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OPTIMAL CONTROL OF THE THERMISTOR PROBLEM IN
THREE SPATIAL DIMENSIONS, PART 1: EXISTENCE OF

OPTIMAL SOLUTIONS∗

H. MEINLSCHMIDT†, C. MEYER‡, J. REHBERG§

Abstract. This paper is concerned with the state-constrained optimal control of the three-
dimensional thermistor problem, a fully quasilinear coupled system of a parabolic and elliptic PDE
with mixed boundary conditions. This system models the heating of a conducting material by means
of direct current. Local existence, uniqueness and continuity for the state system are derived by
employing maximal parabolic regularity in the fundamental theorem of Prüss. Global solutions and
controls admitting such are addressed and existence of optimal controls is shown if the temperature
gradient is under control. This work is the first of two papers on the three-dimensional thermistor
problem.
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1. Introduction. In this paper, we consider the state-constrained optimal con-
trol of the three-dimensional thermistor problem. In detail the optimal control prob-
lem under consideration looks as follows:

min
1

2
‖θ(T1)−θd‖2L2(E)+

γ

s
‖∇θ‖sLs(T0,T1;Lq(Ω))+

β

2

∫
ΣN

(∂tu)2+|u|p dω dt

s.t. (1.1)–(1.6)

and θ(x, t) ≤ θmax(x, t) a.e. in Ω× (T0, T1),

0 ≤ u(x, t) ≤ umax(x, t) a.e. on ΓN × (T0, T1)


(P)

where (1.1)–(1.6) refer to the following coupled PDE system consisting of the insta-
tionary nonlinear heat equation and the quasi-static potential equation, which is also
known as thermistor problem:

∂tθ − div(η(θ)κ∇θ) = (σ(θ)ρ∇ϕ) · ∇ϕ in Q := Ω× (T0, T1) (1.1)

ν · η(θ)κ∇θ + αθ = αθl on Σ := ∂Ω× (T0, T1) (1.2)

θ(T0) = θ0 in Ω (1.3)

−div(σ(θ)ρ∇ϕ) = 0 in Q (1.4)

ν · σ(θ)ρ∇ϕ = u on ΣN := ΓN × (T0, T1) (1.5)

ϕ = 0 on ΣD := ΓD × (T0, T1). (1.6)

Here θ is the temperature in a conducting material covered by the three dimensional
domain Ω, while ϕ refers to the electric potential. The boundary of Ω is denoted by
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∂Ω with the unit normal ν facing outward of Ω in almost every boundary point (w.r.t.
the boundary measure ω). In addition, for the boundary we have ΓD ∪̇ ΓN = ∂Ω,
where ΓD is closed within ∂Ω. The functions η(·)κ and σ(·)ρ represent heat- and
electric conductivity. While κ and ρ are given, prescribed matrix functions, η and
σ are allowed to depend on the temperature θ. Moreover, α is the heat transfer
coefficient regulating the heat flux through the boundary ∂Ω, and θl and θ0 are given
boundary– and initial data, respectively. The quadratic gradient term in (1.1) is
known as the Joule heat. Note that a realistic model of heat evolution includes
a volumetric heat capacity %Cp(θ), generally depending on θ, in front of the time
derivative. We assume this term to be normalized to one, which can be achieved by
re-scaling θ by so-called enthalpy transformation. The effects of this transformation
on the remaining quantities in the equation may be absorbed into η, σ and α which
does not influence the theory if Cp is reasonably smooth and strictly monotone (see
e.g. [8, Sect. 3]). Finally, u stands for a current which is induced via the boundary
part ΓN and is to be controlled. The bounds in the optimization problem (P) as
well as the desired temperature θd are given functions and β is the usual Tikhonov
regularization parameter. The precise assumptions on the data in (P) and (1.1)–(1.6)
will be specified in §2. In all what follows, the system (1.1)–(1.6) is frequently also
called state system.

The PDE system (1.1)–(1.6) models the heating of a conducting material by
means of an electric current, described by u, induced on the part ΓN of the boundary,
which is done for some time T1 − T0. At the grounding ΓD, homogeneous Dirichlet
boundary conditions are given, i.e., the potential is zero, inducing electron flow. Note
that, usually, u will be zero on a subset ΓN0

of ΓN , which corresponds to having
insulation at this part of the boundary. We emphasize that the different boundary
conditions are essential for a realistic modeling of the process. The objective of (P) is
to adjust the induced current u to minimize the L2-distance between the desired and
the resulting temperature at end time T1 on the set E ⊆ Ω, the latter representing the
area of the material in which one is interested – realized in the objective functional
by the first term. The other terms are present to minimize thermal stresses (second
term) and to ensure a certain smoothness of the controls (third term), whose influence
to the objective functional, however, may be controlled by the weights γ and β. The
actual form of these terms and the size of the integrability orders are motivated by
functional-analytic considerations, see §4. Moreover, the optimization is subject to
pointwise control and state constraints. The control constraints reflect a maximum
heating power, while the state constraints limit the temperature evolution to prevent
possible damage, e.g. by melting of the material. Similarly to the mixed boundary
conditions, the inequality constraints in (P) are essential for a realistic model as
demonstrated by the numerical example in a companion paper [47]. Problem (P)
is relevant in various applications, such as for instance the heat treatment of steel
by means of an electric current. The numerical example mentioned deals with an
application of this type.

1.1. Overview and main results. The optimal control problem (P) exhibits
some non-standard features and challenges, in particular the quasilinear structure
in both PDEs, including the nonlinear coupling and the nonlinear inhomogeneity in
the heat equation (1.1). In contrast to the two-dimensional case (see [34]), it seems
impossible to infer a priori bounds in suitable function spaces from the PDE system
in three spatial dimensions. This absence of a priori bounds makes already the proof
of existence and uniqueness of solutions to the state system challenging and rather
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technical; in particular, one cannot even guarantee existence of solutions which live
globally in time in suitable regularity classes from properties of the state system only.
Of course, the latter is also a problem for the optimal control setting because it
conflicts with the point evaluation at T1 in the objective functional; but even if one
had global-in-time solutions, suitable a priori bounds are still mandatory for the proof
of existence of optimal solutions to (P). For the optimal control problem however, we
are able to circumvent this problem by deriving suitable a priori bounds using the
objective functional and the state constraints, i.e., from additional information in the
optimal control process. The functional-analytic framework is further complicated by
the generally nonsmooth setting for the domain Ω and the coefficient matrices κ and
ρ, and the regularity of ϕ is substantially limited by the presence of mixed boundary
conditions for the elliptic equation in (1.5)–(1.6)

We next describe our main results and illustrate in some more detail how we deal
with the above peculiarities. Our main result concerning existence and uniqueness of
the state system (1.1)–(1.6) is established in §3 and relies on a fundamental theorem
for abstract quasilinear evolution equations of Prüss [50] based on maximal parabolic
regularity, cf. Proposition 3.17 below. The spatial function spaces will be negative
Sobolev spaces which are readily adapted to account for mixed boundary conditions
(see §2 for the relevant definitions). One of the central points to validate for Prüss’
theorem—a fundamental issue when dealing with quasilinear equations—is to estab-
lish uniformity of the domains of the elliptic differential operators considered in these
spaces; see Lemma 3.7. It turns out that exactly the regularity of θ needed to obtain
uniform domains of the differential operators in the correct spaces also allows to show
Lipschitz-continuity of the nonlinear inhomogeneities in (1.1) w.r.t. θ; this is done
in the majority of §3.2, culminating in Propositions 3.21 and 3.28. The theorem of
Prüss then yields our first main result (local-in-time solutions in a maximal regularity
space, Theorem 3.14) which reads, informally, as follows:

Theorem. For each u ∈ L2r(J ;W−1,q
ΓD

(Ω)) and θ0 ∈ (W 1,q(Ω),W−1,q
∅ (Ω)) 1

r ,r
,

there exists a unique local-in-time solution (θ, ϕ) of (1.1)–(1.6) with the regularity
θ ∈ W 1,r(T0, T•;W

−1,q
∅ (Ω)) ∩ Lr(T0, T•;W

1,q(Ω)) and ϕ ∈ L2r(T0, T•;W
1,q
ΓD

(Ω)) for
some T• ∈ J , where q satisfies q > 3, and r is chosen large enough, depending on q.

We refer to Assumption 3.4 and Definitions 3.11 and 3.12 for the precise require-
ments on q and r and the notion of a solution. Having the functional-analytic tools
from §3 at hand, we next establish the existence of optimal controls to (P) in §4.
Our local-in-time existence result and the blow-up examples in [6] indicate that one
can in general not expect to obtain for every control u a solution of the state sys-
tem (1.1)–(1.6) on the whole time interval. Therefore, the control-to-state mapping
is in general not well defined as a mapping to a function space of solutions living on
a fixed time interval, so that the standard proof of existence of an optimal control
built upon a reduced formulation is not applicable in case of (P). To cope with this
challenge, we restrict the set of feasible controls to the set Ug of controls admitting
a global-in-time solution. This is justified because we are able to show that Ug is
nonempty since it contains at least the zero control u ≡ 0, see Corollary 4.4. Never-
theless, attempting to perform the usual calculus of variations-proof for the existence
of an optimal control to (P), we need to ensure that the infimal sequence of feasible
points (θk, ϕk, uk) admits a subsequence which converges in sufficiently strong spaces
to be able to pass to the limit in the state system (1.1)–(1.6) which includes that the
limit of this subsequence still gives rise to a global-in-time solution. As announced
above, we use the objective functional and the state constraints in (P) to obtain the
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necessary bounds for the infimal sequence from the objective functional and the state
constraints, because the state system itself admits no such bounds. We underline that,
although the local-in-time existence result for the state system alone is not directly
used to establish the existence of a solution to the optimal control problem (P), most
of the results in §3 also play an essential role for the derivation of suitable bounds for
the infimal sequence. It is then shown in Theorem 4.7 and Lemma 4.12 how these
bounds translate to convergence of a suitable subsequence with the desired properties.
These results, together with continuity properties for the state equation established
in [48], are finally used for our second main theorem, the existence of optimal “global”
controls for (P), in Theorem 4.14:

Theorem. There exists an optimal solution (θ̄, ϕ̄, ū) to (P).
Note that this non-standard technique to establish a priori bounds for the infimal

sequence was also used to prove existence of optimal controls in [4]. In a companion
paper [47] we moreover show that Ug is in fact an open set, which together with
the continuity of θ allows to derive necessary optimality conditions in qualified form
for (P) in which Ug does not explicitly occur.

1.2. Context and related works. Let us put our work into perspective. Up to
the authors’ best knowledge, there are only few contributions dealing with the optimal
control of the thermistor problem. We refer to [44, 14, 37, 36], where two-dimensional
problems are discussed. In [44], a completely parabolic problem is discussed, while [37]
considers the purely elliptic counterpart to (1.1)–(1.6). In [14, 5, 36], the authors
investigate a parabolic-elliptic system similar to (1.1)–(1.6), assuming a particular
structure of the controls. In contrast to [44, 37], mixed boundary conditions are
considered in [14, 36]. However, all these contributions do not consider pointwise state
constraints and non-smooth data. Thus, (P) differs significantly from the problems
considered in the aforementioned papers. In a previous paper [34], two of the authors
investigated the two-dimensional counterpart of (P). This contribution also accounts
for mixed boundary conditions, non-smooth data, and pointwise state constraints.
However, the analysis in [34] substantially differs from the three dimensional case
considered here. First of all, in two spatial dimensions, the isomorphism-property of
the elliptic operators mentioned above directly follows from the classical paper [26].
Moreover, the heat conduction coefficient in (1.1) is assumed not to depend on the
temperature in [34]. Both features allow to derive suitable a priori bounds from the
PDE system itself, i.e., the essential feature that is missing in the three dimensional
setting considered here, as already explained above. This enables to establish a global
existence result for a suitable class of control functions without deriving necessary a
priori bounds from a particularly chosen objective as in our case. Hence, main aspects
of the present work do not appear in the two-dimensional setting. Let us finally take
a broader look on state-constrained optimal control problems governed by PDEs.
Compared to semilinear state-constrained optimal control problems, the literature
concerning optimal control problems subject to quasilinear PDEs and pointwise state
constraints is rather scarce. We exemplarily refer to [12, 11], where elliptic problems
are studied. The vast majority of papers in this field deals with problems that possess
a well defined control-to-state operator. By contrast, as indicated above, the state-
system (1.1)–(1.6) in general just admits local-in-time solutions, which requires a
sophisticated treatment of the optimal control problem under consideration.

1.3. Outline of the paper. The paper is organized as follows: We set the stage
with notations and assumptions in §2 and discuss the state-system in §3. More pre-
cisely, §3.1 collects preliminary results, also interesting for their own sake, while §3.2
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is devoted to the actual proof of existence and uniqueness of local-in-time solutions.
We then proceed with the optimal control problem in §4, give sufficient conditions for
sets of controls to be closed within the sets of all controls which admit global solutions
in time, and finally show that optimal solutions to (P) exist.

2. Notations and general assumptions. We introduce some notation and the
relevant function spaces. All function spaces under our consideration are real ones.
Let, for now, Ω be a domain in R3. We give precise geometric specifications for Ω in
§2.1 below.

Let us fix some notations: The underlying time interval is called J = (T0, T1)
with T0 < T1. The boundary measure for the domain Ω is called ω. Generally, given
an integrability order q ∈ (1,∞), we denote the conjugate of q by q′, i.e., it always
holds 1/q + 1/q′ = 1.

Definition 2.1. For q ∈ (1,∞), let W 1,q(Ω) denote the usual Sobolev space on
Ω. If Ξ ⊂ ∂Ω is a closed part of the boundary ∂Ω, we set W 1,q

Ξ (Ω) to be the closure
of the set

{
ψ|Ω : ψ ∈ C∞0 (R3), supp ψ ∩ Ξ = ∅

}
with respect to the W 1,q-norm.

The dual space of W 1,q′

Ξ (Ω) is denoted by W−1,q
Ξ (Ω); in particular, we write

W−1,q
∅ (Ω) for the dual of W 1,q′(Ω) (see Remark 2.2 below regarding consistency).

The Hölder spaces of order δ on Ω or order % on Q are denoted by Cδ(Ω) and C%(Q),
respectively (note here that Hölder continuous functions on Ω or Q, respectively,
possess an unique uniformly continuous extension to the closure of the domain, such
that we will mostly use Cδ(Ω) and C%(Q) to emphasize on this).

We will usually abbreviate the function spaces on Ω by leaving out the Ω, e.g. we
write W 1,q

Ξ instead of W 1,q
Ξ (Ω) or Lp instead of Lp(Ω). Lebesgue spaces on subsets

of ∂Ω are always to be considered with respect to the boundary measure ω, but
we abbreviate Lp(∂Ω, ω) by Lp(∂Ω) and do so analogously for any ω-measurable
subset of the boundary. The norm in a Banach space X will be always indicated by
‖ · ‖X . For two Banach spaces X and Y , we denote the space of linear, bounded
operators from X into Y by L(X;Y ). The symbol LH(X;Y ) stands for the set of
linear homeomorphisms between X and Y . If X,Y are Banach spaces which form an
interpolation couple, then we denote by (X,Y )τ,r the real interpolation space, see [54].
We use R3×3

sym for the set of real, symmetric 3 × 3-matrices. In the sequel, a linear,
continuous injection from X to Y is called an embedding, abbreviated by X ↪→ Y .
For Lipschitz continuous functions f , we denote the Lipschitz constants by Lf , while
for bounded functions g we denote their bound by Mg (both over appropriate sets, if
necessary). Finally, c denotes a generic positive constant.

2.1. Geometric setting for Ω and ΓD. In all what follows, the symbol Ω
stands for a bounded Lipschitz domain in R3 in the sense of [46, Ch. 1.1.9]; cf. [33] for
the boundary measure ω on such a domain. The thus defined notion is different from
strong Lipschitz domain, which is more restrictive and in fact identical with uniform
cone domain, see again [46, Ch. 1.1.9]). A Lipschitz domain is formed e.g. by the
topologically regularized union of two crossing beams (see [31, Ch. 7]), which is not a
strong Lipschitz domain. Moreover, the interior of any three-dimensional connected
polyhedron is a Lipschitz domain, if the polyhedron is, simultaneously, a 3-manifold
with boundary, cf. [30, Thm. 3.10]. However, a ball minus half of the equatorial plate
is not a Lipschitz domain, and a chisel, where the blade edge is bent onto the disc, is
also not.

Remark 2.2 (Extension property). The Lipschitz property of Ω implies the
existence of a linear, continuous extension operator E : W 1,q(Ω)→W 1,q(R3) (see [22,
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p.165]), which simultaneously provides a continuous extension operator E : Cδ(Ω) →
Cδ(R3) and E : Lp(Ω) → Lp(R3), where δ ∈ (0, 1) and p ∈ [1,∞]. This has the
following consequences:

(i) Since any element from W 1,q(R3) may be approximated by smooth functions
in the W 1,q-norm, any element from W 1,q(Ω) may be approximated by restrictions of
smooth functions in the W 1,q(Ω)-norm. This tells us that the definitions of W 1,q(Ω)
and W 1,q

Ξ (Ω) are consistent in case of Ξ = ∅, i.e., one has W 1,q(Ω) = W 1,q
∅ (Ω). See

also the detailed discussion in [25, Ch. 1.3.2].
(ii) The existence of the extension operator E provides the usual Sobolev embed-

dings, that is, W 1,q(Ω) ↪→ Lp(Ω) for 1 + 3/p ≥ 3/q, and their consequences. For
our work, a particularly critical consequence is the embedding Lq/2(Ω) ↪→ W−1,q

∅ (Ω)
if q exceeds the space dimension three. Moreover, we also have the usual boundary
embeddings or trace theorems at our disposal, see [35, Lemma 2.7].

Next we define the geometric setting for the domain Ω and the Dirichlet boundary
part. For this, we use the following model sets, based on the open unit cube K =
(−1, 1)3 in R3, centered at 0 ∈ R3:

K− : = {x ∈ K : x3 < 0} (lower half cube),

ΣK : = {x ∈ K : x3 = 0} (upper plate of K−),

Σ0
K : = {x ∈ ΣK : x2 < 0} (left half of ΣK).

The definition is then as follows:
Definition 2.3 (Regular sets). Let Ω be a bounded Lipschitz domain and let

Ξ ⊂ ∂Ω be closed within ∂Ω.
(i) We say that Ω∪Ξ is regular (in the sense of Gröger), if for any point x ∈ ∂Ω

there is an open neighborhood Ux of x, a number ax > 0 and a bi-Lipschitz mapping φx

from Ux onto axK such that φx(x) = 0 ∈ R3, and we have either φx

(
(Ω ∪ Ξ) ∩ Ux

)
=

axK− or ax(K− ∪ ΣK) or ax(K− ∪ Σ0
K).

(ii) The regular set Ω ∪ Ξ is said to satisfy the volume-conservation condition,
if each mapping φx in Condition (i) is volume-preserving.

Generally, Ξ is allowed to be empty in Definition 2.3. Then Definition 2.3 (i)
merely describes a Lipschitz domain. Some further comments are in order:

Remark 2.4 (Comments on regular sets).
(i) Condition (i) in Definition 2.3 exactly characterizes Gröger’s regular sets,

introduced in his pioneering paper [26]. Note that the volume-conservation condition
also has been required in several contexts, cf. [23] and [27].
Clearly, the properties φx(Ux) = axK and φx

(
Ω∩Ux

)
= axK− are already ensured by

the Lipschitz property of Ω; the crucial point is the behavior of φx(Ξ ∩ Ux).
(ii) A simplifying topological characterization of Gröger’s regular sets in the case

of three space dimensions reads as follows (cf. [32, Ch. 5]):
1. Ξ is the closure of its interior within ∂Ω,
2. the boundary ∂Ξ within ∂Ω is locally bi-Lipschitz diffeomorphic to the open

unit interval (0, 1).
(iii) In particular, all domains with Lipschitz boundary (synonymous: strong

Lipschitz domains) satisfy Definition 2.3: if, after a shift and an orthogonal trans-
formation, the domain lies locally beyond a graph of a Lipschitz function ψ, then one
can define φ(x1, x2, x3) = (x1 − ψ(x2, x3), x2, x3). Obviously, the mapping φ is then
bi-Lipschitz and the determinant of its Jacobian is identically 1.

(iv) It turns out that regularity together with the volume-conservation condition
is not a too restrictive assumption on the mapping φx. In particular, there are such
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mappings—although not easy to construct—which map the ball onto the cylinder, the
ball onto the cube and the ball onto the half ball, see [24, 19]. The general message is
that this class has enough flexibility to map “non-smooth” objects onto smooth ones.

(v) If Ξ is nonempty and Ω∪Ξ is regular, then Ξ has interior points (with respect
to the boundary topology in ∂Ω), and, consequently, never has boundary measure 0.

The following assumption is supposed to be valid for all the remaining consider-
ations in the paper.

Assumption 2.5. The set Ω ∪ ΓD is regular with ΓD 6= ∅.
For the moment, it is sufficient to impose only the regularity condition from

Assumption 2.5 (i) on Ω ∪ ΓD. The volume-conservation condition is not needed
until §4, cf. Assumption 4.2 below. As explained in Remark 2.4, Assumption 2.5 in
particular implies that ω(ΓD) > 0.

2.2. General assumptions on (P). We first address the assumptions regarding
(local) existence and uniqueness for the state equation (1.1)–(1.6). This means in
particular that we treat u as a fixed, given inhomogeneity in this context, whereas it
is an unknown control function when considering the optimal control problem (P).

Assumption 2.6 (State system). On the quantities in the state system (1.1)–
(1.6) we generally impose:

(i) The functions σ : R → (0,∞) and η : R → (0,∞) are bounded and Lip-
schitzian on any bounded interval,

(ii) the function ρ ∈ L∞(Ω;R3×3
sym) takes symmetric matrices as values, and

satisfies the usual ellipticity condition, i.e.,

ess inf
x∈Ω

3∑
i,j=1

ρij(x)ij ξi ξj ≥ ρ ‖ξ‖2R3 ∀ ξ ∈ R3

with a constant ρ > 0,

(iii) the function κ ∈ L∞(Ω;R3×3
sym) also takes symmetric matrices as values, and,

additionally, satisfies an ellipticity condition, that is,

ess inf
x∈Ω

3∑
i,j=1

κij(x) ξi ξj ≥ κ ‖ξ‖2R3 ∀ ξ ∈ R3

holds with a constant κ > 0,
(iv) θl ∈ L∞(J ;L∞(∂Ω)),
(v) α ∈ L∞(∂Ω) with α(x) ≥ 0 a.e. on ∂Ω and

∫
∂Ω
αdω > 0,

(vi) u ∈ L2r(J ;W−1,q
ΓD

) for some q > 3 to be specified in Assumption 3.4 below

and r > 2q
q−3 , cf. Definition 3.11 and Theorem 3.14 below,

(vii) θ0 ∈ (W 1,q,W−1,q
∅ ) 1

r ,r
with q and r as in (vi).

Remark 2.7. In assumption (vi), we implicitly made use of the embedding
Lp(ΓN ) ↪→ W−1,q

ΓD
for p > 2

3q, realized by the adjoint operator of the continuous

trace operator τΓN : W 1,q′

ΓD
→ Lp′(ΓN ), cf. Remark 2.2. In this sense, a function

u ∈ L2r(J ;Lp(ΓN )) is considered as an element of L2r(J ;W−1,q
ΓD

). In the same man-

ner, we will treat the function αθl ∈ L∞(J ;L∞(∂Ω)) as an element of L∞(J ;W−1,q
∅ ).

Next we turn to the assumptions concerning the optimal control problem (P).
Now, u plays the role of the searched-for variable or function, whose regularity is
implicitly determined by the objective functional in (P). As we will see in the sequel in
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§4, our hypotheses on the objective functional stated below imply that the restriction
of the optimal control problem to control functions from a function space U compatible
with the control term in the objective functional yields the desired properties such
as a continuous embedding into L2r(J ;W−1,q

ΓD
) as required in Assumption 2.6 (vi),

see (4.4) and Lemma 4.12 below.
Assumption 2.8 (Optimal control problem). The remaining quantities in (P)

fulfill:
(i) The integrability exponents in the objective functional satisfy p > 4

3q−2 and

s > 2q
q−3 (1− 3

q + 3
ς ), where q and ς are specified in Assumption 3.4 and Definition 4.6

below.
(ii) E is an open (not necessarily proper) subset of Ω.
(iii) θd ∈ L2(E).
(iv) θmax ∈ C(Q) with max(maxΩ θ0, ess supΣ θl) ≤ θmax(x, t) for all (x, t) ∈ Q

and θ0(x) < θmax(x, T0) for all x ∈ Ω.
(v) umax is a given function with umax(x, t) ≥ 0 a.e. on ΣN .
(vi) β > 0.

Note that we do not impose any regularity assumptions on the function umax. In
particular, it is allowed that umax ≡ ∞ so that no upper bound is present.

3. Rigorous formulation, existence and uniqueness of solutions for the
thermistor problem. In this chapter we will present a precise analytical formula-
tion for the thermistor-problem, see Definition 3.12 below. In order to do so, we first
recall some background material. One of the most crucial points is the requirement
of suitable mapping property for Poisson’s operator, cf. Assumption 3.4. The reader
should note that a similar condition was also posed in [6, Ch. 3] in order to get smooth-
ness of the solution; compare also [20], where exactly this regularity for the solution
of Poisson’s equation is needed in order to show uniqueness for the semiconductor
equations. We prove, in particular, some preliminary results which are needed later
on and which may be also of independent interest. After having properly defined a
solution of the thermistor problem, we establish some more preparatory results and
afterwards show existence (locally in time) and uniqueness of the solution of the ther-
mistor problem in Section 3.2. Finally, we show that our concept to treat the problem
is not accidental, but—more or less—inevitable.

3.1. Prerequisites: Elliptic and parabolic regularity. We begin this sub-
section with the definition of the divergence operators. First of all, let us introduce the
brackets 〈·, ·〉 as the symbol for the dual pairing between W−1,2

Ξ and W 1,2
Ξ , extending

the scalar product in L2.
Definition 3.1 (Divergence-gradient operator). Let Ξ ⊂ ∂Ω be closed. Assume

that µ is any bounded, measurable, R3×3
sym-valued function on Ω and that γ ∈ L∞(∂Ω\Ξ)

is nonnegative. We define the operators −∇ · µ∇ and −∇ · µ∇ + γ̃, each mapping
W 1,2

Ξ into W−1,2
Ξ , by〈
−∇ · µ∇ψ, ξ

〉
:=

∫
Ω

(µ∇ψ) · ∇ξ dx for ψ, ξ ∈W 1,2
Ξ

and〈
(−∇ · µ∇+ γ̃)ψ, ξ

〉
=
〈
−∇ · µ∇ψ, ξ

〉
+

∫
∂Ω\Ξ

γ ψ ξ dω for ψ, ξ ∈W 1,2
Ξ . (3.1)

In all what follows, we maintain the same notation for the corresponding maximal
restrictions to W−1,q

Ξ , where q > 2, and denote the domain for the operator −∇ · µ∇,
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when restricted to W−1,q
Ξ , by Dq(µ), equipped with the graph norm.

Remark 3.2. The estimate∥∥−∇ · µ∇ψ∥∥
W−1,q

Ξ

= sup
‖ϕ‖

W
1,q′
Ξ

=1

∣∣∣∣∫
Ω

(µ∇ψ) · ∇ϕdx

∣∣∣∣ ≤ ‖µ‖L∞‖ψ‖W 1,q
Ξ

(3.2)

shows that W 1,q
Ξ is embedded in Dq(µ) for every bounded coefficient function µ. It is

also known that Dq(µ) ↪→ Cα(Ω) for some α > 0 whenever q > 3, see [32, Thm. 3.3].
Additionally, (3.2) implies that the mapping

L∞(Ω;R3×3
sym) 3 µ 7→ ∇ · µ∇ ∈ L(W 1,q

Ξ ;W−1,q
Ξ )

is a linear and continuous contraction for every q ∈ (1,∞).
In the following, we consider the operators defined in Definition 3.1 mostly in two

incarnations: firstly, the case Ξ = ∅ and µ = κ; and secondly Ξ = ΓD with µ = ρ.
We write −∇ · κ∇ and −∇ · κ∇ + α̃ in the first, and −∇ · ρ∇ in the second case.
The next result from [26, 28] is a fundamental maximal elliptic regularity assertion
for −∇ ·µ∇ in the W 1,q

Ξ setting for q > 2. In particular, it asserts the crucial a priori
bounds uniformly in the coefficient functions for these q, which was sufficient for the
treatment in two space dimensions in [34]. We will make use of these uniform bounds
in Proposition 4.7 below.

Proposition 3.3 ([26, 28]). Let Ω ∪ Ξ be regular in the sense of Definition 2.3,
let µ, γ be as in Definition 3.1 and suppose that either ω(Ξ) > 0 or Ξ = ∅ and∫
∂Ω
γ dω > 0. Then there is a number q0 > 2 such that

−∇ · µ∇+ γ̃ : W 1,q
Ξ →W−1,q

Ξ

is a topological isomorphism for all q ∈ [2, q0]. The number q0 may be chosen uniformly
for all coefficient functions µ with the same ellipticity constant and the same L∞-
bound. Moreover, for each q ∈ [2, q0], the norm of the inverse of ∇ · µ∇ + γ̃ as a
mapping from W−1,q

Ξ to W 1,q
Ξ may be estimated again uniformly for all coefficient

functions with the same ellipticity constant and the same L∞-bound.
Our next aim is to introduce the solution concept for the thermistor problem. To

this end, we make the following assumption (cf. also Remark 3.25 below):
Assumption 3.4 (Maximal elliptic regularity). There is a q ∈ (3, 4) such that

the mappings

−∇ · ρ∇ : W 1,q
ΓD
→W−1,q

ΓD
(3.3)

and

−∇ · κ∇+ 1 : W 1,q →W−1,q
∅ (3.4)

each provide a topological isomorphism.
The papers [41, Appendix] and [16] provide a zoo of arrangements such that

Assumption 3.4 is satisfied. Note that it is not presumptuous to assume that both
differential operators provide topological isomorphisms at the same time, since the
latter property mainly depends on the behavior of the discontinuous coefficient func-
tions (versus the geometry of ΓD), and these correspond to the material properties
in the workpiece described by the domain Ω, i.e., the coefficient functions should ex-
hibit similar properties with regard to jumps or discontinuities in general, the main
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obstacles to overcome for the isomorphism property. Since κ is not assumed to be
continuous, Assumption (3.4) is not satisfied a priori, even though no mixed bound-
ary conditions are present, see [18, Ch. 4] for a striking example. In this sense, mixed
boundary conditions are not a stronger obstruction against higher regularity in the
range q ∈ (3, 4) than discontinuous coefficient functions are.

Remark 3.5. In case of mixed boundary conditions it does not make sense to
demand Assumption 3.4—even if all data are smooth—for q ≥ 4, due to Shamir’s
famous counterexample [52].

In order to treat the quasilinearity in (1.1), we need to ensure a certain uniformity
of domains of the differential operator −∇·η(θ)κ∇ during the evolution. To this end,
we first note that the isomorphism-property for −∇ · κ∇ + 1 from Assumption 3.4
extends to a broader class of coefficient functions.

Definition 3.6. Let C(Ω) denote the set of positive functions on Ω which are
uniformly continuous and admit a positive lower bound.

Lemma 3.7. Assume that Assumption 3.4 holds for some number q ∈ [2, 4).
If ξ ∈ C(Ω), then (3.3) and (3.4) remain topological isomorphisms, if ρ and κ are
replaced by ξρ and ξκ, respectively.

A proof can be found in [16, Ch. 6].

Corollary 3.8. Assume that (3.4) is a topological isomorphism for some q ∈
[2, 4). Then, for every ξ ∈ C(Ω), the domain of the operator −∇·ξκ∇+ α̃, considered
in W−1,q

∅ , is still W 1,q. In particular, for every function ζ ∈ C(Ω), the operator
−∇ · η(ζ)κ∇+ α̃ has domain W 1,q.

Proof. The first assertion follows from Lemma 3.7 and relative compactness of the
boundary integral in α̃ with respect to −∇ · ξκ∇, compare [39, Ch. IV.1.3]. For the
second assertion, note that η is assumed to be Lipschitzian on bounded intervals and
bounded from below by 0 as in Assumption 2.6. Thus, η(ζ) is uniformly continuous
and has a strictly positive lower bound.

Remark 3.9. Let us briefly recall the considerations from the introduction, re-
garding a volumetric heat capacity term in the form %Cp(θ) in front of the time deriva-
tive of θ. As explained there, one may use the so-called enthalpy transformation to get
rid of the additional dependency on θ, thereby modifying the data η, σ and α. Now,
considering that we are allowing κ and ρ to be spatially discontinuous to account
for heterogeneous material, one might be tempted to let % also be of that form, say,
% ∈ L∞ with a strictly positive essential lower bound. However, in order to return
to a divergence-gradient structure as in (1.1), this essentially requires % to act as a
multiplier on W−1,q

∅ which calls for % ∈W 1,q – in particular, L∞ is not enough. We
refer to [8, Sect. 3], [31, Ch. 6].

We are now in the position to define what is to be understood as a solution to
the system (1.1)–(1.6).

Definition 3.10. We define

A(ζ) := −∇ · η(ζ)κ∇+ α̃

as a mapping A : C(Ω)→ L(W 1,q;W−1,q
∅ ).

Definition 3.11. The number r∗(q) = 2q
q−3 is called the critical exponent.

Definition 3.12 (Abstract solution concept). Let q > 3 and let r be from
(r∗(q),∞). We say that the pair (θ, ϕ) with θ(T0) = θ0 is a local solution of the
thermistor-problem on Jmax := (T0, Tmax) for Tmax ∈ (T0, T1] if (θ, ϕ) satisfies the
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equations

∂tθ(t) +A(θ(t))θ(t) = (σ(θ(t))ρ∇ϕ(t)) · ∇ϕ(t) + αθl(t) in W−1,q
∅ , (3.5)

−∇ · σ(θ(t))ρ∇ϕ(t) = u(t) in W−1,q
ΓD

(3.6)

for almost all t ∈ (T0, Tmax) and admits the regularity

ϕ ∈ L2r(T0, T•;W
1,q
ΓD

) and θ ∈W 1,r(T0, T•;W
−1,q
∅ ) ∩ Lr(T0, T•;W

1,q) (3.7)

for every T• ∈ Jmax. If (3.7) is not true for T• = Tmax, then we say that (θ, ϕ) is a
maximal local solution and call Jmax the maximal interval of existence. If Jmax = J
and even

ϕ ∈ L2r(J ;W 1,q
ΓD

) and θ ∈W 1,r(J ;W−1,q
∅ ) ∩ Lr(J ;W 1,q), (3.8)

then we call (θ, ϕ) a global solution.
Remark 3.13 (Comments on the solution concept).

(i) In the context of Definition 3.12, ∂tθ always means the time derivative of θ
in the sense of vector-valued distributions, see [1, Ch. III.1] or [21, Ch. IV].

(ii) Via (3.10) and Corollary 3.20 below, we will see that a solution θ in the
above sense is in fact Hölder-continuous on Ω× J . In particular, θ(t) is uniformly
continuous on Ω for every t ∈ J , such that A(θ(t)) is well-defined according to Defi-
nition 3.10.

(iii) The reader will verify that the boundary conditions imposed on ϕ in (1.5)
and (1.6) are incorporated in this definition in the spirit of [21, Ch. II.2] or [13,
Ch. 1.2]. For an adequate interpretation of the boundary conditions for θ as in (1.2),
see [45, Ch. 3.3.2] and the in-book references there.

(iv) We give a short comment on the so-called Thermistor trick performed by
rewriting the Joule heat sources on the right-hand side of (3.5) (formally) to∫

Ω

(
ϕσ(θ)%∇ϕ

)
· ∇v dx = 〈−∇ · ϕσ(θ)%∇ϕ, v〉+

∫
ΓN

ϕu v dω,

cf. e.g. [6]. On account of L∞-regularity results for elliptic equations, see e.g. [40,
Thm. II.B.2], this allows to treat both equations in a Hilbert– resp. energy space set-
ting. We have however decided not to build upon this trick because it is not clear how
to solve the resulting quasi-linear equations in the energy spaces. As we will see below,
our ansatz strongly depends on higher regularity for θ which we are unable to achieve
in the Hilbert space setting.

(v) The unfortunately rather convoluted definition regarding maximal and global
solutions is necessary because of the embedding (3.9) below. If (3.7) was true also for
T• = Tmax, then one could find a continuation of (θ, ϕ) using the initial value θ(Tmax)
to a larger time interval (T0, T

•
max) ⊃ (T0, Tmax) (cf. the proof of Theorem 3.14). In

this sense, Tmax could not be called “maximal” in this case. The maximal time of ex-
istence Tmax is moreover equivalently characterized by the property that limt↗Tmax θ(t)

does not exist in (W 1,q,W−1,q
∅ ) 1

r ,r
, see [50, Cor. 3.2].

We are now going to formulate the main result of this part.
Theorem 3.14 (Existence and uniqueness for local solutions). Let q ∈ (3, 4) be a

number for which Assumption 3.4 is satisfied, r > r∗(q) and u ∈ L2r(J ;W−1,q
ΓD

), where

r∗(q) is the critical exponent from Definition 3.11. If θ0 is from (W 1,q,W−1,q
∅ ) 1

r ,r
,

then there is a unique maximal local solution of (3.5) and (3.6) in the sense of
Definition 3.12.

The proof of this theorem is given in the next subsection.
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3.2. Local existence and uniqueness for the state system: the proof.
Let us first briefly sketch the proof of Theorem 3.14 by giving an overview over the
steps:

• The overall proof is based on a local existence result of Prüss for abstract
quasilinear parabolic equations, whose principal part satisfies a certain maximal para-
bolic regularity property, see [50] and Proposition 3.17.

• For the application of this abstract result to our problem, we reduce the
thermistor system to an equation in the temperature θ only by solving the elliptic
equation for ϕ in dependence of θ. This gives rise to a nonlinear operator S appearing
in the reduced equation for θ, see Definition 3.26 and Proposition 3.28.

• The key tool to verify the assumptions on S for the application of Prüss’
result is Lemma 3.7, which is the basis for the proof of Lemma 3.27. The application
of Lemma 3.7 to obtain Lipschitz-continuity requires to treat the temperature in a
space which (compactly) embeds into C(Ω). This issue is addressed by Corollary 3.20.

Before we start with the proof itself, let us first recall the concept of maximal
parabolic regularity, a crucial tool in the following considerations, and point out some
basic facts on this:

Definition 3.15 (Maximal parabolic regularity). Let X be a Banach space and
A be a closed operator with dense domain dom(A) ⊂ X. Suppose r ∈ (1,∞). Then
we say that A has maximal parabolic Lr(J ;X)-regularity, iff for every f ∈ Lr(J ;X)
there is a unique function w ∈W 1,r(J ;X) ∩ Lr(J ; dom(A)) which satisfies

∂tw(t) +Aw(t) = f(t), w(T0) = 0

in X for almost every t ∈ J = (T0, T1).
Remark 3.16 (Known results on maximal parabolic regularity).

(i) If A satisfies maximal parabolic Lr(J ;X)-regularity, then it does so for any
other (bounded) time interval, see [17].

(ii) If A satisfies maximal parabolic Lr(J ;X)-regularity for some r ∈ (1,∞),
then it satisfies maximal parabolic Lr(J ;X)-regularity for all r ∈ (1,∞), see [53]
or [17].

(iii) Let Y be another Banach space, being dense in X with Y ↪→ X. Then there
are the embeddings

W 1,r(J ;X) ∩ Lr(J ;Y ) ↪→ C(J ; (Y,X) 1
r ,r

) (3.9)

and

W 1,r(J ;X) ∩ Lr(J ;Y ) ↪→ C%(J ; (Y,X)ζ,1) (3.10)

where 0 < % ≤ ζ − 1
r , see [2, Ch. 3, Thm. 3]. In the immediate context of maximal

parabolic regularity, Y is taken as dom(A) equipped with the graph norm, of course.
According to (i) and (ii), we only say that A satisfies maximal parabolic regularity on
X.

In the following, we establish some preliminary results for the proof of Theo-
rem 3.14, which will heavily rest on the following fundamental theorem of Prüss:

Proposition 3.17 (Abstract quasilinear evolution equations [50, Thm. 3.1]).
Let Y,X be Banach spaces, Y dense in X, such that Y ↪→ X and set J = (T0, T1) and
r ∈ (1,∞). Suppose that A maps (Y,X) 1

r ,r
into L(Y ;X) such that A(w0) satisfies

maximal parabolic regularity on X with dom(A(w0)) = Y for some w0 ∈ (Y,X) 1
r ,r

.

Let, in addition, S : J × (Y,X) 1
r ,r
→ X be a Carathéodory map and S(·, 0) be from

Lr(J ;X). Moreover, let the following two assumptions be satisfied:
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(A) For every M > 0, there is a constant L(M) such that for all w, w̄ ∈ (Y,X) 1
r ,r

,

where max(‖w‖(Y,X) 1
r
,r
, ‖w̄‖(Y,X) 1

r
,r

) ≤M , we have

‖A(w)−A(w̄)‖L(Y ;X) ≤ L(M)‖w − w̄‖(Y,X) 1
r
,r
.

(S) For every M > 0, assume that there is a function hM ∈ Lr(J) such that for
all w, w̄ ∈ (Y,X) 1

r ,r
, where max(‖w‖(Y,X) 1

r
,r
, ‖w̄‖(Y,X) 1

r
,r

) ≤M , it is true that

‖S(t, w)− S(t, w̄)‖X ≤ hM (t)‖w − w̄‖(Y,X) 1
r
,r

(3.11)

for almost every t ∈ J .
Then, for each w0 ∈ (Y,X) 1

r ,r
, there exists Tmax ∈ (T0, T1] such that the problem{

∂tw(t) +A(w(t))w(t) = S(t, w(t)) in X,

w(T0) = w0

(3.12)

admits a unique solution w ∈ W 1,r(T0, T•;X) ∩ Lr(T0, T•;Y ) on (T0, T•) for every
T• ∈ (T0, Tmax).

Remark 3.18. It is known that the solution of the thermistor problem possibly
ceases to exist after finite time in general, cf. [6, Ch. 5] and the references therein.
Thus, one has to expect here, in contrast to the two-dimensional case treated in [34],
only a local-in-time solution. In this scope, Prüss’ theorem will prove to be the ade-
quate instrument.

As indicated above, we will prove Theorem 3.14 by reducing the thermistor system
to an equation in the temperature only and apply Proposition 3.17 to this equation.
To be more precise, we first establish the assumptions (A) for r = r > r∗(q) and A as
defined in Definition 3.10. We then solve the elliptic equation (3.6) for ϕ (uniquely)
for every time point t in dependence of a function ζ and u(t), where ζ enters the equa-
tion inside the coefficient function σ(ζ)ρ. Then the right-hand side of the parabolic
equation (3.5) may be written also as a function S solely of t and ζ. We then show
that this function satisfies the suppositions (S) in Prüss’ theorem.

To carry out this concept, we need several prerequisites: here our first central aim
is to show that indeed the mapping (W 1,q,W−1,q

∅ ) 1
r ,r
3 ζ 7→ A(ζ) from Definition 3.10

satisfies the assumptions from Proposition 3.17 for r > r∗(q), cf. Lemma 3.21 below.
For doing so, we first investigate the spaces (W 1,q,W−1,q

∅ )ζ,1 in view of their embed-
ding into Hölder spaces. For later use, the subsequent result is formulated slightly
broader as presently needed. Its proof is postponed to the appendix, see Lemma A.1.
Note that we will need the range ς ∈ (1, 2) and thus the volume-preserving property
for Ω ∪ ΓD only in §4.

Lemma 3.19. Let q ∈ (3, 4) and ς ∈ [2, q]. For every τ ∈ (0, q−3
2q (1− 3

q+ 3
ς )−1), the

interpolation space (W 1,q,W−1,ς
∅ )τ,1 embeds into some Hölder space Cδ(Ω) with δ > 0.

If Ω ∪ ΓD even satisfies the volume-conservation condition from Definition 2.3 (ii),
then we can additionally admit ς ∈ (1, 2).

We immediately obtain the following crucial consequences:
Corollary 3.20.

(i) Let q > 3 and ς ∈ [2, q]. Then, for every s > 2q
q−3 (1 − 3

q + 3
ς ), the interpo-

lation space (W 1,q,W−1,ς
∅ ) 1

s ,s
embeds into some Hölder space Cδ(Ω), and thus even

compactly into C(Ω). If Ω∪ΓD even satisfies the volume-conservation condition from
Definition 2.3 (ii), then we can additionally admit ς ∈ (1, 2).
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(ii) Under the same supposition, there exists a % > 0 such that

W 1,s(J ;W−1,ς
∅ ) ∩ Ls(J ;W 1,q) ↪→ C%(J ;C%(Ω)).

(iii) Let Assumption 3.4 hold true for some q ∈ (3, 4). Then the operator
A(ζ) satisfies maximal parabolic regularity on W−1,q

∅ with domain W 1,q for every

ζ ∈ (W 1,q,W−1,q
∅ ) 1

r ,r
with r > r∗(q), where r∗(q) is the critical exponent from Defi-

nition 3.11.

Proof. (i) We have (W 1,q,W−1,ς
∅ ) 1

s ,s
↪→ (W 1,q,W−1,ς

∅ )ι,1 for every ι ∈ ( 1
s , 1).

The condition on s implies that the interval I := ( 1
s ,

q−3
2q (1 − 3

q + 3
ς )−1) is non-

empty. Taking ι from I, the assertion follows from Lemma 3.19. (ii) follows from
Lemma 3.19 and Remark 3.16. (iii) The claim follows from uniform continuity of
functions from (W 1,q,W−1,q

∅ ) 1
r ,r

by (i), Lemma 3.7 for ξ := η(ζ) and [7, Thm. 11.5]

using the technique as in [31, Thm. 5.16/Lem. 5.15].

Setting ς = q in Corollary 3.20 (i) and (ii) gives the condition r > r∗(q) = 2q
q−3

for the assertions to hold with s = r. We will use this special case frequently in the
course of the remaining part of this section. Let us now turn to the operator A.

Proposition 3.21. Suppose that Assumption 3.4 holds true for some q ∈ (3, 4)
and that θ0 ∈ (W 1,q,W−1,q

∅ ) 1
r ,r

where r > r∗(q). With A as in Definition 3.10, the

function (W 1,q,W−1,q
∅ ) 1

r ,r
3 ζ 7→ A(ζ) then satisfies the assumptions from Proposi-

tion 3.17 for the spaces X = W−1,q
∅ and Y = W 1,q.

Proof. With ς = q, Corollary 3.20 shows that (W 1,q,W−1,q
∅ ) 1

r ,r
↪→ C(Ω), such

that the operator A indeed maps (W 1,q,W−1,q
∅ ) 1

r ,r
into L(W 1,q;W−1,q

∅ ) by Corol-
lary 3.8. Using Lipschitz continuity of η on bounded sets and Remark 3.2, we also
obtain (A): Let w, w̄ ∈ (W 1,q,W−1,q

∅ ) 1
r ,r

with norms bounded by M > 0. Then we
have

‖A(w)−A(w̄)‖L(W 1,q ;W−1,q
∅ ) = ‖∇ · (η(w)− η(w̄))κ∇‖L(W 1,q,W−1,q

∅ )

≤ Lη‖κ‖L∞‖w − w̄‖C(Ω)

≤ CLη‖κ‖L∞‖w − w̄‖(W 1,q,W−1,q
∅ ) 1

r
,r
.

Finally, the property of maximal parabolic regularity for A(θ0) follows immediately
from Corollary 3.20.

Next we will establish and investigate the right hand hand side of (3.12). For
doing so, we now turn our attention to the elliptic equation (3.6).

Lemma 3.22. For q ≥ 2 and ζ ∈ C(Ω), aζ(ϕ1, ϕ2) := (σ(ζ)ρ∇ϕ1) · ∇ϕ2 defines

a continuous bilinear form aζ : W 1,q
ΓD
×W 1,q

ΓD
→ Lq/2. Moreover, (ζ, ϕ) 7→ aζ(ϕ,ϕ) is

Lipschitzian over bounded sets in C(Ω)×W 1,q
ΓD

.

Proof. Bilinearity and continuity of each aζ are clear. The second assertion follows
from a straightforward calculation with the resulting estimate

‖aζ1(ϕ1, ϕ1)− aζ2(ϕ2, ϕ2)‖Lq/2 ≤ ‖σ(ζ1)− σ(ζ2)‖L∞‖ρ‖L∞‖ϕ1‖2W 1,q
ΓD

+ 2‖σ(ζ2)‖L∞‖ρ‖L∞‖ϕ1‖W 1,q
ΓD

‖ϕ1 − ϕ2‖W 1,q
ΓD

,

Lipschitz continuity of σ and boundedness of the underlying sets.
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Let us draw some further conclusions from Lemma 3.7. For this, we assume
Assumption 3.4 for the rest of this chapter.

Lemma 3.23. The mapping

C(Ω) 3 φ 7→ (−∇ · φρ∇)−1 ∈ LH(W−1,q
ΓD

;W 1,q
ΓD

)

is well-defined and even continuous.
Proof. The well-definedness assertion results from Lemma 3.7. The second

assertion is implied by the first, Remark 3.2 and the continuity of the mapping
LH(X;Y ) 3 B 7→ B−1 ∈ LH(Y ;X), see [51, Ch. III.8].

Corollary 3.24. Let C ⊂ C(Ω) be a compact set in C(Ω) which admits a
common lower positive bound. Then the function

C 3 φ 7→ J (φ) := (−∇ · φρ∇)
−1 ∈ LH(W−1,q

ΓD
;W 1,q

ΓD
)

is bounded and even Lipschitzian. The same holds for C×B 3 (φ, v) 7→ J (φ)v ∈W 1,q
ΓD

for every bounded set B ⊂W−1,q
ΓD

.

Proof. Lemma 3.23 and the compactness of C in C(Ω) immediately imply bound-
edness of J on C. In turn, Lipschitz continuity of J is obtained from boundedness
and the resolvent-type equation

(−∇ · φ1ρ∇)−1 − (−∇ · φ2ρ∇)−1

= (−∇ · φ1ρ∇)−1(−∇ · (φ2 − φ1)ρ∇)(−∇ · φ2ρ∇)−1

(read: A−1−B−1 = A−1(B−A)B−1) and Remark 3.2. Considering the assertion on
the combined mapping, boundedness is obvious and further we have for φ1, φ2 ∈ C
and v1, v2 ∈ B:

‖J (φ1)v1 − J (φ2)v2‖W 1,q
ΓD

≤ ‖J (φ1)− J (φ2)‖L(W−1,q
ΓD

,W 1,q
ΓD

) ‖v1‖W−1,q
ΓD

+ ‖J (φ2)‖L(W−1,q
ΓD

,W 1,q
ΓD

)‖v1 − v2‖W−1,q
ΓD

.

With Lipschitz continuity and boundedness of J over C and boundedness of B, this
implies the claim.

Remark 3.25. At this point we are in the position to discuss the meaning of
Assumption 3.4 in some detail. Under Assumption 2.5 (i) for a closed subset Ξ of
∂Ω, it is known that, even for arbitrary measurable, bounded, elliptic coefficient func-
tions µ, (Dq(µ),W−1,q

Ξ )τ,1 embeds into a Hölder space for suitable τ , cf. [32, Cor. 3.7]
(for Dq(µ), see Remark 3.2). In particular, one does not need an assumption for the

isomorphism property between W 1,q
Ξ and W−1,q

Ξ for this result. The crucial point be-
hind Assumption 3.4 is to achieve both independence of the domains for the operators
−∇φµ∇ within a suitable class of functions φ, as well as a well-behaved dependence
on φ in the space L(Dq;W−1,q

Ξ ), cf. Lemma 3.7 and Corollaries 3.8 and 3.24.
The next lemmata establish the right-hand side in (3.12) with the correct reg-

ularity and properties. Moreover, Lipschitz continuity with respect to the control
u in the elliptic equation is shown along the way, which will become useful in later
considerations. Recall that σ : R → (0,∞) is Lipschitzian on any finite interval by
Assumption 2.6.

Definition 3.26. We assign to ζ ∈ C(Ω) and v ∈ W−1,q
ΓD

the solution ϕv of
−∇ · σ(ζ)ρ∇ϕv = v via ϕv = J (σ(ζ))v with J as in Corollary 3.24. Moreover, set

Ψv(ζ) := aζ(J (σ(ζ))v,J (σ(ζ))v)
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for ζ ∈ C(Ω) with aζ as in Lemma 3.22.

Lemma 3.27. Let C be a compact subset of C(Ω) and B a bounded set in W−1,q
ΓD

.

Then (v, ζ) 7→ Ψv(ζ) is Lipschitzian from B× C into Lq/2 and the Lipschitz constant
of ζ 7→ Ψv(ζ) is bounded over v ∈ B.

Proof. For every ζ ∈ C, the function σ(ζ) belongs to C(Ω), thus J (σ(ζ))v is indeed
from W 1,q

ΓD
thanks to Lemma 3.7. Hence, Ψv(ζ) ∈ Lq/2 is clear by Hölder’s inequality.

Let us show the Lipschitz property of Ψ: First, note that Nemytskii operators induced
by Lipschitz functions preserve compactness in the space of continuous functions, and
note further that the set of all σ(ζ) for ζ ∈ C admits a common positive lower bound
by the Lipschitz property of σ. Hence, the set {σ(ζ) : ζ ∈ C} satisfies the assumptions
in Lemma 3.22 and Corollary 3.24. For ζ1, ζ2 ∈ C and v1, v2 ∈W−1,q

ΓD
, we first obtain

via Lemma 3.22

‖Ψv1(ζ1)−Ψv2(ζ2)‖Lq/2 ≤ La

(
‖ζ1 − ζ2‖C(Ω) + ‖J (σ(ζ1))v1 − J (σ(ζ2))v2‖W 1,q

ΓD

)
and further with Corollary 3.24

‖J (σ(ζ1))v1 − J (σ(ζ2))v2‖W 1,q
ΓD

≤ LJ
(
‖σ(ζ1)− σ(ζ2)‖C(Ω) + ‖v1 − v2‖W−1,q

ΓD

)
.

The assertion follows since σ was Lipschitz continuous. Uniformity of the Lipschitz
constant of ζ 7→ Ψv(ζ) is immediate from the previous considerations.

Following the strategy outlined above, we will specify the mapping S from Propo-
sition 3.17 for our case and show that it satisfies the required conditions.

Proposition 3.28. Let q ∈ (3, 4) be such that Assumption 3.4 is satisfied,
r > r∗(q), and u ∈ L2r(J ;W−1,q

ΓD
). We set

S(t, ζ) := Ψu(t)(ζ) + αθl(t).

Then S satisfies the conditions from Proposition 3.17 for the spaces X = W−1,q
∅ and

Y = W 1,q.
Proof. We show that S(·, 0) ∈ Lr(J ;W−1,q

∅ ). The function αθl is essentially

bounded in time with values in W−1,q
ΓD

by virtue of Remark 2.7 and thus poses no
problem here. For almost all t ∈ J , we further have∥∥Ψu(t)(0)

∥∥
Lq/2
≤ |σ(0)|‖ρ‖L∞‖J (σ(0)‖2L(W−1,q

ΓD
;W 1,q

ΓD
)
‖u(t)‖2

W−1,q
ΓD

.

Since u is 2r-integrable in time, this means that Ψu(t)(0) ∈ Lr(J ;Lq/2). Due to q > 3

and thus Lq/2 ↪→W−1,q
∅ (cf. Remark 2.2), we hence have S(·, 0) ∈ Lr(J ;W−1,q

∅ ).

Let us now show the Lipschitz condition (3.11). If C ⊂ (W 1,q,W−1,q
∅ ) 1

r ,r
is bounded,

its closure C with respect to the sup-norm on Ω forms a compact set in C(Ω) by
Corollary 3.20. The desired Lipschitz estimate for S(t, ·) now follows immediately
from Lemma 3.27.

Note that this is the point where the supposition on the time-integrability of u
from Assumption 2.6 (vi) comes into play. Essentially, Ψu(t)(ζ) only admits half the
time-integrability of u, but Propositions 3.21 and 3.28 both require r > r∗(q) to make
use of the (compact) embedding (W 1,q,W−1,q

∅ ) 1
r ,r

↪→ C(Ω). Hence, we need more

than 2r∗(q)-integrability for u in time.
Now we have established all ingredients to prove Theorem 3.14. For this purpose,

let the assumptions of Theorem 3.14 hold.
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Proof of Theorem 3.14. Combining Propositions 3.21 and 3.28 with Proposi-
tion 3.17, we obtain a local-in-time solution θ of the equation

∂tθ(t) +A(θ(t))θ(t) = S(t, θ(t)), θ(T0) = θ0

on (T0, T∗) with T∗ ∈ (T0, T1], such that

θ ∈W 1,r(T0, T∗;W
−1,q
∅ ) ∩ Lr(T0, T∗;W

1,q) ↪→ C([T0, T∗]; (W 1,q,W−1,q
∅ ) 1

r ,r
)

cf. (3.9). If T∗ < T1, we may apply Proposition 3.17 again on the interval (T∗, T1)
with initial value θ(T∗) ∈ (W 1,q,W−1,q

∅ ) 1
r ,r

, thus obtaining another local solution on a

subinterval of (T∗, T1), “glue” the solutions together and start again (note that A(θ(t))
again satisfies maximal parabolic regularity for every t ∈ [T∗, T1) by Corollary 3.20).
Proceeding this way, we either obtain a maximal local or a global solution in the sense
of Definition 3.12 on the maximal interval of existence Jmax, which is unique in any
case and the so-obtained solutions satisfy the correct regularity, cf. [3, Sect. 7].

Now consider T• ∈ Jmax. We now define the function ϕ(t) for each t ∈ (T0, T•)
as the solution of −∇ · σ(θ(t))ρ∇ϕ = u(t), that is,

ϕ(t) := J (σ(θ(t)))u(t). (3.13)

Then ϕ indeed belongs to L2r(T0, T•;W
1,q
ΓD

), since J (σ(θ(t)) is uniformly bounded in

L(W−1,q
ΓD

;W 1,q
ΓD

) over [T0, T•] due to the compactness of the set {θ(t) : t ∈ [T0, T•]} in

C(Ω) (cf. Corollary 3.20 and Corollary 3.24), and u was from L2r(J ;W−1,q
ΓD

).
Obviously, (θ, ϕ) is then a solution of the thermistor-problem on (T0, T•) in the

spirit of Definition 3.12 as claimed in Theorem 3.14.

3.3. Justification of the chosen setting. We end this chapter with some
explanations why the chosen setting in spaces of the kind W−1,q

∅ and W−1,q
ΓD

with
q > 3 is adequate for the problem under consideration.

Let us inspect the requirements on the spaces in which the equations are formu-
lated. Clearly, they need to contain Lebesgue spaces on Ω as well as on the boundary
Γ (or on a subset of the boundary like ΓN ), in order to incorporate the inhomoge-
neous Neumann boundary data present in both equations. The boundary conditions
should be reflected by the formulation of the equations in an adequate way, cf. Re-
mark 3.13 (iii). These demands already strongly prejudice spaces of type W

−1,qp
∅ for

the parabolic equation and W−1,qe
ΓD

for the elliptic equation with probably different
integrability orders qp and qe for each equation. Finally, in order to treat the nonlinear
parabolic equation, we need maximal parabolic regularity for the second order diver-
gence operators A(ζ) over W

−1,qp
∅ , which is generally available by Corollary 3.20 (iii)

or [31, Thm. 5.16/Rem. 5.14] in a general context.
Further, aiming at continuous solutions θ, which are needed for having fulfillable

Constraint Qualifications for (P) in the presence of state constraints, it is necessary
that the domain Dqp(σ(ζ)κ) of the differential operators A(ζ), cf. Remark 3.2, embeds

into the space of continuous functions on Q. But it is known that solutions y to
equations −∇ · µ∇y = f for µ ∈ L∞(Ω,Rn×nsym ) elliptic with f ∈ W−1,n

∅ , where n
denotes the space dimension, may in general even be unbounded, see [42, Ch. 1.2].
On the other hand, Dqp(σ(ζ)κ) embeds into a Hölder space if qp > 3, see Remark 3.2.
These two facts make the requirement qp > n = 3 expedient. Let us now assume that
the elliptic equation admits solutions whose gradient is integrable up to some order
qg. Then the right hand side in the parabolic equation prescribes qg ≥ 6qp

qp+3 in order
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to have the embedding Lqg/2 ↪→ W
−1,qp
∅ . From the requirement qp > 3 then follows

qg > 3 as well, i.e., the elliptic equation must admit W
1,qg
ΓD

-solutions with qg > 3.

With right-hand sides in W−1,qe
ΓD

, the best possible constellation is thus qe = qg > 3
again. Having qe and qp both in the same range, we simply choose q = qe = qp > 3.

Moreover, in order to actually have W 1,q
ΓD

-solutions to the elliptic equations for

all right-hand sides from W−1,q
ΓD

, the operator −∇ · σ(ζ)ρ∇ must be a topological

isomorphism between W 1,q
ΓD

and W−1,q
ΓD

. It is also a well-established fact that solu-
tions to elliptic equations with bounded and coercive, but discontinuous coefficient
functions may admit almost arbitrarily poor integrability properties for gradients of
their solutions, see [49] and [18, Ch. 4]. Under Assumption 3.4, we know that this is
not the case for −∇ · ρ∇ over W−1,q

ΓD
, but it is clear that it is practically impossible

to guarantee this also for the operators −∇ · σ(ζ)ρ∇ for all ζ, if σ(ζ) is discontinuous
in general. However, from Lemma 3.7 we know that if σ(ζ) if uniformly continuous
on Ω, then the isomorphism property carries over. This shows that continuous so-
lutions for the parabolic equation are also needed purely from an analytical point of
view, without the considerations coming from the optimal control problem, and also
explains why Assumption 3.4 is, in a sense, a “minimal” assumption.

4. Global solutions and existence of optimal controls. Our aim in the
following section is to establish existence of optimal solutions for (P) coming from
the set of control functions which admit a solution on the whole time interval. These
control functions will be called “global controls”, see Definition 4.1. In view of the
state constraints and the end time observation in the objective of (P), it is natural to
restrict the optimal control problem to the set of global controls. We will see below
that this set is in fact nonempty, and in a companion paper [47], we even show that
it is open. The latter property is, however, not needed here in order to show that
optimal solutions to (P) exist.

Let us give a brief roadmap for the upcoming considerations. We first establish
the notion of a global control and show the set of global controls is in fact nonempty
since it includes the zero control. Then, we turn to the existence of optimal controls.
The arguments follow the classical direct method of the calculus of variations, see The-
orem 4.14. To this end, we need essentially two “special” ingredients, as announced
in the introduction:

(i) A closedness result for the set of global controls to make sure that the limit
of a sequence of global controls is still a global one. Such a result is given in the form of
Theorem 4.7, and requires a certain boundedness of the gradient of the temperatures
which is ensured by the second addend in the objective in (P).

(ii) A compactness result for the controls under consideration in order to pass
to the limit in the nonlinear state system. We choose to consider a stronger space of
controls for this, cf. (4.4), induced by the third term in the objective functional, and
show that this space compactly embeds into L2r(J ;W−1,q

ΓD
) in Lemma 4.12.

The setting and results of §3 are assumed as given. In particular, we consider the
assumptions of Theorem 3.14 to be fulfilled and fixed, that means, q > 3 such that
Assumption 3.4 is satisfied and r > r∗(q) are given from now on, cf. Definition 3.11.
For each u ∈ L2r(J ;W−1,q

ΓD
), there exists a maximal local solution (θu, ϕu) such that

θu ∈ W 1,r(T0, T•;W
−1,q) ∩ Lr(T0, T•;W

1,q
∅ ) for every T• ∈ Jmax(u), the maximal

interval of existence associated to u. We consider ϕu ∈ L2r(T0, T•;W
1,q
ΓD

) to be given
in dependence of u and θu as in (3.13). Due to q > 3 and r > r∗(q), each solution
θu is Hölder-continuous on [T0, T•] × Ω, cf. Corollary 3.20 (ii). In order to follow
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the roadmap above, we will use various results from §3 for the solutions (θu, ϕu), in
particular Proposition 3.3 for uniform bounds for ϕu, albeit in a weaker space, and
the continuity properties for the right-hand side (θu, u) 7→ Ψu(θu), culminating in
Lemma 3.27. The critical property, via Corollary 3.8, will be continuity of θu for each
u as established in Corollary 3.20. As already announced, we from now on focus on
controls admitting a global solution in the sense of Definition 3.12:

Definition 4.1 (Global controls). We call a control u ∈ L2r(J ;W−1,q
ΓD

), r >
r∗(q), a global control if the corresponding solution (θu, ϕu) is a global solution in the
sense of Definition 3.12, and we denote the set of global controls by Ug. Moreover, we
define the control-to-state operator

S : Ug 3 u 7→ S(u) = θu ∈W 1,r(J ;W−1,q
∅ ) ∩ Lr(J ;W 1,q)

on Ug.
We briefly recall the situation for a global control u: for each u ∈ Ug, the maximal

local solution (θu, ϕu) even satisfies θu ∈ W 1,r(J ;W−1,q) ∩ Lr(J ;W 1,q
∅ ) and accord-

ingly ϕu ∈ L2r(J ;W 1,q
ΓD

) via (3.13). Again due to the choice of q and r, each such

solution θu is Hölder-continuous on Q.
Let us firstly show that the previous definition is in fact meaningful in the sense

that Ug 6= ∅. The natural candidate for a global control is u ≡ 0. One readily observes
that the control u ≡ 0 leads to the solution ϕ ≡ 0 for the elliptic equation (3.6), hence
the right-hand side in the parabolic equation reduces to αθl(t) in this case. Indeed,
we will show that there exists a global solution θu≡0 to the equation

∂tθ(t) +A(θ(t))θ(t) = αθl(t), θ(T0) = θ0. (4.1)

In order to obtain a global solution to (4.1), but also for the proof of existence
of optimal controls later in Theorem 4.14, we need the volume-conservation condition
which we active at this point for the rest of this paper:

Assumption 4.2. In addition to Assumption 2.5, we from now on require that
Ω ∪ ΓD satisfies the volume-conservation condition from Definition 2.3 (ii).

Under this additional assumption, the following result has been shown in [48].
Note that our assumption of regular Ω ∪ ΓD is only a special case of the admissible
geometries in [48].

Proposition 4.3 (Global existence for quasilinear equations [48, Thm. 5.3]). As-
sume that Ω∪Ξ is regular with Ξ 6= ∅ and in addition satisfies the volume-conservation
condition. Let µ be a coefficient function on Ω, measurable, bounded, elliptic. Assume
that φ : R→ (0,∞) is Lipschitz continuous on bounded sets. Suppose further that

−∇ · µ∇ : W 1,q
Ξ →W−1,q

Ξ

is a topological isomorphism for some q > 3. Let w0 be from (W 1,q
Ξ ,W−1,q

Ξ ) 1
r ,r

with

r > r∗(q) = 2q
q−3 . Then, for every f ∈ Lr(J ;W−1,q

Ξ ), there exists a unique global
solution w of the quasilinear equation

∂tw(t)−∇ · φ(w(t))µ∇w(t) = f(t), w(T0) = w0

on J, which belongs to W 1,r(J ;W−1,q
Ξ ) ∩ Lr(J ;W 1,q

Ξ ).
With w0 = θ0, Ξ = ∅, φ = η, µ = κ and f = αθl, we may use Proposition 4.3 to

ensure the existence of a global solution of (4.1) in the sense of Definition 3.12 under
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Assumption 3.4 – in particular, 0 ∈ Ug follows. We summarize these considerations
in the following

Corollary 4.4 (Existence of a global control). The zero control u ≡ 0 is a
global one, that is, 0 ∈ Ug.

Remark 4.5. In [48], Proposition 4.3 is proven for the case where the differential
operator consists of the divergence-gradient operator only. However, it is clear that
the result extends to the operators of the form A including the boundary form since
the latter is relatively compact with respect to the main part, cf. Corollary 3.8 and the
reference there, see also [31, Lem. 5.15].

Let us turn to the question of existence of an optimal control of (P). Following
the standard direct method of the calculus of variations, one soon encounters the
problem of lacking uniform boundedness in a suitable space for solutions (θun) asso-
ciated to a minimizing sequence of global controls (un), which is a common obstacle
to overcome when treating quasilinear equations. To circumvent this, we use Propo-
sition 3.3 to show that the solutions (θun), in this scenario, are uniformly bounded
in W 1,s(J ;W−1,ς

∅ ), where ς ≤ 3 < q (in general only ς ∼ 3
2 ) and s is the exponent

from the second addend in the objective function in (P). As this term in the ob-
jective, together with the state constraints posed in (P), gives an additional bound
in Ls(J ;W 1,q), we can employ Corollary 3.20 to “lift” this boundedness result to a
Hölder space, which is suitable for passing to the limit with a minimizing sequence.
Since ς < 2 in general, we need the additional volume-preserving property for Ω∪ΓD
to be able to use Corollary 3.20 for the range ς ∈ (1, 2). Moreover, in order to apply
Corollary 3.20, the exponent s has to be sufficiently large. The precise bound for s is
characterized by the following

Definition 4.6. Let q ∈ (2,min{q0, 3}] be given, where q0 is the number from
Proposition 3.3, and set ς := 3q

6−q . Then we define the number r̄(q, ς) > 0 by

r̄(q, ς) :=
2q

q − 3

(
1− 3

q
+

3

ς

)
.

On account of ς ≤ 3 < q it follows that r̄(q, ς) > r∗(q) = 2q
q−3 . Therefore,

for a given number s > r̄(q, ς), the previous results, in particular the assertions
of Theorem 3.14 and Corollary 4.4 hold with r = s. The next theorem precisely
elaborates the argument depicted before Definition 4.6:

Theorem 4.7 (Closedness properties of Ug). Let s > r̄(q, ς).

(i) Consider a sequence Ug ⊃ (un) which converges to some ū ∈ L2s(J ;W−1,q
ΓD

).
If the associated sequence of solutions (θun) admits a subsequence which converges to
some θ̄ in C(Q), then ū ∈ Ug and θ̄ = θū.

(ii) Let U ⊆ Ug be bounded in L2s(J ;W−1,q
ΓD

) and suppose in addition that the

associated set of solutions K = {θu : u ∈ U} is bounded in Ls(J ;W 1,q). Then K is
even compact in C(Q) and the closure of U in L2s(J ;W−1,q

ΓD
) is still contained in Ug.

As indicated above, the second addend in the objective functional together with
the state constraints will guarantee the bound in Ls(J ;W 1,q) for the minimizing
sequence, see the proof of Theorem 4.14 below. Recall the operator Ψu(θ) given by
the right hand side in (3.5) in dependence of u, cf. Definition 3.26.

Proof of Theorem 4.7.
(i) For the first assertion, consider the sequence (un) from the assumptions

with the associated states (θn) := (θun). By assumption, there exists a subsequence
of (θn), called (θnk), which converges to some θ̄ in C(Q). Lemma 3.27 shows that
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Ψunk
(θnk)→ Ψū(θ̄) in Ls(J ;W−1,q

∅ ) as k →∞. By [48, Lem. 5.5], the equations

∂tζ +A(θnk)ζ = Ψunk
(θnk) + αθl, θnk(T0) = θ0

have unique solutions ζnk ∈W 1,s(J ;W−1,q
∅ ) ∩ Ls(J ;W 1,q), which, due to uniqueness

of solutions for the nonlinear state system, must coincide with θnk . This means, on
the one hand, that ζnk = θnk → θ̄ in C(Q) as k → ∞. On the other hand, [48,
Lem. 5.5] also shows that the sequence (ζnk) has a limit ζ̄ in the maximal regularity
space as k goes to infinity, where ζ̄ is the solution of the limiting problem

∂tζ +A(θ̄)ζ = Ψū(θ̄) + αθl, ζ(T0) = θ0.

We do, however, already know that ζ̄ = θ̄, such that θ̄ is the unique global solution to
the nonlinear problem for the limiting control ū, i.e., ζ̄ = θ̄ =: θū. In particular, ū is
still a global control. Note that, as explained in Remark 4.5, one needs to extend the
result from [48] to the actual operator A, as we consider here, in a straight-forward
way.

(ii) We show that K is bounded in a suitable maximal-regularity-like space.
To this end, we first investigate the right-hand side in the parabolic equation (3.5).
Denote by (θu, ϕu) the solution for a given u ∈ U . Thanks to Assumption 2.6 (i),
Proposition 3.3 shows that, with q as in Definition 4.6, −∇ · σ(θ)ρ∇ is a topological
isomorphism between W 1,q

ΓD
and W−1,q

ΓD
with

sup
θ∈K
‖ (−∇ · σ(θ)ρ∇)

−1 ‖L∞(J;L(W−1,q
ΓD

;W 1,q
ΓD

)) <∞. (4.2)

Hence, for every u ∈ U there exists a unique ψ = ψu ∈ L2s(J ;W 1,q
ΓD

) such that

ψu(t) = (−∇ · σ(θu(t))ρ∇)
−1
u(t) in W 1,q

ΓD

for almost every t ∈ (T0, T1), and

sup
u∈U
‖ψu‖L2s(J;W 1,q

ΓD
) <∞.

Since W 1,q
ΓD

↪→W 1,q
ΓD

and, by uniqueness of ψu, we in particular obtain ϕu = ψu, such

that the family ϕu is bounded in L2s(J ;W 1,q
ΓD

) as well. Estimating as in Lemma 3.27,
we find that also

sup
u∈U
‖(σ(θu)ρ∇ϕu) · ∇ϕu‖Ls(J;Lq/2) <∞.

Using the boundedness assumption on K in Ls(J ;W 1,q), both the family of func-
tionals α̃θu and, here also employing boundedness of η, the divergence-operators
−∇ · η(θu)κ∇θu are uniformly bounded over U , i.e.,

sup
u∈U
‖∇ · η(θu)κ∇θu‖Ls(J;W−1,q

∅ ) + ‖α̃θu‖Ls(J;W−1,q
∅ ) <∞.

Sobolev embeddings give the embedding Lq/2 ↪→ W−1,ς
∅ for ς = 3q

6−q , and certainly

W−1,q
∅ ↪→W−1,ς

∅ due to q > ς. Hence,

∂tθu = ∇ · η(θu)κ∇θu − α̃θu + (σ(θu)ρ∇ϕu) · ∇ϕu + αθl
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is uniformly bounded over U in Ls(J ;W−1,ς
∅ ). This shows that K is bounded in the

space W 1,s(J ;W−1,ς
∅ ) ∩ Ls(J ;W 1,q). By Corollary 3.20, K is then also bounded in a

Hölder space and thus a (relatively) compact set in C(Q). This was the first claim.
Now consider a sequence (un) ⊂ U , converging in L2s(J ;W−1,q

ΓD
) to the limit ū ∈ U .

By compactness of K, the sequence of associated solutions (θun) admits a subsequence
which converges in C(Q). But then (i) shows that ū ∈ Ug, hence U ⊆ Ug.

Remark 4.8. Note that we used Proposition 3.3 instead of Lemma 3.7 at the
beginning of the proof of the second assertion in Theorem 4.7. This is indeed a crucial
point, since Proposition 3.3 implies the isomorphism property and a uniform bound
of the inverse of the elliptic divergence-gradient operator for all coefficient functions
that share the same ellipticity constant and the same L∞-bound. Thus, in our con-
crete situation, the norm of (−∇·σ(θ)ρ∇)−1 is completely determined by Ω∪ΓD and
the data from Assumption 2.6 (i) and 2.6 (ii), which gives the estimate in (4.2). By
contrast, the application of Lemma 3.7 would require K in Theorem 4.7 to already
be compact in the space of continuous functions to obtain a uniform bound, see also
Corollary 3.24. This however is exactly the searched-for information, so that Propo-
sition 3.3 is indeed essential for the proof of Theorem 4.7. Since the integrability
exponent from Proposition 3.3 is in general less than 3 and therefore less than q, one
needs an improved regularity in time to obtain the continuous embedding in the desired
Hölder space, cf. Corollary 3.20. Therefore it is not sufficient to require s > r∗(q)
and the more restrictive condition s > r̄(q, ς) is imposed instead.

Next, we incorporate the control- and state constraints in (P) into the control
problem. For this purpose, let us introduce the set

Uad := {u ∈ L2(J ;L2(ΓN )) : 0 ≤ u ≤ umax a.e. in ΣN}. (4.3)

Definition 4.9 (Feasible controls). We call a global control u ∈ Ug feasible, if
u ∈ Uad and the associated state satisfies S(u)(x, t) ≤ θmax(x, t) for all (x, t) ∈ Q.

While the state constraints give upper bounds on the values of feasible solutions,
lower bounds are natural in the problem and implicitly contained in (1.1)–(1.6) in
the sense that the temperature of the workpiece associated with Ω will not drop
below the minima of the surrounding temperature (represented by θl) and the initial
temperature distribution θ0.

Lemma 4.10 (Lower bounds for θ). For every solution (θ, ϕ) in the sense
of Theorem 3.14 with maximal existence interval Jmax, we have θ(x, t) ≥ minf :=
min(ess infΣ θl,minΩ θ0) for all (x, t) ∈ Ω× [T0, T•], where T• ∈ Jmax.

See Lemma A.2 in the Appendix for a proof. Analogously, we find that u ≡ 0 is a
feasible control under Assumption 2.8 (iv), the latter demanding that the surrounding
temperature and the initial temperature do not exceed the state bounds at any point.

Corollary 4.11 (Nonempty feasible set). The zero control u ≡ 0 is a feasible
one.

Proof. By Corollary 4.4, u ≡ 0 is a global control corresponding to ϕ ≡ 0. It obvi-
ously satisfies the control constraints, and using the same reasoning as in Lemma A.2
with Assumption 2.8 (iv), we obtain θu≡0 ≤ θmax.

Let us next introduce a modified control space, fitting the norm in the objective
functional in (P). So far, the controls originated from the space L2s(J ;W−1,q

ΓD
) with

s > r̄(q, ς). For the optimization, we now switch to the more advanced control space

U := W 1,2(J ;L2(ΓN )) ∩ Lp(J ;Lp(ΓN )) (4.4)
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with the standard norm ‖u‖U = ‖u‖W 1,2(J;L2(ΓN )) +‖u‖Lp(J;Lp(ΓN )). Since p > 4
3q−2

by Assumption 2.8, this space continuously embeds into L2s(J ;W−1,q
ΓD

), which will
give the boundedness required in Theorem 4.7 for a bounded set in U . Moreover, this
embedding is even compact, as the following result shows:

Lemma 4.12. Let p > 2. Then U is embedded into a Hölder space C%(J ;Lp(ΓN ))
for some % > 0 and 2 < p < p+2

2 . In particular, there exists a compact embedding

E : U ↪→ Ls(J ;W−1,q
ΓD

) for every p > 4
3q − 2 and s ∈ [1,∞].

The proof can be found in the appendix, cf. Lemma A.3.
Definition 4.13 (Reduced optimal control problem). Consider the embedding

E from Lemma 4.12 with range in L2s(J ;W−1,q
ΓD

), where s > r̄(q, ς) is the integrability
exponent from the objective functional. We set

Ug := {u ∈ U : E(u) ∈ Ug}

and define the mapping

SE := S ◦ E : Ug →W 1,s(J ;W−1,q
∅ ) ∩ Ls(J ;W 1,q).

Moreover, we define the reduced objective functional j obtained by reducing the ob-
jective functional in (P) to u, i.e.,

j(u) =
1

2

∫
E

|SE(u)(T1)− θd|2 dx+
γ

s
‖∇SE(u)‖sLs(J;Lq) +

β

2

∫
ΣN

(∂tu)2 + |u|p dω dt,

as a function on Ug. Further, let Uad := U ∩ Uad and Uad
g := Ug ∩ Uad, where Uad is

as defined in (4.3).
The following is the main result for this section:
Theorem 4.14 (Existence of optimal controls). There exists an optimal solution

ū ∈ Uad
g to the problem

min
u∈Uad

g

j(u) such that SE(u)(x, t) ≤ θmax(x, t) ∀(x, t) ∈ Q.

Proof. Thanks to the existence of the feasible control u ≡ 0, cf. Corollary 4.11,
the objective functional is bounded from below by 0. Thus there exists a minimizing
sequence of feasible controls (un) in Uad

g such that j(un) → infu∈Uad
g
j(u) in R. On

account of ∫
ΣN

(∂tu)2 + |u|p dω dt −→∞ when ‖u‖U −→∞, (4.5)

the objective functional is radially unbounded so that the minimizing sequence is
bounded in U and, due to reflexivity of U, has a weakly convergent subsequence
(again (un)), converging weakly to some ū ∈ U. As Uad is closed and convex,
we have ū ∈ Uad. By the compact embedding from Lemma 4.12, (un) converges
strongly in L2s(J ;W−1,q

ΓD
), also to ū ∈ L2s(J ;W−1,q

ΓD
). The fact that state constraints

are present and Lemma 4.10 imply that the family (θun) is uniformly bounded in
time and space for every feasible control u. Together with the gradient term in the
objective functional, Theorem 4.7 (ii) now shows that (θun) admits a subsequence
which converges in C(Q). By Theorem 4.7 (i) in turn, this means ū ∈ Ug, hence
ū ∈ Uad

g . Now another application of [48, Lem. 5.5] shows that SE(un) → SE(ū) in
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W 1,s(J ;W−1,q
∅ ) ∩ Ls(J ;W 1,q) after switching to the appropriate subsequence, which

immediately implies convergence of the first two terms in the objective functional for
this subsequence (each as n goes to infinity). The third term, corresponding to U, is
clearly continuous and convex on U and as such weakly lower semicontinuous, hence
we find

inf
u∈Uad

g

j(u) = lim
n→∞

j(un) ≥ j(ū)

and thus j(ū) = infu∈Uad
g
j(u).

Remark 4.15. In the proof of Theorem 4.14, boundedness of the minimizing se-
quence (un) in the control space U was essential and followed from the radial unbound-
edness of the objective functional as seen in (4.5). Alternatively, one could also assume
that the upper bound umax in the control constraints satisfies umax ∈ Lp(J ;Lp(ΓN ))
with p > 4

3q − 2. In this case, an objective functional of the form

1

2
‖θ(T1)− θd‖2L2(E) +

γ

s
‖∇θ‖sLs(T0,T1;Lq(Ω)) +

β

2

∫
ΣN

(∂tu)2 dω dt

is sufficient to establish the existence of a globally optimal control.
So far, we were able to show that there exists an optimal global solution to (P)

by using the properties of feasible control functions and their associated solutions to
the PDE system induced by the objective functional. In [47], we further show that
the set of global solutions Ug is in fact open and use this property to derive necessary
optimality conditions of first order for (P).

Appendix A. Proofs of auxiliary results.
Lemma A.1. Let q ∈ (3, 4) and ς ∈ [2, q]. For every τ ∈ (0, q−3

2q (1− 3
q + 3

ς )−1), the

interpolation space (W 1,q,W−1,ς
∅ )τ,1 embeds into some Hölder space Cδ(Ω) with δ > 0.

If Ω ∪ ΓD even satisfies the volume-conservation condition from Definition 2.3 (ii),
then we can additionally admit ς ∈ (1, 2).

Proof. We apply the reiteration theorem [54, Ch. 1.10.2] and a general interpola-
tion principle to obtain

(W 1,q,W−1,ς
∅ )τ,1 = (W 1,q, (W 1,q,W−1,ς

∅ ) 1
2 ,1

)2τ,1

↪→ (W 1,q, (W 1,ς ,W−1,ς
∅ ) 1

2 ,1
)2τ,1. (A.1)

We next show that (W 1,ς ,W−1,ς
∅ ) 1

2 ,1
↪→ Lς . If Ω∪ΓD satisfies the volume-preserving

condition, then this follows from [23, Lem. 3.4] and [54, Ch. 1.10.3, Thm. 1]. Other-
wise, for ς ∈ [2, q], let Dς(id3) denote the domain of the Laplacian −∆ + 1 acting on
the Banach space W−1,ς

∅ , cf. also Remark 3.2. We use two facts about this operator,
proven in [7, Thm. 5.1/11.5]:

(i) It is a positive operator in the sense of [54, Ch. 1.14]. In particular, its
fractional powers are well-defined and, denoting the domain of (−∆ + 1)1/2 on W−1,ς

∅
by Dς(id3)

1
2 , one has (W−1,ς

∅ ,Dς(id3)) 1
2 ,1

↪→ Dς(id3)
1
2 , cf. [54, Ch. 1.15.2].

(ii) The square root (−∆ + 1)1/2 even satisfies (−∆ + 1)1/2 ∈ LH(W−1,ς
∅ ;Lς),

or in other words, Dς(id3)
1
2 = Lς .

Observing W 1,ς ↪→ Dς(id3), we now find

(W 1,ς ,W−1,ς
∅ ) 1

2 ,1
↪→ (W−1,ς

∅ ,Dς(id3)) 1
2 ,1

↪→ Lς .
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For both cases, re-inserting into (A.1) yields (W 1,q,W−1,ς
∅ )τ,1 ↪→ (W 1,q, Lς)2τ,1.

To see that this space indeed embeds into a Hölder space, we define p :=
(

1−2τ
q +

2τ
ς

)−1
and observe that δ := 1− 2τ − 3

p ∈ (0, 1), due to our condition on τ . Denoting

by Ht,p the corresponding space of Bessel potentials (cf. [54, Ch. 4.2.1]) one has
the embedding H1−2τ,p ↪→ Cδ(Ω), see [54, Thm. 4.6.1]. This, combined with the
interpolation inequality for H1−2τ,p ([23, Thm. 3.1]) gives for any ψ ∈ W 1,q the
estimate

‖ψ‖Cδ(Ω) ≤ ‖ψ‖H1−2τ,p ≤ ‖ψ‖1−2τ
W 1,q ‖ψ‖2τLς . (A.2)

But it is well-known (cf. [54, Ch. 1.10.1] or [9, Ch. 5, Prop. 2.10]) that an inequality
of type (A.2) is constitutive for the embedding (W 1,q, Lς)2τ,1 ↪→ Cδ(Ω).

Lemma A.2. For every solution (θ, ϕ) in the sense of Theorem 3.14 with maximal
existence interval Jmax, it is true that θ(x, t) ≥ min(ess infΣ θl,minΩ θ0) for all (x, t) ∈
Ω× [T0, T•], where T• ∈ Jmax.

Proof. We set minf := min(ess infΣ θl,minΩ θ0) and ζ(t) = θ(t) − minf and de-
compose ζ(t) into its positive and negative part, that is, ζ(t) = ζ+(t) − ζ−(t) with
both ζ+(t) and ζ−(t) being positive functions. By [15, Ch. IV, §7, Prop. 6/Rem. 12]
we then have that ζ−(t) is still an element of W 1,q for almost every t ∈ (T0, T•). In
particular, we may test (3.5) against −ζ−(t), insert θ = ζ +minf and use that minf is
constant:

−
∫

Ω

∂tζ(t)ζ−(t) dx−
∫

Ω

(η(θ(t))κ∇ζ(t)) · ∇ζ−(t) dx−
∫

Γ

αζ(t)ζ−(t) dx

= −
∫

Γ

α(θl(t)−minf)ζ
−(t)−

∫
Ω

ζ−(t)(σ(θ(t))ρ∇ϕ(t)) · ∇ϕ(t) dx.

Observe that the support of products of ζ(t) and ζ−(t) is exactly the support of ζ−(t),
and ζ(t) = −ζ−(t) there. We thus obtain (see [55])

1

2
∂t
∥∥ζ−(t)

∥∥2

L2 +

∫
Ω

(η(θ(t))κ∇ζ−(t)) · ∇ζ−(t) dx+

∫
Γ

αζ−(t)2 dx

= −
∫

Γ

α(θl(t)−minf)ζ
−(t)−

∫
Ω

ζ−(t)(σ(θ(t))ρ∇ϕ(t)) · ∇ϕ(t) dx. (A.3)

Let us show that ∂t‖ζ−(t)‖2L2 ≤ 0. By Assumption 2.6, (η(θ(t))κ∇ζ−(t)) · ∇ζ−(t) ≥
ηκ‖∇ζ−(t)‖2R3 and −(σ(θ(t))ρ∇ϕ(t)) ·∇ϕ(t) ≤ −σρ‖∇ϕ(t)‖2R3 . This means that both
integrals on the left-hand side in (A.3) are positive (since α ≥ 0), while the second
term on the right-hand side is negative. The constant minf is constructed exactly
such that θl(t) − minf is greater or equal than zero almost everywhere, such that
−α(θl(t) −minf)ζ

−(t) ≤ 0. Hence, from (A.3) it follows that ∂t‖ζ−(t)‖2L2 ≤ 0. But,
due to the construction of ζ, we have ζ(T0) ≥ 0, which means that ζ−(T0) ≡ 0 and
thus ζ−(t) ≡ 0 for all t ∈ (T0, T•).

Lemma A.3. Let p > 2. Then the space U is embedded into a Hölder space
C%(J ;Lp(ΓN )) for some % > 0 and 2 < p < p+2

2 . In particular, there exists a

compact embedding E : U ↪→ Ls(J ;W−1,q
ΓD

) for every p > 4
3q − 2 and s ∈ [1,∞].

Proof. From the construction of real interpolation spaces by means of the trace
method it immediately follows that

U ↪→ C(J ; (Lp(ΓN ), L2(ΓN ) 2
p+2 ,

p+2
2

)) = C(J ;L
p+2

2 (ΓN )),
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see [54, Ch. 1.8.1–1.8.3 and Ch. 1.18.4]. With similar reasoning as for (3.10), see
also [34, Lem. 3.17] and its proof, we also may show U ↪→ C%(J ; (Lp(ΓN ), L2(ΓN ))τ,1)
for all τ ∈ ( 2

2+p , 1) and some % = %(τ) > 0. Moreover,

(
Lp(ΓN ), L2(ΓN )

)
τ,1

↪→
[
Lp(ΓN ), L2(ΓN )

]
τ

= Lp(ΓN )

with p = p(τ) = ( 1−τ
p + τ

2 )−1 ∈ (2, 2+p
2 ) for τ ∈ ( 2

2+p , 1), see [54, Ch. 1.10.1/3

and Ch. 1.18.4]. This means we have U ↪→ C%(J ;Lp(ΓN )) for all p ∈ (2, 2+p
2 ), with

% > 0 depending on p. If p > 2
3q, then there is an embedding Lp(ΓN )) ↪→ W−1,q

ΓD
, cf.

Remark 2.7, and this is even compact in this case as we will show below. To make
p > 3

2q possible, we need p+2
2 > 2

3q, which is equivalent to p > 4
3q − 2. Now the

vector-valued Arzelà-Ascoli Theorem, cf. [43, Thm. 3.1], yields the assertion.

It remains to show that Lp(ΓN ) ↪→ W−1,q
ΓD

compactly for p > 2
3q, or equivalently

W 1,q′

ΓD
↪→ Lp′(ΓN ) compactly. This follows from W 1,q′ ↪→ Lp

′
(∂Ω) compactly, which is

proven in the main result in [10]. The assumptions there are satisfied because firstly,
cf. Remark 2.2, Ω admits a W 1,q-extension operator and is thus a 3-set in the sense
of Jonsson and Wallin [38], see [29]. Secondly, the Lipschitz property of the boundary
implies that ∂Ω is a 2-set as explained in [38, Ch. II, Ex. 1] from which the measure
condition follows.
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optimal control for nonsmooth elliptic problems, Appl. Math. Optim., 60 (2009), pp. 397–
428.

[33] R. Haller-Dintelmann and J. Rehberg, Coercivity for elliptic operators and positivity of
solutions on Lipschitz domains, Arch. Math., 95 no. 5, (2010), pp. 457–468.
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