊆ ∂swB S(u) ⊆ ∂ww
B S(u) and ∂ssB S(u) ⊆ ∂ws

B S(u) ⊆ ∂ww
B S(u).

(ii) If S is Gâteaux-di�erentiable in u ∈ L2(Ω), then it holds S ′(u) ∈ ∂ssB S(u).

(iii) For all u ∈ L2(Ω) and all G ∈ ∂ww
B S(u), it holds

‖G‖L(L2(Ω),Y ) ≤ L,

where L > 0 is the Lipschitz constant of S : L2(Ω) → Y .

Proof. Parts (i) and (ii) immediately follow from the de�nition of the Bouligand subdi�erentials

(to see (ii), just choose un := u for all n). In order to prove part (iii), observe that the de�nition of

∂ww
B S(u) implies the existence of a sequence of Gâteaux points un ∈ L

2(Ω) such that un ⇀ u in

L2(Ω) and S ′(un)h ⇀ Gh in Y for all h ∈ L2(Ω). For each n ∈ N, the global Lipschitz continuity

of S according to Proposition 2.1 immediately gives ‖S ′(un)‖L(L2(Ω),Y ) ≤ L. Consequently, the

weak lower semi-continuity of the norm implies

‖Gh‖Y ≤ lim inf

n→∞
‖S ′(un)h‖Y ≤ L‖h‖L2 ∀h ∈ L2(Ω).

This yields the claim. �

Remark 3.3. The Bouligand subdi�erentials ∂ww
B S(u) and ∂swB S(u) do not change if the condition

“S ′(un)h ⇀ G h in Y for all h ∈ L2(Ω)” in De�nition 3.1(i) and (iii) is replaced with either

“S ′(un)h → G h in Z for all h ∈ L2(Ω)” or “S ′(un)h ⇀ G h in Z for all h ∈ L2(Ω)”, where Z is a

normed linear space such that Y is compactly embedded into Z , e.g., Z = H 1(Ω) or Z = L2(Ω).
This can be seen as follows: Suppose that a sequence (un) ⊂ D is given such that S ′(un)h ⇀ G h
holds in Z for all h ∈ L2(Ω). Then, by Lemma 3.2(iii), we can �nd for every h ∈ L2(Ω) a

subsequence (unk ) such that (S ′(unk )h) converges weakly in Y . From the weak convergence in

Z , we obtain that the weak limit has to be equal toG h independently of the chosen subsequence.

Consequently, S ′(un)h ⇀ G h in Y for all h ∈ L2(Ω), and we arrive at our original condition. If,

conversely, we know that S ′(un)h ⇀ G h holds in Y for all h ∈ L2(Ω), then, by the compactness

of the embedding Y ↪→ Z , it trivially holds S ′(un)h → G h in Z for all h ∈ L2(Ω). This yields

the claim. The case of S ′(un)h → G h in Z proceeds analogously.
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Next, we show closedness properties of the two strong subdi�erentials.

Proposition 3.4 (strong-strong-closedness of ∂ssB S). Let u ∈ L2(Ω) be arbitrary but �xed. Suppose
that

(i) un ∈ L
2(Ω) and Gn ∈ ∂

ss
B S(un) for all n ∈ N,

(ii) un → u in L2(Ω),

(iii) G ∈ L(L2(Ω),Y ),

(iv) Gnh → Gh in Y for all h ∈ L2(Ω).

Then G is an element of ∂ssB S(u).

Proof. The de�nition of ∂ssB S(un) implies that for all n ∈ N, one can �nd a sequence (um,n) ⊂

L2(Ω) of Gâteaux points with associated derivatives Gm,n := S ′(um,n) such that um,n → un in

L2(Ω) asm →∞ and

Gm,nh → Gnh in Y for all h ∈ L2(Ω) asm →∞.

Since L2(Ω) is separable, there exists a countable set {wk }
∞
k=1
⊆ L2(Ω) that is dense in L2(Ω).

Because of the convergences derived above, it moreover follows that for all n ∈ N, there exists

anmn ∈ N with

‖Gmn,nwk −Gnwk ‖Y ≤
1

n
∀k = 1, . . . ,n and ‖un − umn,n ‖L2(Ω) ≤

1

n
. (3.1)

Consider now a �xed but arbitrary h ∈ L2(Ω), and de�ne

h∗n := argmin{‖wk − h‖L2(Ω) : 1 ≤ k ≤ n}.

Then the density property of {wk }
∞
k=1

implies h∗n → h in L2(Ω) as n →∞, and we may estimate

‖Gmn,nh −Gh‖Y ≤ ‖Gmn,nh
∗
n −Gnh

∗
n ‖Y + ‖(Gmn,n −Gn)(h

∗
n − h)‖Y + ‖Gnh −Gh‖Y

≤
1

n
+ ‖Gmn,n −Gn ‖L(L2,Y )‖h

∗
n − h‖Y + ‖Gnh −Gh‖Y → 0 as n →∞,

where the boundedness of ‖Gmn,n −Gn ‖L(L2,Y ) follows from Lemma 3.2(iii). The above proves

that for all h ∈ L2(Ω), we have Gmn,nh → Gh in Y . Since h ∈ L2(Ω) was arbitrary and the

Gâteaux points umn,n satisfy umn,n → u in L2(Ω) as n →∞ by (3.1) and our assumptions, the

claim follows from the de�nition of ∂ssB S(u). �

Proposition 3.5 (strong-weak-closedness of ∂swB S). Let u ∈ L2(Ω) be arbitrary but �xed. Assume
that:

(i) un ∈ L
2(Ω) and Gn ∈ ∂

sw
B S(un) for all n ∈ N,

(ii) un → u in L2(Ω),

9



(iii) G ∈ L(L2(Ω),Y ),

(iv) Gnh ⇀ Gh in Y for all h ∈ L2(Ω).

Then G is an element of ∂swB S(u).

Proof. As in the proof before, for all n ∈ N the de�nition of ∂swB S(un) implies the existence of

a sequence of Gâteaux points um,n ∈ L
2(Ω) with associated derivatives Gm,n := S ′(um,n) such

that um,n → un in L2(Ω) asm →∞ and

Gm,nh ⇀ Gnh in Y for all h ∈ L2(Ω) asm →∞.

Now the compact embedding of Y in H 1

0
(Ω) gives that Gm,nh → Gnh in H 1

0
(Ω) asm →∞, and

we can argue exactly as in the proof of Proposition 3.4 to show that there is a diagonal sequence

of Gâteaux points umn,n such that umn,n → u in L2(Ω) and

Gmn,nh → Gh in H 1

0
(Ω) for every h ∈ L2(Ω). (3.2)

On the other hand, by Lemma 3.2(iii), the operatorsGmn,n are uniformly bounded inL(L2(Ω);Y ).
Therefore, for an arbitrary but �xed h ∈ L2(Ω), the sequence ‖Gmn,nh‖Y is bounded in Y , so that

a subsequence converges weakly to some η ∈ Y . Because of (3.2), η = Gh and the uniqueness of

the weak limit implies the weak convergence of the whole sequence in Y . As h was arbitrary,

this implies the assertion. �

3.2 precise characterization of the bouligand subdifferentials

This section is devoted to an explicit characterization of the di�erent subdi�erentials in De�ni-

tion 3.1 without the representation as (weak) limits of Jacobians of sequences of Gâteaux points.

We start with the following lemma, which will be useful in the sequel.

Lemma 3.6. Assume that

(i) j : R→ R is monotonically increasing and globally Lipschitz continuous,

(ii) (un) ⊂ L2(Ω) is a sequence with un ⇀ u ∈ L2(Ω),

(iii) (χn) ⊂ L∞(Ω) is a sequence satisfying χn ≥ 0 a.e. in Ω for all n ∈ N and χn ⇀∗ χ in L∞(Ω)
for some χ ∈ L∞(Ω),

(iv) wn ∈ Y is the unique solution to

− ∆wn + χnwn + j(wn) = un , (3.3)

(v) w ∈ Y is the unique solution to

− ∆w + χw + j(w) = u . (3.4)

Then it holds thatwn ⇀ w in Y , and if we additionally assume that χn → χ pointwise a.e. and
un → u strongly in L2(Ω), then we even havewn → w strongly in Y .
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Proof. First note that due to the monotonicity and the global Lipschitz continuity of j, the

equations (3.3) and (3.4), respectively, admit unique solutions in Y by the same arguments as in

the proof of Proposition 2.1. Moreover, due to the weak and weak-∗ convergence, the sequences

(un) and (χn) are bounded in L2(Ω) and L∞(Ω), respectively, so that (wn) is bounded in Y . Hence

there exists a weakly converging subsequence – w.l.o.g. denoted by the same symbol – such

that wn ⇀ η in Y and, by the compact embedding Y ↪→ H 1

0
(Ω), wn → η strongly in H 1

0
(Ω).

Together with the weak convergence of un , this allows passing to the limit in (3.3) to deduce

that η satis�es

−∆η + χη + j(η) = u .

As the solution to this equation is unique, we obtain η = w . The uniqueness of the weak limit

now gives convergence of the whole sequence, i.e., wn ⇀ w in Y .

To prove the strong convergence under the additional assumptions, note that the di�erence

wn −w satis�es

− ∆(wn −w) = (un − u) + (χ w − χnwn) + (j(w) − j(wn)). (3.5)

For the �rst term on the right-hand side of (3.5), we have un → u in L2(Ω) by assumption. The

second term in (3.5) is estimated by

‖χ w − χnwn ‖L2(Ω) ≤ ‖χn ‖L∞(Ω)‖w −wn ‖L2(Ω) + ‖(χ − χn)w ‖L2(Ω). (3.6)

The �rst term in (3.6) converges to zero due to wn ⇀ w in Y and the compact embedding,

while the convergence of the second term follows from the pointwise convergence of χn in

combination with Lebesgue’s dominated convergence theorem. The global Lipschitz continuity

of j and the strong convergence of wn → w in L2(Ω) �nally also give j(wn) → j(w) in L2(Ω).
Therefore, the right-hand side in (3.5) converges to zero in L2(Ω). As −∆ induces the norm on

Y , we thus obtain the desired strong convergence. �

By setting j(x) = max(0,x) and χn ≡ χ ≡ 0, we obtain as a direct consequence of the

preceding lemma the following weak continuity of S .

Corollary 3.7. The solution operator S : L2(Ω) → Y is weakly continuous, i.e.,

un ⇀ u in L2(Ω) =⇒ S(un)⇀ S(u) in Y .

We will see in the following that all elements of the subdi�erentials in De�nition 3.1 have a

similar structure. To be precise, they are solution operators of linear elliptic PDEs of a particular

form.

Definition 3.2 (linear solution operator Gχ ). Given a function χ ∈ L∞(Ω) with χ ≥ 0, we de�ne

the operator Gχ ∈ L(L
2(Ω),Y ) to be the solution operator of the linear equation

− ∆η + χ η = h. (3.7)

We �rst address necessary conditions for an operator in L(L2(Ω),Y ) to be an element of the

Bouligand subdi�erentials. Afterwards we will show that these conditions are also su�cient,

which is more involved compared to their necessity.
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Proposition 3.8 (necessary condition for ∂ww
B S(u)). Let u ∈ L2(Ω) be arbitrary but �xed and set

y := S(u). Then for every G ∈ ∂ww
B S(u) there exists a unique χ ∈ L∞(Ω) satisfying

0 ≤ χ ≤ 1 a.e. in Ω, χ = 1 a.e. in {y > 0}, and χ = 0 a.e. in {y < 0} (3.8)

such that G = Gχ .

Proof. If G ∈ ∂ww
B S(u) is arbitrary but �xed, then there exists a sequence of Gâteaux points

un ∈ L2(Ω) such that un ⇀ u in L2(Ω) and S ′(un)h ⇀ Gh in Y for all h ∈ L2(Ω). Now, let

h ∈ L2(Ω) be arbitrary but �xed and abbreviate yn := S(un), δh,n := S ′(un)h, and χn := 1{yn>0}.

Then we know from Corollary 3.7 that yn ⇀ y in Y and from Corollary 2.3 that δh,n = Gχnh.

Moreover, from the Banach–Alaoglu Theorem it follows that – after transition to a subsequence

(which may be done independently of h) – it holds that χn ⇀
∗ χ in L∞(Ω). From the weak-∗

closedness of the set {ξ ∈ L∞(Ω) : 0 ≤ ξ ≤ 1 a.e. in Ω} we obtain that 0 ≤ χ ≤ 1 holds a.e. in

Ω. Further, the de�nition of χn and the convergences χn ⇀
∗ χ in L∞(Ω) and yn → y in L2(Ω)

yield

0 =

∫
Ω
χn min(0,yn) − (1 − χn)max(0,yn)dx →

∫
Ω
χ min(0,y) − (1 − χ )max(0,y)dx = 0.

Due to the sign of the integrand, the above yields χ min(0,y) − (1 − χ )max(0,y) = 0 a.e. in Ω,

and this entails χ = 1 a.e. in {y > 0} and χ = 0 a.e. in {y < 0}. This shows that χ satis�es

(3.8). From Lemma 3.6, we may deduce that δh,n ⇀ Gχh in Y . We already know, however, that

δh,n = S ′(un)h ⇀ Gh in Y . Consequently, since h was arbitrary, G = Gχ , and the existence

claim is proven. It remains to show that χ is unique. To this end, assume that there are two

di�erent functions χ , χ̃ ∈ L∞(Ω)withG = Gχ = G χ̃ . If we then consider a functionψ ∈ C∞(Rd )

with ψ > 0 in Ω and ψ ≡ 0 in Rd \ Ω (whose existence is ensured by Lemma a.1) and de�ne

hψ := −∆ψ + χψ ∈ L2(Ω), then we obtainψ = Gχhψ = G χ̃hψ , which gives rise to

−∆ψ + χψ = hψ = −∆ψ + χ̃ψ .

Subtraction now yields (χ − χ̃ )ψ = 0 a.e. in Ω and, sinceψ > 0 in Ω, this yields χ ≡ χ̃ . �

Proposition 3.9 (necessary condition for ∂ws
B S(u)). Let u ∈ L2(Ω) be arbitrary but �xed with

y = S(u). Then for every G ∈ ∂ws
B S(u) there exists a unique function χ ∈ L∞(Ω) satisfying

χ ∈ {0, 1} a.e. in Ω, χ = 1 a.e. in {y > 0}, and χ = 0 a.e. in {y < 0} (3.9)

such that G = Gχ .

Proof. Let G ∈ ∂ws
B S(u) be �xed but arbitrary. Since ∂ws

B S(u) ⊆ ∂ww
B S(u), the preceding propo-

sition yields that there is a unique function χ satisfying (3.8) such that G = Gχ . It remains

to prove that χ only takes values in {0, 1}. To this end, �rst observe that the de�nition of

∂ws
B S(u) implies the existence of a sequence of Gâteaux points (un) ⊂ L2(Ω) such that un ⇀ u

in L2(Ω) and S ′(un)h → Gh in Y for every h ∈ L2(Ω), where, according to Corollary 2.3,

S ′(un) = Gχn with χn := 1{yn>0}. As in the proof of Proposition 3.8, we choose the special

direction hψ := −∆ψ + χψ ∈ L2(Ω), where ψ ∈ C∞(Rd ) is again a function with ψ > 0 in Ω
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andψ ≡ 0 in Rd \ Ω. Then Ghψ = ψ , and the strong convergence of Gχnhψ to Ghψ in Y allows

passing to a subsequence to obtain ∆Gχnhψ → ∆ψ and Gχnhψ → ψ pointwise a.e. in Ω. From

the latter, it follows that for almost all x ∈ Ω there exists an N ∈ N (depending on x) with

Gχnhψ (x) > 0 for all n ≥ N , and consequently

lim

n→∞
χn(x) = lim

n→∞

hψ (x) + ∆Gχnhψ (x)

Gχnhψ (x)
=
hψ (x) + ∆ψ (x)

ψ (x)
= χ (x) for a.a. x ∈ Ω.

But, as χn takes only the values 0 and 1 for all n ∈ N, pointwise convergence almost everywhere

is only possible if χ ∈ {0, 1} a.e. in Ω. This proves the claim. �

As an immediate consequence of the last two results, we obtain:

Corollary 3.10. If S is Gâteaux-di�erentiable in a point u ∈ L2(Ω), then it holds

∂ssB S(u) = ∂swB S(u) = ∂ws
B S(u) = ∂ww

B S(u) = {S ′(u)}.

Proof. The inclusion ⊇ was already proved in Lemma 3.2. The reverse inclusion follows immedi-

ately from Propositions 3.8 and 3.9, and the fact that in a Gâteaux point there necessarily holds

λd ({y = 0}) = 0 (see Corollary 2.3). �

Remark 3.11. Note that even in �nite dimensions, the Bouligand and the Clarke subdi�erential

can contain operators other than the Gâteaux derivative in a Gâteaux point; see, e.g., [5, Ex. 2.2.3].

Thus, Corollary 3.10 shows that, in spite of its non-di�erentiability, the solution operator S is

comparatively well-behaved.

Remark 3.12. Similarly to Theorem 2.2, where the directional derivative of the max-function

appears, Propositions 3.8 and 3.9 show that elements of ∂ww
B S(u) and ∂ws

B S(u) are characterized by

PDEs which involve a pointwise measurable selection χ of the set-valued a.e.-de�ned functions

∂B max(0, ·)(y) : Ω ⇒ [0, 1] and ∂c max(0, ·)(y) : Ω ⇒ [0, 1], respectively. Here, ∂B max(0, ·)

and ∂c max(0, ·) denote the Bouligand and the convex subdi�erential of the function R 3 x 7→
max(0,x) ∈ R, respectively.

Now that we have found necessary conditions that elements of the subdi�erentials ∂ws
B S(u)

and ∂ww
B S(u) have to ful�ll, we turn to su�cient conditions which guarantee that a certain

linear operator is an element of these subdi�erentials. Here we focus on the subdi�erentials

∂ssB S(u) and ∂swB S(u). It will turn out that a linear operator is an element of these subdi�erentials

if it is of the form Gχ with χ as in (3.8) and (3.9), respectively. Thanks to Lemma 3.2(i) and the

necessary conditions in Propositions 3.8 and 3.9, this will �nally give a sharp characterization

of all Bouligand subdi�erentials in De�nition 3.1; see Theorem 3.16 below. We start with the

following preliminary result.

Lemma 3.13. Let u ∈ L2(Ω) be arbitrary but �xed and write y := S(u). Assume that φ ∈ Y is a
function satisfying

λd ({y = 0} ∩ {φ = 0}) = 0 (3.10)

and de�ne χ ∈ L∞(Ω) via
χ := 1{y>0} + 1{y=0}1{φ>0} . (3.11)

Then Gχ as in De�nition 3.2 is an element of the strong-strong Bouligand subdi�erential ∂ssB S(u).
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Proof. We have to construct sequences of Gâteaux points converging strongly tou such that also

the corresponding Gâteaux derivatives in an arbitrary direction h ∈ L2(Ω) converge strongly

in Y to Gχh. For this purpose, set yε := y + εφ, ε ∈ (0, 1), and uε := −∆yε +max(0,yε ) ∈ L
2(Ω).

Then we obtain S(uε ) = yε , yε → y in Y and uε → u in L2(Ω) as ε → 0. Choose now arbitrary

but �xed representatives of y and φ and de�ne Z := {y = 0} ∩ {φ = 0}. Then for all ε , ε ′ and

all x ∈ Ω, we have

y(x) + εφ(x) = 0 and y(x) + ε ′φ(x) = 0 ⇐⇒ x ∈ Z ,

i.e., the sets in the collection ({y + εφ = 0} \ Z )ε ∈(0,1) are disjoint (and obviously Lebesgue

measurable). Furthermore, the underlying measure space (Ω,L(Ω), λd ) is �nite. Thus, we may

apply Lemma b.1 to obtain a λ1
-zero set N ⊂ (0, 1) such that

λd ({y + εφ = 0}) ≤ λd (Z ) + λd ({y + εφ = 0} \ Z ) = 0

for all ε ∈ E := (0, 1) \N . According to Corollary 2.3, this implies that S is Gâteaux-di�erentiable

in uε for all ε ∈ E with S ′(uε ) = Gχε where χε := 1{y+εφ>0}. Consider now an arbitrary but

�xed sequence (εn) ⊂ E with εn → 0 as n →∞ and �x for the time being a direction h ∈ L2(Ω).
Then δεn := S ′(uεn )h = Gχεnh satis�es

−∆δεn + χεnδεn = h,

and it holds that

lim

n→∞
χεn (x) = χ (x) f.a.a. x ∈ Ω and χεn ⇀ ∗χ in L∞(Ω),

where χ is as de�ned in (3.11). Note that according to assumption (3.10), the case y(x) = φ(x) = 0

is negligible here. Using Lemma 3.6, we now obtain that δεn = S ′(uεn )h converges strongly in Y
to Gχh. Since h ∈ L2(Ω) was arbitrary, this proves the claim. �

In the following, we successively sharpen the assertion of Lemma 3.13 by means of Lemma 3.6

and the approximation results for characteristic functions proven in Appendix b.

Proposition 3.14 (su�icient condition for ∂ssB S(u)). Let u ∈ L2(Ω) be arbitrary but �xed and set
y := S(u). If χ ∈ L∞(Ω) satis�es

χ ∈ {0, 1} a.e. in Ω, χ = 1 a.e. in {y > 0}, and χ = 0 a.e. in {y < 0}, (3.12)

then Gχ ∈ ∂
ss
B S(u).

Proof. Since χ ∈ L∞(Ω) takes only the values 0 and 1, there exists a Lebesgue measurable set

B ⊆ Ω with χ = 1B . We now proceed in two steps:

(i) If B ⊆ Ω is open, then we know from Lemma b.2(i) that there exists a sequence (φn) ⊂ Y
of functions satisfying (3.10) such that

1{φn>0} ⇀
∗ 1B in L∞(Ω) and 1{φn>0} → 1B pointwise a.e. in Ω. (3.13)
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Let us abbreviate χn := 1{y>0} +1{y=0}1{φn>0} ∈ L
∞(Ω). Then, thanks to (3.12) and (3.13),

we arrive at

χn ⇀
∗ χ in L∞(Ω) and χn → χ pointwise a.e. in Ω. (3.14)

Moreover, due to Lemma 3.13, we know that Gχn ∈ ∂
ss
B S(u) for all n ∈ N and, from

Lemma 3.6 and (3.14), we obtain Gχnh → Gχh strongly in Y for all h ∈ L2(Ω). Proposi-

tion 3.4 now gives Gχ ∈ ∂
ss
B S(u) as claimed.

(ii) Assume now that χ = 1B for some Lebesgue measurable set B ⊆ Ω. Then Lemma b.2(ii)

implies the existence of a sequence of open sets Bn ⊆ Ω such that

1Bn
∗
⇀ 1B in L∞(Ω) and 1Bn → 1B pointwise a.e. in Ω. (3.15)

Similarly to above, we abbreviate χn := 1{y>0} + 1{y=0}1Bn ∈ L
∞(Ω) so that (3.15) again

yields the convergence in (3.14). Since from (i) we know that Gχn ∈ ∂
ss
B S(u) for all n ∈ N,

we can argue completely analogously to (i) to proveGχ ∈ ∂
ss
B S(u) in the general case. �

Proposition 3.15 (su�icient condition for ∂swB S(u)). Let u ∈ L2(Ω) be arbitrary but �xed and
y := S(u). If χ ∈ L∞(Ω) satis�es

0 ≤ χ ≤ 1 a.e. in Ω, χ = 1 a.e. in {y > 0}, and χ = 0 a.e. in {y < 0}, (3.16)

then Gχ ∈ ∂
sw
B S(u).

Proof. We again proceed in two steps:

(i) If χ is a simple function of the form χ :=
∑K

k=1
ck1Bk with ck ∈ (0, 1] for all k , K ∈ N, and

Bk ⊆ Ω Lebesgue measurable and mutually disjoint, then we know from Lemma b.2(iv)

that there exists a sequence of Lebesgue measurable sets An ⊆ Ω such that 1An ⇀
∗ χ in

L∞(Ω). In view of (3.16), this yields

χn := 1{y>0} + 1{y=0}1An ⇀
∗ χ in L∞(Ω)

so that, by Lemma 3.6, we obtain Gχnh ⇀ Gχh in Y for all h ∈ L2(Ω). Moreover, from

Proposition 3.14, we already know that Gχn ∈ ∂
ss
B S(u) ⊆ ∂swB S(u) for all n ∈ N. Therefore

Proposition 3.5 gives Gχ ∈ ∂
sw
B S(u) as claimed.

(ii) For an arbitrary but �xed χ ∈ L∞(Ω) satisfying (3.16), measurability implies the existence

of a sequence of simple functions satisfying (3.16) and converging pointwise a.e. to χ .

(Note that the pointwise projection of a simple function onto the set of functions satisfying

(3.16) remains simple as y is �xed and measurable.) Since pointwise a.e. convergence and

a uniform bound in L∞(Ω) imply weak-∗ convergence in L∞(Ω), we can now apply (i)

and again Lemma 3.6 and Proposition 3.5 to obtain the claim. �

Thanks to Lemma 3.2(i), the necessary conditions in Propositions 3.8 and 3.9, respectively, in

combination with the su�cient conditions in Propositions 3.14 and 3.15, respectively, immediately

imply the following sharp characterization of the Bouligand subdi�erentials of S .
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Theorem 3.16 (precise characterization of the subdi�erentials of S). Let u ∈ L2(Ω) be arbitrary
but �xed and set y := S(u). Then:

(i) It holds ∂ws
B S(u) = ∂ssB S(u). Moreover, G ∈ ∂ssB S(u) if and only if there exists a function

χ ∈ L∞(Ω) satisfying

χ ∈ {0, 1} a.e. in Ω, χ = 1 a.e. in {y > 0}, and χ = 0 a.e. in {y < 0}

such that G = Gχ . Furthermore, for each G ∈ ∂ssB S(u) the associated χ is unique.

(ii) It holds ∂ww
B S(u) = ∂swB S(u). Moreover, G ∈ ∂swB S(u) if and only if there exists a function

χ ∈ L∞(Ω) satisfying

0 ≤ χ ≤ 1 a.e. in Ω, χ = 1 a.e. in {y > 0}, and χ = 0 a.e. in {y < 0}

such that G = Gχ . Furthermore, for each G ∈ ∂swB S(u) the associated χ is unique.

Remark 3.17. Theorem 3.16 shows that it does not matter whether we use the weak or the strong

topology for the approximating sequence un ∈ L
2(Ω) in the de�nition of the subdi�erential;

only the choice of the operator topology makes a di�erence. We further see that the elements of

the strong resp. weak Bouligand subdi�erential are precisely those operators Gχ generated by a

function χ ∈ L∞(Ω) that is obtained from a pointwise measurable selection of the Bouligand

resp. convex subdi�erential of the max-function, cf. Remark 3.12. Note that for all χ1, χ2 ∈ L
∞(Ω)

with χ1 ≥ 0, χ2 ≥ 0 a.e. in Ω, all α ∈ [0, 1], and all η ∈ Y , it holds

αG−1

χ1

(η) + (1 − α)G−1

χ2

(η) = −∆η + α χ1η + (1 − α)χ2η = G
−1

α χ1+(1−α )χ2

(η).

This implies that the set {G−1
: G ∈ ∂swB S(u)} is convex and contains the convex hull of the set

{G−1
: G ∈ ∂ssB S(u)}. We point out that the convex combination of two elements of, e.g., ∂swB S(u)

is typically not an element of ∂swB S(u) (due to the bilinear term χη in the de�nition of Gχ ). The

above “convexi�cation e�ect” appears only when we consider the inverse operators.

4 first-order optimality conditions

In this section we turn our attention back to the optimal control problem (P), where we are

mainly interested in the derivation of �rst-order necessary optimality conditions involving

dual variables. Due to the non-smoothness of the control-to-state mapping S caused by the

max-function in (PDE), the standard procedure based on the adjoint of the Gâteaux derivative

of S cannot be applied. Instead, regularization and relaxation methods are frequently used to

derive optimality conditions as in, e.g., [1]. We will follow the same approach and derive an

optimality system in this way in the next subsection. Since the arguments are rather standard,

we keep the discussion concise; the main issue here is to carry out the passage to the limit

in the topology of Y . We again emphasize that the optimality conditions themselves are not

remarkable at all. However, in Section 4.2, we will give a new interpretation of the optimality

system arising through regularization by means of the Bouligand subdi�erentials from Section 3

(cf. Theorem 4.7), which is the main result of this section.
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4.1 regularization and passage to the limit

For the rest of this section, let ū ∈ L2(Ω) be an arbitrary local minimizer for (P). We follow a

widely used approach (see, e.g., [24]) and de�ne our regularized optimal control problem as

minu ∈L2(Ω),y ∈H 1

0
(Ω) J (y,u) +

1

2

‖u − ū‖2L2(Ω)

s.t. − ∆y +maxε (y) = u in Ω

 (Pε )

with a regularized version of the max-function satisfying the following assumptions.

Assumption 4.1. The family of functions maxε : R→ R satis�es

(i) maxε ∈ C
1(R) for all ε > 0;

(ii) there is a constant C > 0 such that |maxε (x) −max(0,x)| ≤ C ε for all x ∈ R;

(iii) for all x ∈ R and all ε > 0, there holds 0 ≤ max
′
ε (x) ≤ 1;

(iv) for every δ > 0, the sequence (max
′
ε )ε>0 converges uniformly to 1 on [δ ,∞) and uniformly

to 0 on (−∞,−δ ] as ε → 0
+

.

There are numerous possibilities to construct families of functions satisfying Assumption 4.1;

we only refer to the regularized max-functions used in [24, 33]. As for the max-function, we

will denote the Nemytskii operator associated with maxε by the same symbol.

Lemma 4.2. For every u ∈ L2(Ω), there exists a unique solution yε ∈ Y of the PDE in (Pε ). The
associated solution operator Sε : L2(Ω) → Y is weakly continuous and Fréchet-di�erentiable. Its
derivative at u ∈ L2(Ω) in direction h ∈ L2(Ω) is given by the unique solution δ ∈ Y to

− ∆δ +max
′
ε (yε )δ = h, (4.1)

where yε = Sε (u).

Proof. The arguments are standard. The monotonicity of maxε by Assumption 4.1(iii) yields

the existence of a unique solution, and bootstrapping implies that this is an element of Y . The

weak continuity of Sε follows from Lemma 3.6 in exactly the same way as Corollary 3.7. Due to

Assumption 4.1(i) and (iii), the Nemytskii operator associated with maxε is continuously Fréchet-

di�erentiable from H 1

0
(Ω) to L2(Ω) and, owing to the non-negativity of max

′
ε , the linearized

equation in (4.1) admits a unique solution δ ∈ Y for every h ∈ L2(Ω). The implicit function

theorem then yields the claimed di�erentiability. �

Lemma 4.3. There exists a constant c > 0 such that for all u ∈ L2(Ω), there holds

‖S(u) − Sε (u)‖Y ≤ c ε ∀ ε > 0. (4.2)

Moreover, for every sequence un ∈ L2(Ω) with un → u in L2(Ω) and every sequence εn → 0
+, there

exists a subsequence (nk )k ∈N and an operator G ∈ ∂swB S(u) such that

S ′εnk
(unk )h ⇀ Gh in Y ∀h ∈ L2(Ω).
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Proof. Given u ∈ L2(Ω), let us set y := S(u) and yε := Sε (u). Then it holds that

− ∆(y − yε ) +max(0,y) −max(0,yε ) = maxε (yε ) −max(0,yε ). (4.3)

Testing this equation with y − yε and employing the monotonicity of the max-operator and

Assumption 4.1(ii) gives ‖y − yε ‖H 1(Ω) ≤ c ε . Then, thanks to the Lipschitz continuity of the

max-function and again Assumption 4.1(ii), a bootstrapping argument completely analogous to

that in the proof of Proposition 2.1 yields (4.2), cf. (4.3).

To obtain the second part of the lemma, let (un) ⊂ L2(Ω) and (εn) ⊂ (0,∞) be sequences with

un → u in L2(Ω) and εn → 0
+

. Then (4.2) and Proposition 2.1 imply

‖Sεn (un) − S(u)‖Y ≤ Cεn + ‖S(un) − S(u)‖Y → 0

as n → ∞, i.e., yn := Sεn (un) → y := S(u) in Y . Now, given an arbitrary but �xed direction

h ∈ L2(Ω), we know that the derivative δn := S ′εn (un)h is characterized by

−∆δn +max
′
εn (yn)δn = h.

Then, due to yn → y pointwise a.e. in Ω (at least for a subsequence) and Assumption 4.1(iii)
and (iv), there is a subsequence (not relabeled for simplicity) such that

max
′
εn (yn)⇀

∗ χ in L∞(Ω)

with

0 ≤ χ ≤ 1 a.e. in Ω, χ = 1 a.e. in {y > 0}, and χ = 0 a.e. in {y < 0}.

Note that the transition to a subsequence above is independent of h. Using Lemma 3.6 and

Theorem 3.16 then yields the second claim. �

Theorem 4.4 (optimality system a�er passing to the limit). Let ū ∈ L2(Ω) be locally optimal
for (P) with associated state ȳ ∈ Y . Then there exist a multiplier χ ∈ L∞(Ω) and an adjoint state
p ∈ L2(Ω) such that

p = (Gχ )
∗∂y J (ȳ, ū), (4.4a)

χ (x) ∈ ∂c max(ȳ(x)) a.e. in Ω, (4.4b)

p + ∂u J (ȳ, ū) = 0, (4.4c)

where ∂c max : R ⇒ [0, 1] denotes the convex subdi�erential of the max-function. The solution
operator Gχ is thus an element of ∂swB S(ū).

Proof. Based on the previous results, the proof follows standard arguments, which we brie�y

sketch for the convenience of the reader. We introduce the reduced objective functional associ-

ated with (Pε ) as

Fε : L2(Ω) → R, Fε (u) := J (Sε (u),u) +
1

2

‖u − ū‖2L2(Ω)
,
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and consider the following auxiliary optimal control problem

minu ∈L2(Ω) Fε (u)

s.t. ‖u − ū‖L2 ≤ r ,

}
(Pε,r )

where r > 0 is the radius of local optimality of ū. Thanks to the weak continuity of Sε by

Lemma 4.2 and the weak lower semi-continuity of J by Assumption 1.1, the direct method of

the calculus of variations immediately implies the existence of a global minimizer ūε ∈ L
2(Ω)

of (Pε,r ). Note that due to the continuous Fréchet-di�erentiability of J , the global Lipschitz

continuity of S , and (4.2), there exists (after possibly reducing the radius r ) a constant C ′ > 0

such that for all su�ciently small ε > 0, it holds

|J (S(u),u) − J (Sε (u),u)| ≤ C ′ε ∀u ∈ L2(Ω) with ‖u − ū‖L2 ≤ r .

As a consequence, we obtain (with the same constant)

Fε (ū) = J (Sε (ū), ū) ≤ C ′ε + J (S(ū), ū)

and

Fε (u) = J (Sε (u),u) +
1

2

‖u − ū‖2L2

≥ J (S(u),u) +
1

2

‖u − ū‖2L2
−C ′ε ∀u ∈ L2(Ω) with ‖u − ū‖L2 ≤ r ,

and therefore

Fε (ū) < Fε (u) ∀u ∈ L2(Ω) with

√
4C ′ε < ‖u − ū‖L2 ≤ r .

Thus, for every ε > 0 su�ciently small, any global solution ūε of (Pε,r ) must necessarily satisfy

‖ūε − ū‖L2 ≤
√

4C ′ε . (4.5)

In particular, for ε small enough, ūε is in the interior of the r -ball around ū and, as a global solution

of (Pε,r ), is also a local one of (Pε ). It therefore satis�es the �rst-order necessary optimality

conditions of the latter, which, thanks to the chain rule and Lemma 4.2, read(
∂y J (Sε (ūε ), ūε ), S

′
ε (ūε )h

)
Y +

(
∂u J (Sε (ūε ), ūε ),h

)
L2
+ (ūε − ū,h)L2 = 0 ∀h ∈ L2(Ω). (4.6)

From Lemma 4.3 we obtain that there exists a sequence εn → 0
+

and an operator G ∈ ∂swB S(ū)
such that

S ′εn (ūεn )h ⇀ Gh in Y ∀h ∈ L2(Ω).

Further, we deduce from (4.5), the global Lipschitz continuity of S , and (4.2), that Sεn (ūεn ) → S(ū)
in Y . Combining all of the above and using our assumptions on J , we can pass to the limit

εn → 0 in (4.6) to obtain(
∂y J (S(ū), ū),Gh

)
Y +

(
∂u J (S(ū), ū),h

)
L2
= 0 ∀h ∈ L2(Ω).

By setting p := G∗∂y J (S(ū), ū), this together with Theorem 3.16 and Remark 3.17 �nally proves

the claim. �
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Corollary 4.5. Assume that J is continuously Fréchet-di�erentiable from H 1

0
(Ω) × L2(Ω) to R. If

ū ∈ L2(Ω) is locally optimal for (P) with associated state ȳ , then there exists a multiplier χ ∈ L∞(Ω)
and an adjoint state p ∈ H 1

0
(Ω) such that

− ∆p + χ p = ∂y J (ȳ , ū), (4.7a)

χ (x) ∈ ∂c max(ȳ(x)) a.e. in Ω, (4.7b)

p + ∂u J (ȳ, ū) = 0. (4.7c)

If J is even Fréchet-di�erentiable from L2(Ω) × L2(Ω) to R, then p ∈ Y .

Proof. According to De�nition 3.2, Gχ is the solution operator of (3.7), which is formally self-

adjoint. Thus we can argue as in [37, Sec. 4.6] to deduce (4.7a) and the H 1
-regularity of p. The

Y -regularity is again obtained by bootstrapping. �

4.2 interpretation of the optimality conditions in the limit

In classical non-smooth optimization, optimality conditions of the form 0 ∈ ∂∗ f (x), where ∂∗ f
denotes one of the various subdi�erentials of f , frequently appear when a function f : X → R

is minimized over a normed linear spaceX ; we only refer to [34, Secs. 7 and 9] and the references

therein. With the help of the results of Section 3 (in particular Theorem 3.16), we are now in the

position to interpret the optimality system in (4.4) in this spirit. To this end, we �rst consider

the reduced objective and establish the following result for its Bouligand subdi�erential.

Proposition 4.6 (chain rule). Let u ∈ L2(Ω) be arbitrary but �xed and let F : L2(Ω) → R be the
reduced objective for (P) de�ned by F (u) := J (S(u),u). Moreover, set y := S(u). Then it holds{

G∗∂y J (y ,u) + ∂u J (y,u) : G ∈ ∂swB S(u)
}

⊆ ∂BF (u) := {w ∈ L2(Ω) : there exists (un) ⊂ L2(Ω) with un → u in L2(Ω)

such that F is Gâteaux in un for all n ∈ N

and F ′(un)⇀ w in L2(Ω) as n →∞}.

Proof. Let u ∈ L2(Ω) and G ∈ ∂swB S(u) be arbitrary but �xed. Then the de�nition of ∂swB S(u)
guarantees the existence of a sequence un ∈ L

2(Ω) of Gâteaux points with un → u in L2(Ω) and

S ′(un)h ⇀ Gh in Y for all h ∈ L2(Ω). Since J is Fréchet- and thus Hadamard-di�erentiable and

so is S by Theorem 2.2, we may employ the chain rule to deduce that F is Gâteaux-di�erentiable

in the points un ∈ L
2(Ω) with derivative

F ′(un) = S ′(un)
∗∂y J (yn ,un) + ∂u J (yn ,un) ∈ L

2(Ω)

for yn := S(un). As yn → y in Y by Proposition 2.1 and J : Y × L2(Ω) → R is continuously

Fréchet-di�erentiable by Assumption 1.1, we obtain for every h ∈ L2(Ω) that(
F ′(un),h

)
L2
=

(
∂y J (yn ,un), S

′(un)h
)
Y +

(
∂u J (yn ,un),h

)
L2

→
(
∂y J (y,u),Gh

)
Y +

(
∂u J (y,u),h

)
L2
.

Since h ∈ L2(Ω) was arbitrary, this proves G∗∂y J (y,u) + ∂u J (y ,u) ∈ ∂BF (u). �
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With the above result, we can now relate the optimality conditions obtained via regularization

to the Bouligand subdi�erential of the reduced objective, and in this way rate the strength of

the optimality system in (4.4).

Theorem 4.7 (limit optimality system implies Bouligand-stationarity). It holds:

ū is locally optimal for (P)

⇓

there exist χ ∈ L∞(Ω) and p ∈ L2(Ω) such that (4.4) holds

⇓

ū is Bouligand-stationary for (P) in the sense that 0 ∈ ∂BF (u)

⇓

ū is Clarke-stationary for (P) in the sense that 0 ∈ ∂CF (u)

Here, ∂CF (u) denotes the Clarke subdi�erential as de�ned in [5, Sec. 2.1].

Proof. The �rst two implications immediately follow from Theorem 4.4 and Proposition 4.6.

For the third implication, observe that the weak closedness of ∂CF (u) (see [5, Prop. 2.1.5b]) and

F ′(u) ∈ ∂CF (u) in all Gâteaux points (cf. [5, Prop. 2.2.2]) result in ∂BF (u) ⊆ ∂CF (u). �

Remark 4.8. The above theorem is remarkable for several reasons:

(i) Theorem 4.7 shows that 0 ∈ ∂BF (u) is a necessary optimality condition for the opti-

mal control problem (P). This is in general not true even in �nite dimensions, as the

minimization of the absolute value function shows.

(ii) The above shows that the necessary optimality condition in Theorem 4.4, which is obtained

by regularization, is comparatively strong. It is stronger than Clarke-stationarity and even

stronger than Bouligand-stationarity (which is so strong that it does not even make sense

in the majority of problems).

Remark 4.9. It is easily seen that the limit analysis in Section 4.1 readily carries over to control

constrained problems involving an additional constraint of the form u ∈ Uad for a closed and

convex Uad ⊂ L2(Ω). The optimality system arising in this way is identical to (4.4) except for

(4.4c), which is replaced by the variational inequality

(p + ∂u J (ȳ, ū),u − ū) ≥ 0 ∀u ∈ Uad.

The interpretation of the optimality system arising in this way in the spirit of Theorem 4.7 is,

however, all but straightforward, as it is not even clear how to de�ne the Bouligand subdi�erential

of the reduced objective in the presence of control constraints. Intuitively, one would choose

the approximating sequences in the de�nition of ∂BF from the feasible set Uad, but then the

arising subdi�erential could well be empty. This gives rise to future research.
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4.3 strong stationarity

Although comparatively strong, the optimality conditions in Theorem 4.4 are not the most

rigorous ones, as we will see in the sequel. To this end, we apply a method of proof which was

developed in [22] for optimal control problems governed by non-smooth semilinear parabolic

PDEs and inspired by the analysis in [23, 24]. We begin with an optimality condition without

dual variables.

Proposition 4.10 (purely primal optimality conditions). Let ū ∈ L2(Ω) be locally optimal for (P)

with associated state ȳ = S(ū) ∈ Y . Then there holds

F ′(ū;h) = ∂y J (ȳ , ū)S
′(ū;h) + ∂u J (ȳ , ū)h ≥ 0 ∀h ∈ L2(Ω). (4.8)

Proof. As already argued above, J : Y × L2(Ω) → R and S : L2(Ω) → Y are Hadamard-

di�erentiable, so that the reduced objective F : L2(Ω) 3 u 7→ J (S(u),u) ∈ R is Hadamard-

di�erentiable with directional derivative F ′(u;h) = ∂y J (S(u),u)S
′(u;h) + ∂u J (S(u),u)h by the

chain rule for Hadamard-di�erentiable mappings. Thus by classical arguments, the local opti-

mality of ū implies F ′(ū;h) ≥ 0 for all h ∈ L2(Ω). �

Lemma 4.11. Let p ∈ L2(Ω) ful�ll (4.4a), i.e., p = (Gχ )
∗∂y J (ȳ, ū) with some χ ∈ L∞(Ω), χ ≥ 0.

Then for every v ∈ Y there holds

(−∆v + χv,p)L2(Ω) = 〈∂y J (ȳ, ū),v〉Y ′,Y . (4.9)

Proof. Let v ∈ Y be arbitrary and de�ne д ∈ L2(Ω) by д := −∆v + χ v so that v = Gχд. Then

p = (Gχ )
∗∂y J (ȳ , ū) implies

(−∆v + χv,p)L2(Ω) = (д,p)L2(Ω) = 〈∂y J (ȳ, ū),Gχд〉Y ′,Y = 〈∂y J (ȳ, ū),v〉Y ′,Y

as claimed. �

Theorem 4.12 (strong stationarity). Let ū ∈ L2(Ω) be locally optimal for (P) with associated state
ȳ ∈ Y . Then there exist a multiplier χ ∈ L∞(Ω) and an adjoint state p ∈ L2(Ω) such that

p = (Gχ )
∗∂y J (ȳ, ū), (4.10a)

χ (x) ∈ ∂c max(ȳ(x)) a.e. in Ω, (4.10b)

p(x) ≤ 0 a.e. in {ȳ = 0}, (4.10c)

p + ∂u J (ȳ, ū) = 0. (4.10d)

Proof. From Theorem 4.4, we know that there exist p ∈ L2(Ω) and χ ∈ L∞(Ω) such that (4.4) is

valid, which already gives (4.10a), (4.10b), and (4.10d). It remains to show (4.10c). To this end,

let v ∈ Y be arbitrary and de�ne

h := −∆v + 1{ȳ=0}max(0,v) + 1{ȳ>0}v = −∆v +max
′(ȳ ;v) ∈ L2(Ω) (4.11)
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so that v = S ′(ū;h) by Theorem 2.2. By testing (4.11) with p and using (4.4c) and (4.8) from

Proposition 4.10, we arrive at

(−∆v +max
′(ȳ ;v),p)L2(Ω) = (h,p)L2(Ω)

= (−∂u J (ȳ , ū),h)L2(Ω)

≤ 〈∂y J (ȳ , ū), S
′(ū;h)〉Y ′,Y = 〈∂y J (ȳ, ū),v〉Y ′,Y . (4.12)

On the other hand, we know from Lemma 4.11 that p and χ satisfy (4.9). Subtracting this

equation from (4.12) and using the density of Y ↪→ L2(Ω) and the global Lipschitz continuity of

L2(Ω) 3 v 7→ max
′(ȳ ;v) ∈ L2(Ω) yields∫

Ω

(
max

′(ȳ ;v) − χ v
)
p dx ≤ 0 ∀v ∈ L2(Ω). (4.13)

Note that due to (4.10b), the bracket in (4.13) vanishes a.e. in {ȳ , 0}. Thus, we obtain∫
{ȳ=0}

(
max(0,v) − χ v

)
p dx =

∫
{ȳ=0}

(
(1 − χ )max(0,v) + χ max(0,−v)

)
p dx ≤ 0

for all v ∈ L2(Ω). The above implies that (1 − χ )vp ≤ 0 and χvp ≤ 0 holds a.e. in {ȳ = 0} for

all 0 ≤ v ∈ L2(Ω), and this in turn yields by addition that vp ≤ 0 holds a.e. in {ȳ = 0} for all

0 ≤ v ∈ L2(Ω). Inequality (4.10c) now follows immediately. �

Proposition 4.13. The strong stationarity conditions are equivalent to the purely primal optimality
conditions, i.e., ū ∈ L2(Ω) together with its state ȳ and a multiplier χ and an adjoint state p satis�es
(4.10) if and only if they also ful�ll the variational inequality (4.8).

Proof. Let h ∈ L2(Ω) be arbitrary and de�ne δ = S ′(ū;h). Then the gradient equation in (4.10d)

and Theorem 2.2 give

(−∂u J (ȳ, ū),h)L2 = (p,h)L2 = (−∆δ +max
′(ȳ ;δ ),p)L2

= (−∆δ + χ δ ,p)L2 + (max
′(ȳ ;δ ) − χ δ ,p)L2 . (4.14)

For the last term, (4.10b) and the sign condition in (4.10c) yield

(max
′(ȳ ;δ ) − χ δ ,p)L2 =

∫
{y=0}∩{δ ≥0}

(1 − χ )δ p dx +

∫
{y=0}∩{δ<0}

(−χ )δ p dx ≤ 0.

Together with Lemma 4.11, this implies that (4.14) results in

(−∂u J (ȳ , ū),h)L2 ≤ 〈∂y J (ȳ, ū),δ〉Y ′,Y ,

which is (4.8).

The other direction follows analogously to [22, proof of Thm. 5.3]. Assume that ū ∈ L2(Ω)
with ȳ := S(ū) satis�es (4.8). De�ning

p := −∂u J (ȳ, ū) ∈ L
2(Ω) (4.15)
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and η := S ′(ū;h), we have∫
Ω

(
− ∆η +max

′(ȳ ;η)
)
p dx =

∫
Ω
hp dx ∀h ∈ L2(Ω).

From (4.8) we thus obtain that∫
Ω

max
′(ȳ ;η)p dx ≤

〈
∆p + ∂y J (ȳ, ū),η

〉
Y ′,Y .

Let now λ := ∆p + ∂y J (ȳ , ū) ∈ Y
′
. The surjectivity of S ′(ū; ·) : L2(Ω) → Y then yields

〈λ,η〉Y ′,Y ≤

∫
Ω
−max

′(ȳ ;−η)p dx =

∫
Ω
1{ȳ>0}ηp + 1{ȳ=0}min(0,η)p dx ∀η ∈ Y .

By the Hahn–Banach extension theorem, we can extend λ from Y to L2(Ω), i.e., we obtain a

µ ∈ L2(Ω) that satis�es this variational inequality for all η ∈ L2(Ω). Pointwise inspection then

shows that

µ = p a.e. in {ȳ > 0}, µ = 0 a.e. in {ȳ < 0}, p ≤ µ ≤ 0 a.e. in {ȳ = 0}. (4.16)

Hence,

χ :=


1 a.e. in {ȳ > 0},
µ
p a.e. in {ȳ = 0} ∩ {p , 0},

0 a.e. else,

satis�es χ ∈ ∂c max(ȳ) a.e. as well as

χp = µ = ∆p + ∂y J (ȳ, ū).

Together with (4.15) and the third relation of (4.16), this yields (4.10). �

Remark 4.14. As in case of the optimality system (4.4), the regularity of the adjoint state in

Theorem 4.12 is again only limited by the mapping and di�erentiability properties of the

objective functional. Thus, arguing as in Corollary 4.5, one shows that if J is di�erentiable

from H 1

0
(Ω) × L2(Ω) or L2(Ω) × L2(Ω) to R, the adjoint state p satisfying (4.7a) is an element of

H 1

0
(Ω) or Y , respectively.

Remark 4.15. Although the optimality system (4.4) is comparatively strong by Theorem 4.7, it

provides less information compared to the strong stationarity conditions in (4.10) since it lacks

the sign condition (4.10c) for the adjoint state. The conditions (4.10) can be seen as the most

rigorous dual-multiplier based optimality conditions, as by Proposition 4.13 they are equivalent

to the purely primal condition. We point out, however, that the method of proof of Theorem 4.12

can in general not be transferred to the case with additional control constraints (e.g., u ∈ Uad for

a closed and convex set Uad), since it requires the set {S ′(ū;h) : h ∈ cone(Uad − ū)} to be dense

in L2(Ω). In contrast to this, the adaptation of the limit analysis in Section 4.1 to the case with

additional control constraints is straightforward as mentioned in Remark 4.9.
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5 algorithms and numerical experiments

One particular advantage of the optimality system in (4.4) is that it seems amenable to numerical

solution as we will demonstrate in the following. We point out, however, that we do not present

a comprehensive convergence analysis for our algorithm to compute stationary points satisfying

(4.4) but only a feasibility study. For the sake of presentation, we consider here an L2
tracking

objective of the form

J (y,u) :=
1

2

‖y − yd ‖
2

L2(Ω)
+
α

2

‖u‖2L2(Ω)
(5.1)

with a given desired state yd ∈ L
2(Ω) and a Tikhonov parameter α > 0.

5.1 discretization and semi-smooth newton method

Let us start with a short description of our discretization scheme, where we restrict ourselves

from now on to the case Ω ⊂ R2
. For the discretization of the state and the control variable,

we use standard continuous piecewise linear �nite elements (FE), cf., e.g., [3]. Let us denote by

Vh ⊂ H 1

0
(Ω) the associated FE space spanned by the standard nodal basis functions φ1, . . . ,φn .

The nodes of the underlying triangulation Th belonging to the interior of the domain Ω are

denoted by x1, . . . ,xn . We then discretize the state equation in (P) by employing a mass lumping

scheme for the non-smooth nonlinearity. Speci�cally, we consider the discrete state equation∫
Ω
∇yh · ∇vh dx +

∑
T ∈Th

1

3

|T |
∑
xi ∈T

max(0,yh(xi ))vh(xi ) =

∫
Ω
uh vh dx ∀vh ∈ Vh , (5.2)

where yh ,uh ∈ Vh denote the FE-approximations of y and u. With a slight abuse of notation, we

from now on denote the coe�cient vectors (yh(xi ))
n
i=1

and (uh(xi ))
n
i=1

by y,u ∈ Rn
. The discrete

state equation can then be written as the nonlinear algebraic equation

Ay + D max(0,y) = Mu, (5.3)

where A := (
∫
Ω
∇φi · ∇φ j dx)ni j=1

∈ Rn×n
and M := (

∫
Ω
φi φ j dx)ni j=1

∈ Rn×n
denote sti�ness and

mass matrix, max(0, .) : Rn → Rn
is the componentwise max-function, and

D := diag

( ∫
Ω
φi (x) dx

)
= diag

(
1

3

ωi

)
∈ Rn×n

with ωi = | supp(φi )| denoting the lumped mass matrix. Due to the monotonicity of the max-

operator, one easily shows that (5.2) and (5.3) admit a unique solution for every control vector

u. The objective functional is discretized by means of a suitable interpolation operator Ih (e.g.,

the Clément interpolator or, if yd ∈ C(Ω), the Lagrange interpolator). If – again by the abuse of

notation – we denote the coe�cient vector of Ihyd with respect to the nodal basis by yd , we

end up with the discretized objective

Jh : Rn ×Rn → R, Jh(y ,u) :=
1

2

(y − yd )
>M(y − yd ) +

α

2

u>Mu .
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Again regularizing the max-function in (5.3), a limit analysis analogous to Section 4.1 yields the

following discrete counterpart to (4.4) with vectors p, χ ∈ Rn
as necessary optimality conditions

for the discretized optimal control problem:

Ay + D max(0,y) = −
1

α
Mp, (5.4a)

Ap + D χ ◦ p = M(y − yd ), (5.4b)

χi ∈ ∂c max(yi ), i = 1, . . . ,n. (5.4c)

Here, a ◦ b := (aibi )
n
i=1

denotes the Hadamard product, and we have eliminated the control by

means of the gradient equation p + αu = 0.

Next, we reformulate (5.4) as a non-smooth system of equations. To this end, let us introduce

for a given γ > 0 the proximal point mapping proxγ : R→ R of max by

proxγ (x) := argmins ∈R

(
max(0, s) +

1

2γ
|s − x |2

)
=


x , x < 0,

0, x ∈ [0,γ ],

x − γ , x > γ .

(5.5)

Since the proximal point mapping of max coincides with the resolvent (I + γ ∂c max)−1
of its

convex subdi�erential, it is straightforward to show that д ∈ ∂c max(z) if and only if z =
proxγ (z + γ д). Thus, for every γ > 0, (5.4c) is equivalent to the non-smooth equation

yi = proxγ (yi + γ χi ), i = 1, . . . ,n. (5.4c
′
)

Since proxγ is Lipschitz continuous and piecewise continuously di�erentiable by (5.5), it is semi-

smooth as a function from R→ R. As the same holds for the max-function, it seems reasonable

to apply a semi-smooth Newton method to numerically solve the system consisting of (5.4a),

(5.4b), and (5.4c
′
). However, the application of a Newton-like scheme to (5.4) is a delicate issue.

This can already be seen by observing that χi is not unique in points where yi and pi vanish at

the same time. Moreover, the Newton matrix may well be singular. For a clearer notation, let us

introduce the index sets I+ := {i : yi > 0} and Iγ := {i : yi + γ χi < [0,γ ]}, and denote by 1I+
and 1Iγ the characteristic vectors of these index sets. The Newton matrix associated with (5.4)

is given by ©«
A + D diag(1I+)

1

α M 0

−M A + D diag(χ ) D diag(p)
D − D diag(1Iγ ) 0 −γ D diag(1Iγ )

ª®¬ ,
where we have multiplied the last row corresponding to (5.4c

′
) by the lumped mass matrix

to ensure a uniform scaling of the Newton equations. As already noted, the matrix becomes

singular if there is an index i ∈ {1, . . . ,n} such that pi = 0 and yi + γ χi ∈ [0,γ ]. To resolve

this problem, we follow an active set-type strategy where we remove the components of χ
corresponding to these indices from the Newton equation and leave them unchanged in the

Newton update. This is motivated by the fact that components that are �xed in this way will

likely either be changed in a further iteration (and hence no longer be singular) or correspond to

underdetermined components in the optimality conditions for which we thus take the (feasible)
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starting value as a �nal value. A similar strategy was also followed in [30] (see Chap. 3.4.1 and

Rem. 3.9 ii)). This procedure worked well in our numerical tests at least for small values of γ
(where the in�uence of the critical set on the Newton matrix is smaller), as we will demonstrate

below.

Remark 5.1. It is not clear how to numerically solve the strong stationarity conditions in (4.10)

since the system may well become overdetermined by the sign condition in (4.10c).

5.2 numerical results

We now present two di�erent examples with a constructed exact solution to (4.4) in order to

demonstrate convergence of the proposed algorithm and to illustrate the dependence on the

parameters α and γ as well as on the mesh size h. In both examples, the state vanishes in parts

of the domain so that the non-smoothness of the max-function becomes apparent. For this

purpose, we introduce an additional inhomogeneity in the state equation, i.e., we replace the

PDE in (P) by

y ∈ H 1

0
(Ω), −∆y +max(0,y) = u + f in Ω

with a given function f ∈ L2(Ω). It is easy to see that this modi�cation does not in�uence the

analysis in the preceding sections. The domain is chosen as the unit square Ω = [0, 1]2 ⊂ R2
,

which is discretized by means of Friedrich–Keller triangulations. In all cases, we take as a

starting guess for the Newton iteration y0 = p0 = χ0 = 0, and terminate the iteration if either

the combined norm of the residuals in (5.4a), (5.4b), and (5.4c
′
) becomes less than 10

−12
or if the

maximum number of 25 Newton iterations is reached. The Newton system in each iteration is

solved by matlab’s sparse direct solver.

In the �rst example, the optimal state and adjoint state are set to

y(x1,x2) = sin(π x1) sin(2π x2) and p ≡ 0,

and the data f and yd are constructed such that (4.4) is ful�lled, i.e., the optimal control is

u ≡ 0. We note that there is a subset where y and p vanish at the same time, but it is only of

measure zero. Table 1 presents the numerical results for di�erent values of the mesh size h,

the Tikhonov parameter α in the objective in (5.1), and the parameter γ in the proximal point

mapping. For the state y , we report the relative error of the computed approximation yh with

respect to the (L2
projection of the) constructed optimal state y in the continuous L2

norm. For

this choice of the adjoint state p, the relative error is of course not appropriate, and we thus

report here the absolute error in the continuous L2
norm. The error for χ is given in the discrete

L∞ norm, ‖χh − χ ‖L∞,h := maxi=1, ...,n |χh(xi ) − χ (xi )|, where the xi are the interior nodes of

the triangulation. (Note that χ is everywhere constant except in {y = 0}, and the triangulation

is chosen such that y(xi ) , 0.)

First, we remark that for almost all combinations of parameter values, only a few Newton

iterations are needed to reach a residual norm below 10
−12

. Regarding the dependence on the

mesh size, we can observe quadratic convergence of the state y and the adjoint state p. Since in

this case, the active set satis�es χ (xi ) ∈ {0, 1} for all xi , the approximation only depends on the

sign of y and is hence independent of the mesh size (for the considered values of h). Turning to
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Table 1: Numerical results in the �rst example

h α γ
‖yh−y ‖L2

‖y ‖L2

‖ph − p‖L2 ‖χh − χ ‖L∞,h # Newton

3.030 · 10−2
1 · 10−4

1 · 10−4
1.152 · 10−3

1.036 · 10−5
8.150 · 10−7

3

1.538 · 10−2
1 · 10−4

1 · 10−4
2.962 · 10−4

2.679 · 10−6
8.149 · 10−7

3

7.752 · 10−3
1 · 10−4

1 · 10−4
7.515 · 10−5

6.809 · 10−7
8.156 · 10−7

3

3.891 · 10−3
1 · 10−4

1 · 10−4
1.893 · 10−5

1.716 · 10−7
8.156 · 10−7

3

7.752 · 10−3
1 · 10−4

1 · 10−2
– – – no conv.

7.752 · 10−3
1 · 10−4

1 · 10−3
– – – no conv.

7.752 · 10−3
1 · 10−4

1 · 10−5
7.515 · 10−5

6.809 · 10−7
3.178 · 10−6

3

7.752 · 10−3
1 · 10−4

1 · 10−6
7.515 · 10−5

6.809 · 10−7
9.178 · 10−6

3

7.752 · 10−3
1 · 10−2

1 · 10−4
3.267 · 10−4

3.241 · 10−6
8.154 · 10−7

3

7.752 · 10−3
1 · 10−3

1 · 10−4
2.444 · 10−4

2.405 · 10−6
8.154 · 10−7

3

7.752 · 10−3
1 · 10−6

1 · 10−4
2.449 · 10−6

9.204 · 10−9
8.149 · 10−7

3

7.752 · 10−3
1 · 10−8

1 · 10−4
1.199 · 10−7

9.452 · 10−11
8.153 · 10−7

3

the behavior with respect to γ , we �rst note that the Newton iteration failed to converge for

larger values. This can be explained by the fact that for larger values of γ , the critical set where

yi ∈ [−γ , 0] and hence yi + γ χi ∈ [0,γ ] becomes larger so that we expect the local convergence

of Newton’s method to become an issue. For smaller values of γ , the Newton iteration converges

quickly, and the approximation of y and p is independent of γ . This is not the case for χ , where

the approximation becomes worse. Here we point out that while (5.4c
′
) is equivalent to (5.4c)

for any value of γ , this only holds for exact solutions. A simple pointwise inspection shows

that if (5.4c
′
) does not hold exactly but only up to a residual of ε , then χε = χ + O(

ε
γ ). Finally,

we see that the Newton method is robust with respect to α , and the approximation of y and p
even improves for smaller α . However, this seems to be a particularity of this example, since

the Tikhonov parameter enters the data through the construction of this exact solution.

For the second example, we choose

y(x1,x2) = p(x1,x2) =

{(
(x1 −

1

2
)4 + 1

2
(x1 −

1

2
)3
)

sin(π x2), x1 <
1

2
,

0, x1 ≥
1

2
.

Note that y and p are twice continuously di�erentiable and vanish on the right half of the

unit square. Therefore, the non-smoothness of the max-function occurs on a set of positive

measure in this example. Moreover, as y and p vanish at the same time, χ is not unique in this

set. This example can thus be seen as a worst-case scenario. Nevertheless, our algorithm is able

to produce reasonable results as Table 2 demonstrates. (Note that it does not make sense to list

the discrete L∞ error for χh , since χ is not unique as mentioned above. In contrast, we can now

report relative errors for ph .)

The algorithm shows a similar behavior as in the �rst example. Again, we observe quadratic

convergence with respect to mesh re�nement and that the Newton method does not converge if
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Table 2: Numerical results in the second example

h α γ
‖yh−y ‖L2

‖y ‖L2

‖ph−p ‖L2

‖p ‖L2

# Newton

3.030 · 10−2
1 · 10−4

1 · 10−12
8.708 · 10−1

1.606 · 10−2
4

1.538 · 10−2
1 · 10−4

1 · 10−12
2.281 · 10−1

4.541 · 10−3
5

7.752 · 10−3
1 · 10−4

1 · 10−12
5.821 · 10−2

1.209 · 10−3
3

3.891 · 10−3
1 · 10−4

1 · 10−12
1.469 · 10−2

3.119 · 10−4
3

7.752 · 10−3
1 · 10−4

1 · 10−6
– – no conv.

7.752 · 10−3
1 · 10−4

1 · 10−8
– – no conv.

7.752 · 10−3
1 · 10−4

1 · 10−10
5.821 · 10−2

1.209 · 10−3
3

7.752 · 10−3
1 · 10−4

1 · 10−14
5.821 · 10−2

1.209 · 10−3
3

7.752 · 10−3
1 · 10−2

1 · 10−12
3.007 · 10−3

1.747 · 10−3
2

7.752 · 10−3
1 · 10−3

1 · 10−12
1.659 · 10−2

1.512 · 10−3
2

7.752 · 10−3
1 · 10−5

1 · 10−12
1.692 · 10−1

8.659 · 10−4
5

7.752 · 10−3
1 · 10−6

1 · 10−12
– – no conv.

γ is chosen too large. (Note that in this example, the optimal state y is scaled di�erently, which

in�uences the e�ect of γ in (5.4c
′
).) In contrast to the �rst example, smaller values of α lead

to worse numerical approximation and slower convergence of the Newton method (and even

non-convergence for α = 10
−6

). This is a typical observation which is also made in case of

smooth optimal control problems.

In summary, one can conclude that our semi-smooth Newton-type method seems to be able

to solve the discrete optimality system (5.4) for a certain range of parameters, even in genuinely

non-smooth cases. However, a comprehensive convergence analysis is still lacking, and the

choice of the parameter γ appears to be a delicate issue. Moreover, as already mentioned in

Remark 5.1, it is completely unclear how to incorporate the sign condition in (4.10c) into the

algorithmic framework. This is the subject of future research.

appendix a smooth “characteristic” functions of open sets

Lemma a.1. For every open set D ⊆ Rd there exists a function ψ ∈ C∞(Rd ) such that ψ > 0

everywhere in D andψ ≡ 0 in Rd \ D.

Proof. Since the collection of all open balls with rational radii and rational centers forms a base

of the Euclidean topology on Rd
, given an arbitrary but �xed open set D we �nd (non-empty)

open balls Bn ⊆ D, n ∈ N, such that

D =
∞⋃
n=1

Bn .

For every ball Bn , there is a smooth rotational symmetric bump function ψn ∈ C
∞(Rd ) with
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ψn > 0 in Bn andψn ≡ 0 in Rd \ Bn . De�ning

ψ :=

∞∑
n=1

ψn
2
n ‖ψn ‖Hn (Rd )

.

it holds thatψ > 0 in D,ψ ≡ 0 in Rd \ D, andψ ∈ Hn(Rd ) for all n ∈ N. Sobolev’s embedding

theorem then yields the claim. �

appendix b approximation of functions in L∞(Ω;{0,1}) and L∞(Ω;[0,1])

Lemma b.1. If (X , Σ, µ) is a �nite measure space and if A := {Ai }i ∈I , I ⊂ R, is a collection of
measurable disjoint sets Ai ∈ Σ, then there exists a countable set N ⊂ I such that µ(Ai ) = 0 for all
i ∈ I \ N .

Proof. De�ne Ak := {Ai ∈ A : µ(Ai ) ≥ 1/k}, k ∈ N. Then every Ai ∈ A with µ(Ai ) > 0 is

contained in at least oneAk . Suppose Ai1 , . . . ,Aim are contained inAk . Then their disjointness

implies

m

k
≤

m∑
l=1

µ(Ail ) ≤ µ(X ),

and thusm ≤ kµ(X ) < ∞. Consequently, there can only be �nitely many Ai in each Ak such

that the set {i ∈ I : µ(Ai ) > 0} is countable. �

Lemma b.2.

(i) If A ⊆ Ω is open, then there exists a sequence φn ∈ Y with λd ({φn = 0}) = 0 such that

1{φn>0} → 1A pointwise a.e. in Ω.

(ii) If A ⊆ Ω is Lebesgue measurable, then there exists a sequence of open sets An ⊆ Ω such that

1An → 1A pointwise a.e. in Ω.

(iii) If A ⊆ Ω is Lebesgue measurable and if c ∈ (0, 1] is arbitrary but �xed, then there exists a
sequence of Lebesgue measurable sets An ⊆ A such that

1An ⇀
∗ c1A in L∞(Ω).

(iv) If χ : Ω → R is a simple function of the form

χ :=

K∑
k=1

ck1Bk

with K ∈ N, ck ∈ (0, 1], and Bk ⊆ Ω Lebesgue measurable and mutually disjoint, then there
exists a sequence of Lebesgue measurable sets An ⊆ Ω such that

1An ⇀
∗ χ in L∞(Ω).
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Proof. Ad (i): Let A ⊆ Ω be an arbitrary but �xed open set. By Lemma a.1, there exist functions

ψ ,ϕ ∈ C∞(Rd ) with

ψ > 0 in Ω, ψ ≡ 0 in Rd \ Ω, and ϕ > 0 in A, ϕ ≡ 0 in Rd \A.

So, if we de�ne φε := ϕ − εψ , then φε ∈ Y ∩C(Ω) for all ε ∈ (0, 1) and φε (x) → ϕ(x) for all x ∈ Ω
as ε → 0 (here and in the following, we always use continuous representatives). Moreover, the

sign conditions onψ and ϕ imply that

1{φε>0} → 1A pointwise a.e. in Ω. (b.1)

Consider now some ε1, ε2 ∈ (0, 1) with ε1 , ε2. Then it holds that

{x ∈ Ω : φε1
(x) = 0} ∩ {x ∈ Ω : φε2

(x) = 0}

= {x ∈ Ω : ϕ(x) − ε1ψ (x) = 0 and ϕ(x) − ε2ψ (x) = 0} = {x ∈ Ω : ε1 = ε2} = ∅,

showing that the collection ({x ∈ Ω : φε (x) = 0})ε ∈(0,1) is disjoint. Analogously to the proof

of Lemma 3.13, we now obtain by means of Lemma b.1 that there exists a sequence (εn) with

εn → 0 as n →∞ such that

λd ({x ∈ Ω : φεn (x) = 0}) = 0 ∀n ∈ N.
Together with (b.1), this establishes the assertion of part (i).

Ad (ii): The outer regularity of the Lebesgue measure implies the existence of open sets

Ãn ⊆ Ω such that

A ⊆ Ãn and λd (Ãn \A) <
1

n
∀n ∈ N.

Let us de�ne

An :=

n⋂
m=1

Ãm ∀n ∈ N.

Then An is open for all n ∈ N, and it holds that

An+1 ⊆ An , A ⊆ An , and λd (An \A) <
1

n
∀n ∈ N.

The above implies that

1An (x) → 1A(x) ∀x ∈ A ∪
⋃
n∈N

Ω \An = Ω \

(⋂
n∈N

An \A

)
.

Since the exceptional set appearing above has measure zero, this proves (ii).

Ad (iii): We apply a homogenization argument. Given n ∈ N, let us de�ne

Bn :=
⋃
k ∈Zd

1

n
k +

[
0,

1

n

]d−1

×

[
0,

1

n
c

]
⊆ Rd .
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The sequence (1Bn ) is bounded in L∞(Rd ), and we may extract a subsequence (not relabeled)

such that 1Bn ⇀
∗ χ in L∞(Rd ) for some χ ∈ L∞(Rd ). Consider now an arbitrary but �xed

φ ∈ C∞c (R
d ). Then it holds that∫

Rd
1Bnφ dx =

∫
Rd

cφ dx + c
∑
k ∈Zd

∫
1

n k+[0,
1

n ]
d
φ

(
1

n
k

)
− φ(x) dx

+
∑
k ∈Zd

∫
1

n k+[0,
1

n ]
d−1

×[0, 1

n c]
φ(x) − φ

(
1

n
k

)
dx

→

∫
Rd

cφ dx .

Using standard density arguments and the uniqueness of the weak-∗ limit, we deduce from the

above that 1Bn ⇀
∗ χ ≡ c in L∞(Rd ) for the whole original sequence (1Bn )n∈N. But now for all

v ∈ L1(Ω), it holds that∫
Ω
1Bn∩Av dx =

∫
Rd

1Bn1Av dx →

∫
Ω
c1Av dx ,

i.e., 1Bn∩A ⇀
∗ c1A in L∞(Ω). This gives the claim with An := Bn ∩A.

Ad (iv): According to part (iii), we can �nd for every k ∈ {1, . . . ,K} a sequence of Lebesgue

measurable sets Ak,n ⊆ Bk such that

1Ak,n ⇀
∗ ck1Bk in L∞(Ω) as n →∞.

De�ning An :=
⋃K

k=1
An,k , the claim follows immediately by superposition. �
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