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HIGHER ORDER CALDERÓN-ZYGMUND ESTIMATES FOR THE

p-LAPLACE EQUATION

ANNA KH. BALCI∗, LARS DIENING∗, AND MARKUS WEIMAR†,‡

Abstract. The paper is concerned with higher order Calderón-Zygmund estimates for the

p-Laplace equation

− div(A(∇u)) := − div (|∇u|p−2∇u) = − divF, 1 < p <∞.
We are able to transfer local interior Besov and Triebel-Lizorkin regularity up to first order

derivatives from the force term F to the flux A(∇u). For p ≥ 2 we show that F ∈ Bs%,q implies

A(∇u) ∈ Bs%,q for any s ∈ (0, 1) and all reasonable %, q ∈ (0,∞] in the planar case. The result

fails for p < 2. In case of higher dimensions and systems we have a smallness restriction on s.

The quasi-Banach case 0 < min{%, q} < 1 is included, since it has important applications in the
adaptive finite element analysis. As an intermediate step we prove new linear decay estimates
for p-harmonic functions in the plane for the full range 1 < p <∞.

1. Introduction

In this paper we study Calderón-Zygmund type estimates for the weak solution of the p-Poisson
equation

−div(A(∇u)) := −div (|∇u|p−2∇u) = −divF in Ω,(1.1)

where d, n ∈ N, Ω is an open set in Rd, 1 < p <∞, and u : Ω→ Rn is the unknown. All our results
are of local nature so no boundary conditions are required. Most of them are restricted to p ≥ 2
and scalar solutions (n = 1) for d = 2.

The main objective in non-linear Calderón-Zygmund theory is to transfer the regularity of the
right hand side F to the flux A(∇u) (or to ∇u itself) in the norm of an appropriate function
space X. The corresponding estimate can be written as

‖A(∇u)‖X ≤ C ‖F‖X,(1.2)

or, in its local version,

‖A(∇u)‖X(B) ≤ C ‖F‖X(2B) + lower order terms of A(∇u),(1.3)

where B denotes an arbitrary ball such that 2B ⊂ Ω.
The choice X = Lp

′
(with 1

p + 1
p′ = 1) corresponds to the standard estimates of weak solutions.

The first breakthrough was the result of [23], who showed the estimate (1.2) for X = Lr and
all r ∈ [p′,∞). Later on this result was extended to X = BMO for p ≥ 2 in [12] and for an
arbitrary exponent p > 1 in [15]. It became clear from the calculations in [15] that it is better
to look at the mapping F 7→ A(∇u) rather than F 7→ ∇u. This is also supported by [24], where
potential estimates for the mapping f := divF 7→ A(∇u) have been studied. Moreover, it has
been shown in [15] that it is possible to take X = BMOω, or X = C0,α, resp., as long as the
modulus of continuity ω, resp. α > 0, satisfies some smallness condition which depends on the
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best known regularity of p-harmonic functions. In particular, for d ≥ 3 or vectorial solutions the
exponent α > 0 is just an unknown small quantity.

In this paper we extend the Calderón-Zygmund estimates for p ≥ 2 and d = 2 to spaces
of differentiability up to order one. In particular, we show that the estimate (1.3) holds true
also for Besov spaces X = Bs

%,q for all exponents of smoothness s ∈ (0, 1), every integrability

parameter % ∈ (0,∞], and all fine indices q ∈ (0,∞] such that Bs
%,q ↪→↪→ Lp

′
. Moreover, if

additionally % <∞, then a similar assertion remains valid in the scale of Triebel-Lizorkin spaces
X = Fs%,q. We refer to Theorem 4.1 for the precise statements. Let us stress the fact that these
scales include a lot of classical function spaces such as, e.g., Hölder-Zygmund, Bessel-potential, or
Sobolev-Slobodeckij spaces, as special cases [25]. The restriction p ≥ 2 in our result is natural in
this context, since the assertion fails for 1 < p < 2 even for F ≡ 0 and d = 2, see Subsection 2.6.
The assumed compact embedding in Lp

′
ensures that we are in the context of weak solutions, i.e.,

that u ∈W 1,p
loc (Ω). In the case d ≥ 3 we obtain similar results, but then there are restrictions on s

due to some open problems (see Subsection 2.7) on the regularity of p-harmonic functions in higher
dimensions.

Our work is motivated by the numerical analysis of the p-Poisson equation using wavelets or the
adaptive finite element method. Note that the approximability of the solutions by discrete ones
is determined solely by the differentiability s from Bs

%,q. We refer to [9, 11] for a detailed study
of numerical approximability. However, in many cases it is possible to increase s by decreasing
the integrability %, where the strongest results are obtained if we take % < 1. Then we are in the
regime of quasi-Banach spaces, but nevertheless also in this case the smoothness s still determines
the rates of convergence of best N -term approximations. For this reason it is important that our
estimates cover the full range of parameters %, q ∈ (0,∞].

Other authors also investigated estimates for A(∇u) in terms of Sobolev or Besov spaces. For
example, Cianchi and Maz’ya have shown in [7] that F ∈ W 1,2, so f := divF ∈ L2, implies
that A(∇u) ∈ W 1,2 for any d ≥ 2 and any 1 < p < ∞. They also obtain global results under
minimal conditions on ∂Ω. Moreover, it has been shown by Avelin, Kuusi, and Mingione [3]
that f ∈ L1 implies that locally A(∇u) ∈W s,1 for any s ∈ (0, 1), d ≥ 2 and p > 2− 1

d . For p ≤ d
this requires the concept of so-called solutions obtained as limits of approximations (SOLA). Both
results support the fact that the mappings F 7→ A(∇u) and f 7→ A(∇u) are the natural ones. Our
regularity results differ from [7] and [3] in the sense that we provide estimates for all integrability
exponents % (from Bs

%,q or Fs%,q), while [7] is restricted to % = 2 and [3] is restricted to % = 1.
Let us mention again that estimates for arbitrary exponents % are only possible for p ≥ 2, see
Subsection 2.6.

In Subsection 4.2 we discuss how our results on the regularity of A(∇u) translate into regularity

assertions for ∇u and V (∇u) = |∇u|
p−2
2 ∇u. This allows us also to compare our results with the

work of other authors on the higher differentiability of these quantities. For example, it has been
shown in [10] that for d = 2 and f ∈ L∞ there holds u ∈ Bs

%,% for all s ∈ (0, 2) if p ≤ 2 and
all s ∈ (0, p′) if p > 2, where in both cases % = %(d, s, p) > 0 refers to the adaptivity scale of
Lp, i.e., s− d

% = −dp . These results also hold globally on Lipschitz domains with zero boundary

data. Corner regularity results with strong conditions on the right-hand side for d = 2 have been
studied in [22]. The C0,α-regularity of A(∇u) up to the boundary for smooth domains has been
studied in [5], however it rules out the case of polygonal domains that appear in the context of
finite elements. Moreover, is has been shown in [8] that for p ≥ 2, d ≥ 2 and s ∈ (0, 1) a forcing

term F ∈ Bs
2,q implies that V (∇u) ∈ B

p′s
2

2, 2q
p′

for 1 ≤ q ≤ 2d
d−2s . For a more detailed comparison of

our results to that from [10] and [8] we refer to Subsection 4.2.
The main idea of our proof is to employ a well-known characterization of Besov and Triebel-

Lizorkin spaces in terms of oscillations, see Lemma 4.3. This allows to reduce the proof of (1.3)
to an oscillation decay estimate for A(∇u). This fundamental decay estimate is formulated in
Theorem 3.1. It is of independent interest since it allows to significantly improve the decay estimate
from [6] at least in the case of the plane.
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Certainly, the oscillation estimates for A(∇u) can never be better than the ones for p-harmonic
functions, i.e., for h with div(A(∇h)) = 0, which corresponds to the case F ≡ 0. In two dimensions
we are able to prove a new (almost) linear decay estimate for the oscillations of A(∇h) for p ≥ 2.
Indeed, in Theorem 2.2 we show that

−
∫
θB

|A(∇h)− 〈A(∇h)〉θB | dx ≤ cβ θβ −
∫
B

|A(∇h)− 〈A(∇h)〉B | dx

for any θ, β ∈ (0, 1). From this we deduce by duality decay estimates for ∇h in the case 1 < p ≤ 2,
see Theorem 2.3. It has been shown by Iwaniec and Manfredi in [23] that A(∇h) ∈ C1 for p ≥ 2
while ∇h ∈ C1 if p ≤ 2. However, the techniques therein do not provide qualitative decay estimates.
Instead, we use and improve the approach of [1] and [4], which allows us to obtain new decay
estimates. We also implement several ideas from [6].

The paper is organized as follows: In Section 2 we study the regularity of p-harmonic functions
in the plane. Here we deduce the important decay estimates for A(∇h) that we shall need later.
Starting from Section 3 we study the p-Poisson equation with a force term divF . We derive in this
section the crucial oscillation estimates of A(∇u) in terms of the oscillations of F . In Section 4 we
prove the nonlinear Calderón-Zygmund estimates that allow to transfer Bs

%,q, resp. Fs%,q regularity
from F to A(∇u). Here we also explain how the regularity of A(∇u) implies regularity of ∇u
and V (∇u). Throughout the paper we assume p ≥ 2. Only in Subsection 2.6 we deal with the
case 1 < p < 2 and present a new decay estimate.

2. Regularity of p-harmonic Functions

Regularity studies of solution to the problem (2.1) are about 50 years old. They go back
to Ural’tseva [27], where it was shown that p-harmonic functions belong to the local Hölder

class C1,α
loc (Ω) for some exponent α = α(d, p) < 1. For the case d = 2 the sharp value of the Hölder

exponent α is known, see [23], while for d ≥ 3 this problem is still open.
Before we proceed let us first introduce some notation. For vectors Q we define A and V in the

following way:

A(Q) = |Q|p−2Q,

V (Q) = |Q|
p−2
2 Q,

where |·| denotes the Euclidean norm. Note that A and V are isomorphisms. Moreover, by B, Br,
and Br(x) we usually denote open Euclidean balls with radius r > 0 and center x ∈ Ω ⊂ Rd. We
write λB for the ball with same center as B but scaled in size by λ. Further, for f ∈ L1

loc(Rd) we
define the mean value over the ball B as

〈f〉B := −
∫
B

f dx,

where −
∫
B
· · · dx := |B|−1 ∫

B
· · · dx denotes the average integral with |B| being the volume of B.

The same notation is employed also in the vector-valued case. Moreover, we shall use c as a generic
positive constant which may change from line to line, but does not depend on the crucial quantities.
We will use the notation f . g if there exist a constant such that f ≤ c g. Finally, we write f h g
if f . g and g . f .

Definition 2.1. A function h : Ω→ R is called p-harmonic in Ω ⊂ Rd if it is a weak solution of
the p-harmonic equation, i.e., h ∈W 1,p

loc (Ω) and

−div(A(∇h)) = 0(2.1)

in the distributional sense.

Throughout the paper we will use the letters h for p-harmonic functions and u for solutions to
the p-Poisson equation (1.1).

The main result of this section is the following decay estimate for A(∇h).
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Theorem 2.2. Let h : Ω→ R be p-harmonic with p ≥ 2 on Ω ⊂ R2. Then for all β ∈ (0, 1), there
exists cβ > 0 such that for all balls B ⊂ Ω and all θ ∈ (0, 1) there holds

−
∫
θB

|A(∇h)− 〈A(∇h)〉θB | dx ≤ cβ θβ −
∫
B

|A(∇h)− 〈A(∇h)〉B | dx.

In Proposition 2.15 below we present a corresponding estimate with power p′ on the left-hand
side.

The proof of Theorem 2.2 requires a few preliminary steps. The basic idea is to distinguish
between the non-degenerate and the degenerate case. The non-degenerate case is the one where

−
∫
B

|V (∇h)− 〈V (∇h)〉B |2 dx ≤ εDG −
∫
B

|V (∇h)|2 dx

for a suitable small εDG > 0. In particular, V (∇h) is (in average) close to the constant 〈V (∇h)〉B ,

so ∇h is also close to a constant. In this case A(∇h) ≈ 〈∇h〉p−2
B ∇h, so the equation behaves locally

like a linear equation with constant coefficients and we get our decay estimates from this. See
Subsection 2.3 for details. In contrast, for the degenerate case we have to argue differently. In this
situation we will use certain decay estimates of quasi-conformal gradient maps which also explain
the restriction to d = 2, see Subsection 2.4.

Most of our results are restricted to the case p ≥ 2. However, the following remarkable decay
estimate for the case 1 < p ≤ 2 is obtained in Subsection 2.6 by a duality argument.

Theorem 2.3. Let h : Ω→ R be p-harmonic with 1 < p ≤ 2 in Ω ⊂ R2. Then for all β ∈ (0, 1),
there exists cβ > 0 such that for all balls B ⊂ Ω and all θ ∈ (0, 1) there holds

−
∫
θB

|∇h− 〈∇h〉θB | dx ≤ cβ θβ −
∫
B

|∇h− 〈∇h〉B | dx.

Remark 2.4. The Theorems 2.2 and 2.3 improve the decay results from [15, Remark 5.6] sig-
nificantly in the situation of the plane. Indeed, the result in [15] is restricted to β ∈ (0, β0),
where β0 > 0 is some unknown small number.

2.1. Shifted Orlicz functions and monotonicity. In this subsection we introduce shifted
N-functions and present some monotonicity estimates.

For 1 < p <∞ we define ϕ : [0,∞)→ [0,∞) by

ϕ(t) := 1
p t
p.

Then ϕ is a so-called N-function, i.e. there exists a derivative ϕ′ of ϕ which is right continuous,
non-decreasing, and satisfies ϕ′(0) = 0, as well as ϕ′(t) > 0 for t > 0. In particular, ϕ is convex.
By ϕ∗ we denote the complementary N-function, i.e.,

ϕ∗(t) := sup
s≥0

(st− ϕ(s)).

Especially, in our setting, there holds ϕ∗(t) = 1
p′ t

p′ with 1
p + 1

p′ = 1.

We will use a technique based on the properties of shifted N-functions, introduced in [13, 16]:

Definition 2.5. For a, t ≥ 0 we define the shifted N -functions ϕa as

ϕa(t) :=

∫ t

0

ϕ′(max {a, s})
max {a, s}

s ds.

Remark 2.6. We use here the version of [14] that is equivalent to the original one, where max {a, s}
is replaced by a+ s. This new version however has a few simple advantages, e.g., (ϕa)∗ = ϕ∗ϕ′(a)

instead of (ϕa)∗ h ϕ∗ϕ′(a). Note that in our notation the ∗ binds stronger than the shift index. That

is, we let ϕ∗a := (ϕ∗)a.

Choosing ϕ as above, we have the following equivalences for a, t ≥ 0

ϕa(t) h (a+ t)p−2t2,

ϕ′a(t) h (a+ t)p−2t,

(ϕa)∗(t) = ϕ∗ϕ′(a)(t) h (ap−1 + t)p
′−2t2.
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It is important to observe, that the family {ϕa}a satisfies a uniform ∆2 and ∇2-condition, i.e.,
uniformly in a, t ≥ 0 there holds ϕa(2t) h ϕa(t) and ϕ∗a(2t) h ϕ∗a(t). This implies that Young’s
inequality holds independently of the shift, i.e. for every δ > 0 there exists cδ such that for all
s, t, a ≥ 0 there holds

ϕ′a(s) t ≤ δϕa(s) + cδϕa(t).

In the following auxiliary statements we recall some well-known connections between A, V , and
shifted N-functions. For the proofs we refer to [13, Lemma 3], [16, Appendix] and [14]. Here and
in what follows · denotes the Euclidean scalar product.

Lemma 2.7 (Monotonicity). For 1 < p <∞ we have

(A(P )−A(Q)) · (P −Q) h |V (P )− V (Q)|2 h (|Q|+ |P |)p−2|Q− P |2

h ϕ|Q|(|P −Q|) h ϕ∗|A(Q)|(|A(P )−A(Q)|),

as well as

|A(P )−A(Q)| h ϕ′|Q|(|P −Q|) and A(Q) ·Q = |V (Q)|2 h ϕ(|Q|).

Using the fact that the function t 7→ (|Q|+ t)p−2 is increasing for p ≥ 2, we immediately obtain
the following corollary:

Corollary 2.8. Let p ≥ 2, then for all vectors P and Q there holds

|P −Q|p
′
. (A(P )−A(Q)) · (P −Q) . |A(P )−A(Q)|p

′

and for all t, a ≥ 0 we have ϕ∗a(t) ≤ c tp′ .

The next lemma is taken from [15, Lemma 2.5]. It is a refined version from the one in [16] and
shows how to perform a “shift-change”.

Lemma 2.9. Let 1 < p <∞. Then for all vectors P , Q and every λ ∈ (0, 1] it holds

ϕ|P |(t) ≤ c λ1−max{p′,2}ϕ|Q|(t) + λ |V (P )− V (Q)|2,

ϕ∗|A(P )|(t) ≤ c λ
1−max{p,2}ϕ∗|A(Q)|(t) + λ |V (P )− V (Q)|2,

where the constants only depend on p.

Moreover, we will make frequent use of the following well-known estimate.

Lemma 2.10. Let 1 ≤ q <∞. Then for all balls B and G ∈ Lq(B), there holds

inf
G0

(
−
∫
B

|G−G0|q dx
) 1
q

≤
(
−
∫
B

|G− 〈G〉B |q dx
) 1
q

≤ 2 inf
G0

(
−
∫
B

|G−G0|q dx
) 1
q

,

where the infima are taken over all constants G0. If q = 2, then we have equality in the first
estimate. It is possible to replace B by an arbitrary set of positive measure.

Finally, given a gradient ∇v, we define its A- and V -averages 〈∇v〉AB, resp. 〈∇v〉VB , on balls B
by the relations

A(〈∇v〉AB) = 〈A(∇v)〉B and V (〈∇v〉VB) = 〈V (∇v)〉B

and note that both of them are well-defined, since A(·) and V (·) are isomorphisms. Then the next
result, taken from [15, Lemma A.2], states that the mean oscillations of V (∇v) with respect to the
different versions of averages are equivalent.

Lemma 2.11. Assume that ∇v ∈ Lp(B) for a given ball B. Then

−
∫
B

|V (∇v)− V (〈∇v〉VB)|2 h −
∫
B

|V (∇v)− V (〈∇v〉B)|2 dx h −
∫
B

|V (∇v)− V (〈∇v〉AB)|2 dx.
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2.2. Reverse Hölder’s estimate. In this subsection we show that it is possible to measure the
oscillations of A(∇h) with or without the power p′ for p ≥ 2.

Let us begin with the following estimate of reverse Hölder type.

Lemma 2.12 ([15, Corollary 3.5]). If h is p-harmonic with p ≥ 2, then for all Q

−
∫
B

|V (∇h)− V (Q)|2 dx . ϕ∗|A(Q)|

(
−
∫

2B

|A(∇h)−A(Q)| dx
)
.

By combining this with Lemma 2.7, it follows that

−
∫
B

ϕ∗|A(Q)|
(
|A(∇h)−A(Q)|

)
dx . ϕ∗|A(Q)|

(
−
∫

2B

|A(∇h)−A(Q)| dx
)
.

If we now apply the inverse of ϕ∗|A(Q)| to both sides, then we obtain

(
ϕ∗|A(Q)|

)−1
(
−
∫
B

ϕ∗|A(Q)|
(
|A(∇h)−A(Q)|

)
dx

)
. −
∫

2B

|A(∇h)−A(Q)| dx.(2.2)

In order to proceed further, we shall need the following auxiliary lemma.

Lemma 2.13. If p ≥ 2, then for all Q we have(
−
∫
B

|f |p
′
dx

) 1
p′

.
(
ϕ∗|A(Q)|

)−1
(
−
∫
B

ϕ∗|A(Q)|(|f |) dx
)
.

Proof. We estimate

ψ(t) := ϕ∗|A(Q)|
(
t

1
p′
)
h
(
|A(Q)|+ t

1
p′
)p′−2

t
2
p′ h

{
|A(Q)|p

′−2
t

2
p′ for t

1
p′ ≤ |A(Q)|,

t for t
1
p′ > |A(Q)|.

Now ψ is continuous and convex. Thus, by Jensen’s inequality,

ϕ∗|A(Q)|

((
−
∫
B

|f |p
′
dx

) 1
p′
)

h ψ

(
−
∫
B

|f |p
′
dx

)
≥ −
∫
B

ψ
(
|f |p

′)
dx h −

∫
B

ϕ∗|A(Q)|(|f |) dx.

This proves the claim. �

Proposition 2.14 (Reverse Hölder). Let h be p-harmonic with p ≥ 2. Then(
−
∫
B

|A(∇h)− 〈A(∇h)〉B |p
′
dx

) 1
p′

. −
∫

2B

|A(∇h)− 〈A(∇h)〉2B | dx.

Proof. We define Q by A(Q) := 〈A(∇h)〉2B . Then the combination of (2.2) and Lemma 2.13 proves
the claim with the mean value on the left-hand side replaced by 〈A(∇h)〉2B . Due to Lemma 2.10
we can exchange it by 〈A(∇h)〉B which completes the proof. �

Overall, we see that the oscillation of A(∇h) can be measured with power 1 or p′. In particular,
if we combine Theorem 2.2 (which still has to be proven) and Proposition 2.14, we get the following
decay estimate in powers of p′.

Proposition 2.15. Let h : Ω→ R be p-harmonic with p ≥ 2 on Ω ⊂ R2. Then for all β ∈ (0, 1)
there exists cβ > 0 such that for all balls B ⊂ Ω and all θ ∈ (0, 1) there holds(

−
∫
θB

|A(∇h)− 〈A(∇h)〉θB |p
′
dx

) 1
p′

≤ cβ θβ −
∫
B

|A(∇h)− 〈A(∇h)〉B | dx.
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2.3. Non-degenerate case. Let us consider the non-degenerate case. That is, we will assume
that for some fixed ball B there holds

−
∫
B

|V (∇h)− 〈V (∇h)〉B |2 dx ≤ εDG −
∫
B

|V (∇h)|2 dx(2.3)

with some suitably small εDG > 0.
Inequality (2.3) means that in this situation V (∇h) (and therefore also ∇h) behaves almost

like a constant on B. In particular, A(∇h) h |〈∇h〉B |p−2∇h. Hence, it is possible to treat the
p-Laplace equation like a perturbation of a linear equation with constant coefficients. This approach
was used in [17, Proposition 28] to prove (almost) linear decay estimates of the oscillation in this
non-degenerate situation. In fact, it was shown that the decay estimate for the oscillations of V
even holds in the case of quasi-convex functionals with Orlicz growth (for any dimension). Our
situation is just a special case. In particular, we obtain:

Lemma 2.16. For every β ∈ (0, 1) there exists c = c(p, β) > 0 and εDG = εDG(p, β) > 0 such that
if the non-degeneracy condition (2.3) holds, then

(
−
∫
θB

|V (∇h)− 〈V (∇h)〉θB |2 dx
) 1

2

≤ c θβ
(
−
∫
B

|V (∇h)− 〈V (∇h)〉B |2 dx
) 1

2

for all θ ∈ (0, 1].

From this (almost) linear decay of the oscillations of V in the non-degenerate case, we will now
derive (almost) linear decay of the oscillations of A.

Proposition 2.17. For every β ∈ (0, 1), there exists c = c(p, β) > 0 and εDG = εDG(p, β) > 0
such that if the non-degeneracy condition (2.3) holds, then

−
∫
θB

|A(∇h)− 〈A(∇h)〉θB | dx ≤ c θβ −
∫
B

|A(∇h)− 〈A(∇h)〉B | dx

for all θ ∈ (0, 1].

Proof. It suffices to prove the claim for θ = 2−m with m ∈ N0. For this purpose, let us define
Bm := 2−mB. Using Lemma 2.11 and Lemma 2.16 we can estimate

Im := −
∫
Bm

|V (∇h)− V (〈∇h〉ABm)|2 dx

≤ c −
∫
Bm

|V (∇h)− 〈V (∇h)〉Bm |
2
dx

≤ c 2−2mβ −
∫
B1

|V (∇h)− 〈V (∇h)〉B1
|2 dx

≤ c 2−2mβ −
∫
B1

|V (∇h)− V (〈∇h〉AB0
)|2 dx.

The reverse Hölder type estimate in Lemma 2.12 with Q = 〈∇h〉AB0
then implies

Im ≤ c 2−2mβ ϕ∗|〈A(∇h)〉B0
|

(
−
∫
B

|A(∇h)− 〈A(∇h)〉B0)| dx
)
.
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Using the shift-change Lemma 2.9 (with λ = 1) and Lemma 2.7 we get

Im ≤ c 2−2mβ

(
ϕ∗|〈A(∇h)〉Bm |

(
−
∫
B

|A(∇h)− 〈A(∇h)〉B0 | dx
)

+ |V (〈∇h〉AB0
)− V (〈∇h〉ABm)|2

)

≤ c 2−2mβ

(
ϕ∗|〈A(∇h〉Bm |

(
−
∫
B

|A(∇h)− 〈A(∇h)〉B0 | dx
)

+ ϕ∗|〈A(∇h)〉Bm |(|〈A(∇h)〉B0
−A(〈∇h〉ABm)|)

)

≤ c 2−2mβϕ∗|〈A(∇h)〉Bm |

(
−
∫
B

|A(∇h)− 〈A(∇h)〉B0 | dx+ ot|〈A(∇h)〉B0 − 〈A(∇h)〉Bm |)
)
.

Since p ≥ 2, we have ϕ∗a(θt) ≥ c θ2 ϕ∗a(t) for all a, t ≥ 0 and all θ ∈ [0, 1]. Thus,

Im ≤ c ϕ∗|〈A(∇h)〉Bm |

(
2−mβ

(
−
∫
B

|A(∇h)− 〈A(∇h)〉B0 | dx

+ |〈A(∇h)〉B0
− 〈A(∇h)〉Bm |

))
.(2.4)

On the other hand, with Lemma 2.7 and Jensen’s inequality,

Im = −
∫
Bm

|V (∇h)− V (〈∇h〉ABm)|2 dx

≥ c −
∫
Bm

ϕ∗|〈A(∇h)〉Bm |
(
|A(∇h)− 〈A(∇h)〉Bm |

)
dx

≥ c ϕ∗|〈A(∇h)〉Bm |

(
−
∫
Bm

|A(∇h)− 〈A(∇h)〉Bm | dx
)

We combine this with (2.4) and apply the inverse of ϕ∗|〈A(∇h)〉Bm |
to obtain

−
∫
Bm

|A(∇h)− 〈A(∇h)〉Bm | dx

. 2−mβ
(
−
∫
B0

|A(∇h)− 〈A(∇h)〉B0 | dx+ |〈A(∇h)〉B0 − 〈A(∇h)〉Bm |
)
.

Now,

|〈A(∇h)〉B0
− 〈A(∇h)〉Bm | ≤

m−1∑
k=0

|〈A(∇h)〉Bk − 〈A(∇h)〉Bk+1
|

.
m−1∑
k=0

−
∫
Bk

|A(∇h)− 〈A(∇h)〉Bk | dx

such that from the previous estimate it follows that

−
∫
Bm

|A(∇h)− 〈A(∇h)〉Bm | dx ≤ c 2−mβ
m−1∑
k=0

−
∫
Bk

|A(∇h)− 〈A(∇h)〉Bk | dx, m ∈ N.

Finally, by Lemma 2.18 below we conclude

−
∫
Bm

|A(∇h)− 〈A(∇h)〉Bm | dx ≤ cβ 2−mβ −
∫
B

|A(∇h)− 〈A(∇h)〉B | dx

and the proof is complete. �

In the proof of Proposition 2.17 we have used the following algebraic lemma which is shown
here for the sake of completeness.
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Lemma 2.18. Assume that for some c0, β > 0 the non-negative sequence (am)m∈N0
satisfies

am ≤ c0 2−mβ
m−1∑
k=0

ak, m ∈ N.

Then for all m ∈ N there holds

am ≤ 2−mβ exp

(
c0

1− 2−β

)
a0.

Proof. Let us define b0 := a0 and bm := c0 2−mβ
∑m−1
k=0 bk for m ∈ N. Then by induction there

holds am ≤ bm. Moreover, it is bm+1−2−βbm = c02−(m+1)βbm such that bm+1 = 2−β(1+c02−mβ)bm
and hence

bm = b0 2−mβ
m−1∏
k=0

(
1 + c02−kβ), m ∈ N,

where
m−1∏
k=0

(
1 + c02−kβ) ≤ exp

( ∞∑
k=0

c02−kβ

)
= exp

(
c0

1− 2−β

)
=: B.

Thus, we have

am ≤ bm ≤ b0 2−mβB = 2−mβ exp

(
c0

1− 2−β

)
a0, m ∈ N,

as claimed. �

2.4. Degenerate case. Let us now turn to the degenerate case. We need the following important
qualitative regularity result from [1]. Its proof is based on the estimates for quasi-conformal
gradient maps from [4].

Lemma 2.19 ([1]). Let h be p-harmonic with p ≥ 2. Then for all θ ∈ (0, 1
2 ] it holds

sup
x,y∈θB

|∇h(x)−∇h(y)| ≤ c0 θα
(
−
∫
B

|∇h− 〈∇h〉B |2 dx
) 1

2

.

where

α = α(p) =
1

2p

(
− 3− 1

p− 1
+

√
33 +

30

p− 1
+

1

(p− 1)2

)
≥ 1

p− 1
.

Proof. We will use the following estimate for complex gradients ϕ from [1, page 546]:

[ϕ]C0,α(B 1
2

) ≤ c(p, α) 21+α‖∇ϕ‖L2(B 1
2

),

where α = α(p) and c(p, α) =
√

p−1
α(p) . In our notations it follows that

sup
x,y∈θB

|∇h(x)−∇h(y)| ≤ c0 θα
(
−
∫

3
4B

(R |∇2h|)2 dx

) 1
2

,

where R is the radius of B. Now, the Caccioppoli estimate for quasi-conformal maps proves the
claim. �

Remark 2.20. Note that the exponent α = α(p) from Lemma 2.19 is smaller than the one
in [2, 23]. Unfortunately, these articles do not provide quantitative estimates, so we have to rely on
the possibly non-optimal estimate of Lemma 2.19. For example, the regularity for p-harmonic maps
goes to C0,1/3, as p → ∞, but limp→∞ α(p) = 0. Nevertheless, the exponent from Lemma 2.19
is sufficient for (most of) our purposes, since α(p) > 1

p−1 for p > 2. See also the discussions in

Subsection 2.7.

For our purpose we need a p-version of the previous lemma.
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Lemma 2.21. Let h be p-harmonic with p ≥ 2 let α > 0 be as in Lemma 2.19. Then for
all θ ∈ (0, 1/2]

sup
θB
|∇h(x)−∇h(y)| ≤ c0 θα

(
−
∫
B

|∇h− 〈∇h〉B |p dx
) 1
p

.

Proof. This follows from Lemma 2.19 if we apply Jensen’s inequality to the right-hand side
using p ≥ 2. �

As a further technical step we also need the following (non-optimal) decay estimate for V
from [18].

Lemma 2.22 ([18, Theorem 6.4]). There exists γ > 0 such that for all balls B and all θ ∈ (0, 1)
there holds(

−
∫
θB

|V (∇h)− 〈V (∇h)〉θB |2 dx
) 1

2

≤ c θγ
(
−
∫
B

|V (∇h)− 〈V (∇h)〉B |2 dx
) 1

2

.

Remark 2.23. The decay estimate in Lemma 2.22 is proven for any dimension. However, it
provides no explicit lower bound for γ > 0. Therefore, it only provides a very slow, non-optimal
decay for V . See below in Subsection 2.7 for discussions.

Now we have enough tools at hand to prove an important assertion on alternatives:

Proposition 2.24. Let h be p-harmonic with p ≥ 2 and let β ∈ (0, 1). Suppose that h fails the
non-degeneracy condition (2.3), i.e., we have

−
∫
B

|V (∇h)− 〈V (∇h)〉B |2 dx > εDG −
∫
B

|V (∇h)|2 dx.

Then there exist θ2 = θ2(p, β, εDG) ∈ (0, 1
2 ) and m ≥ 2 such that for θ1 := θm2 at least one of the

following alternative applies:

(a) h satisfies the non-degeneracy condition (2.3) on the ball θ1B.
(b) h satisfies the decay estimate(

−
∫
θ2B

|A(∇h)− 〈A(∇h)〉θ2B |
p′
dx

) 1
p′

≤ θβ2
(
−
∫
B

|A(∇h)− 〈A(∇h)〉B |p
′
dx

) 1
p′

.

Proof. Without loss of generality we can assume that 0 is the center of B. Suppose that for θ1 (to
be specified later) alternative (a) fails on θ1B, i.e., that

−
∫
θ1B

|V (∇h)|2 dx < 1

εDG
−
∫
θ1B

|V (∇h)− 〈V (∇h)〉θ1B |
2
dx.

Then the (non-optimal) decay estimate of p-harmonic functions of Lemma 2.22 implies that there
exists γ > 0 such that

−
∫
θ1B

|V (∇h)− 〈V (∇h)〉θ1B |
2
dx . θ2γ

1 −
∫
B

|V (∇h)− 〈V (∇h)〉B |2 dx.

So, the L∞-estimate from [18, Lemma 5.8] together with the two previous bounds implies

|∇h(0)|p ≤ c −
∫
θ1B

|V (∇h)|2 dx . θ2γ
1

εDG
−
∫
B

|V (∇h)− 〈V (∇h)〉B |2 dx(2.5)

Moreover, for the larger ball θ2B we employ Lemma 2.10 to derive

−
∫
θ2B

|A(∇h)− 〈A(∇h)〉θ2B |
p′
dx . −

∫
θ2B

|A(∇h)|p
′
dx

= −
∫
θ2B

|∇h|p dx

. sup
x∈θ2B

(|∇h(x)−∇h(0)|
)p

+ |∇h(0)|p.
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This, Lemma 2.21 (using |V (∇h)|2 = |∇h|p), and (2.5) imply that

−
∫
θ1B

|A(∇h)− 〈A(∇h)〉θ2B |
p′
dx . θαp2 −

∫
B

|V (∇h)|2 dx+
θ2γ

1

εDG
−
∫
B

|V (∇h)− 〈V (∇h)〉B |2 dx.

Since h fails the non-degeneracy condition (2.3) on B, we obtain

−
∫
θ2B

|A(∇h)− 〈A(∇h)〉θ2B |
p′
dx .

(
θαp2

εDG
+
θ2γ

1

εDG

)
−
∫
B

|V (∇h)− 〈V (∇h)〉B |2 dx

≤ c

εDG

(
θαp2 + θ2γ

1

)
−
∫
B

|A(∇h)− 〈A(∇h)〉B |p
′
dx,

where for the second estimate we used that |V (P )− V (Q)|2 . |A(P )−A(Q)|p
′

according to
Corollary 2.8 and p ≥ 2.

Let us assume in the following that p > 2, since the claim of the lemma is standard for the
linear case p = 2. Hence, α from Lemma 2.21 satisfies α > 1

p−1 such that αp > p′ > βp′. Therefore

we can choose θ2 so small that c θαp2 /εDG ≤ 1
2θ
βp′

2 . Now choose m ≥ 2 large enough such that

θ1 := θm2 satisfies c θ2γ
1 /εDG ≤ 1

2θ
βp′

2 . So, we finally obtain

−
∫
θ2B

|A(∇h)− 〈A(∇h)〉θ2B |
p′
dx ≤ θβp

′

2 −
∫
B

|A(∇h)− 〈A(∇h)〉B |p
′
dx.

This proves the claim. �

2.5. Proof of Theorem 2.2. We are now prepared to prove our decay estimates for A(∇h).

Proof of Theorem 2.2. Given p ≥ 2 and β ∈ (0, 1) fix εDG such that Proposition 2.17 is applicable
and choose θ2 ∈ (0, 1

2 ) and m ≥ 2 according to Proposition 2.24. Then it is enough to prove the

claim for the special sequence of balls Bk := θk2B, k ∈ N0. It indeed suffices to show that

−
∫
Bk

|A(∇h)− 〈A(∇h)〉Bk | dx ≤ c θ
kβ
2 −
∫
B0

|A(∇h)− 〈A(∇h)〉B0 | dx, k ∈ N \ {1}.

To this end, let k0 ∈ N0 denote the smallest number k such that h satisfies the non-degeneracy
condition (2.3) on Bk or on Bk+m. If no such k exists, we set k0 :=∞. Then for every k ∈ N with
k < k0 condition (2.3) is violated for Bk and θ1Bk = Bk+m. Therefore, the second alternative of
Proposition 2.24 applies and we inductively conclude that(

−
∫
Bk+1

|A(∇h)− 〈A(∇h)〉Bk+1
|p
′
dx

) 1
p′

≤ θkβ2

(
−
∫
B1

|A(∇h)− 〈A(∇h)〉B1
|p
′
dx

) 1
p′

for all 1 ≤ k < k0. Using Jensen’s inequality on the left-hand side and Proposition 2.14 for the
right-hand side (note that 2B1 ⊂ B0, since θ2 <

1
2 ), we conclude the desired estimate for all

2 ≤ k < k0 + 1.
If k0 = ∞, the proof is finished. Otherwise, if k0 ∈ N0, we are left with showing that for all

k > k0 there holds

−
∫
Bk

|A(∇h)− 〈A(∇h)〉Bk | dx ≤ c θ
(k−k0)β
2 −

∫
Bk0

|A(∇h)− 〈A(∇h)〉Bk0 | dx.(2.6)

By construction of k0, our solution satisfies the non-degeneracy condition (2.3) on Bk0 or Bk0+m.
In the first case, (2.6) directly follows from Proposition 2.17 and the proof is complete. For the the
second case, the same assertion yields that

−
∫
Bk

|A(∇h)− 〈A(∇h)〉Bk | dx ≤ c θ
(k−(k0+m))β
2 −

∫
Bk0+m

|A(∇h)− 〈A(∇h)〉Bk0+m
| dx

for every k ≥ k0 +m. Finally, it remains to note that for each ` ∈ {0, 1, . . . ,m} we may estimate

−
∫
Bk0+`

|A(∇h)− 〈A(∇h)〉Bk+` | dx ≤ c θ
`β
2 −
∫
Bk0

|A(∇h)− 〈A(∇h)〉Bk0 | dx,
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since θ2 is assumed to be fixed. The combination of the last two bounds then shows (2.6) which
completes the proof of Theorem 2.2. �

2.6. The case 1 < p ≤ 2 and proof of Theorem 2.3. The situation for 1 < p < 2 strongly
differs from the case p ≥ 2. Let us explain in this subsection what kind of results can be obtained
in this situation.

So let us assume here that h is p-harmonic on Ω ⊂ R2 with 1 < p < 2. The optimal
regularity of such functions has been studied in detail in [2, 23]. In particular, it has been shown

that ∇h ∈ Ck,α̃loc (Ω) with

k + α̃ =
1

6

(
1 +

1

p− 1
+

√
1 +

14

p− 1
+

1

(p− 1)2

)
=: η(p).

The optimality of this regularity result has been shown already by Dobrowolski [19, Remark in

Section 2]. Expressed in A(∇h) this translates to A(∇h) ∈ C`,β̃loc (Ω) with

`+ β̃ = η(p)(p− 1) = η(p′).

Note that `+ β̃ ∈ (0, 1) for p < 2 and η(p)↘ 1
3 , as p→∞. In particular, in general A(∇h) /∈ C1

for p < 2. By the same argument it follows that for p < 2 we have A(∇h) /∈ Bs
%,q and A(∇h) /∈ Fs%,q

for any s ∈ (0, 1) such that s− 2
% > `+ β̃. Therefore, it is not possible to obtain (almost) linear

decay estimates of A(∇h) as in Theorem 2.2. Moreover, Theorem 4.1 below cannot hold in full
generality for p < 2, since it fails already for F = 0.

The natural object to look at for 1 < p ≤ 2 is ∇u rather than A(∇u). This becomes more clear
by duality in the language of differential forms. Indeed, we can use the following nice duality trick
from Hamburger [21, Section 5]. Let us assume that h is p-harmonic and let us interpret it as a
0-form. Then the 1-form ω := dh (which corresponds to ∇h) satisfies

δA(ω) = 0, dω = 0.

Now, if we define the 1-form τ by ∗τ := A(ω) (using that we are in two space dimensions), then

δA−1(τ) = 0, dτ = 0.

Since dτ = 0, we find a 0-form z with τ = dz. Due to A−1(Q) = |Q|p
′−2

Q, we obtain that z is
p′-harmonic. In particular, h is p-harmonic if and only if its conjugate solution z is p′-harmonic.
Moreover, we have the relation ∗τ = A(ω) and thus ω = A−1(∗τ). This allows to transfer estimates
from A(ω) to τ and from A−1(∗τ) to ω.

Proof of Theorem 2.3. If h is p-harmonic with p ∈ (1, 2), then its conjugate z is p′-harmonic
with p′ > 2. Hence, from Theorem 2.2 we obtain decay estimates for the oscillations of A−1(τ).
Using ω = A−1(∗τ) = ∗A−1(τ) this directly implies decay estimates for ω, resp. ∇u. In particular,
this proves Theorem 2.3. �

2.7. Open problems. We have established in Theorem 2.2 an (almost) linear decay of the
oscillation of A(∇h). This is optimal in the sense that oscillations can never decay faster than
linear. However, the limiting case of linear decay unfortunately is excluded by our method of proof.
So we ask the following question:

Question 2.25. Is it possible to obtain linear decay of the A(∇h)-oscillations for p ≥ 2, i.e., does
Theorem 2.2 also hold with β = 1?

Remark 2.26. Let us remark that due to the behavior of p-harmonic functions h in the plane a
linear decay of A(∇h)-oscillations is only possible for p ≥ 2, see Subsection 2.6. In the case p ≤ 2,
the corresponding question would be to obtain linear decay of ∇h-oscillations, i.e., Theorem 2.3
with β = 1.
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Parts of the proofs in this section and Section 3 are based on the decay of V (∇h)-oscillations.
However, the decay estimate in Lemma 2.22 is non-optimal in the sense that it provides no sharp
lower bound for the decay exponent γ > 0. We have used the estimate of [1] in order to prove an
(almost) optimal decay of the A(∇h)-oscillations. The same method can be used to prove decay
estimates for V (∇h) (in the plane for p ≥ 2). With the exponent α = α(p) > 0 from Lemma 2.19
we obtain the following estimate:

Lemma 2.27. Let p ≥ 2 and let h be a p-harmonic function in the plane. Then for every
β ∈ (0, αp2 ) there exists c > 0 such that(

−
∫
θB

|V (∇h)− 〈V (∇h)〉θB |2 dx
) 1

2

≤ c θβ
(
−
∫
B

|V (∇h)− 〈V (∇h)〉B |2 dx
) 1

2

for all θ ∈ (0, 1].

Note that αp
2 < 1 for all p > 2. Moreover, the quantity αp

2 is decreasing in p and limp→∞
αp
2 =

√
33−3
4 ≈ 0.6861. It is already mentioned in [1] that it is possible to improve α(p) form Lemma 2.19

a tiny bit by using Young’s inequality in the proof. However, this improvement is not enough to
raise αp

2 above 1 and the limit at p =∞ stays the same. So the V -decay is still strongly sub-linear.

However, note that α > 1
p−1 for p > 2, which is the reason why we can still derive (almost) optimal

decay for A(∇h)-oscillations.
Nevertheless, the regularity studies in [2, 23] of p-harmonic functions in the plane indicate a

better regularity of V (∇h), which would allow a linear decay of the V (∇h)-oscillations for all
1 < p <∞. This is in contrast to the regularity of ∇h and A(∇h). In particular, ∇h ∈ C1 is only
possible for p ≤ 2 and A(∇h) ∈ C1 is only possible for p ≥ 2. However, it seems that V (∇h) ∈ C1

for all p. We strongly believe that this is also the natural regularity for higher dimensions and
vectorial solutions. Therefore we raise the following conjecture:

Conjecture 2.28. For d, n ∈ N and 1 < p <∞ let h : Ω→ Rn be p-harmonic on Ω ⊂ Rd. Then
V (∇h) ∈ C1(Ω) and we have a linear decay, i.e.,(

−
∫
θB

|V (∇h)− 〈V (∇h)〉θB |2 dx
) 1

2

≤ c θ
(
−
∫
B

|V (∇h)− 〈V (∇h)〉B |2 dx
) 1

2

for all balls B ⊂ Ω and every θ ∈ (0, 1].

Note that V (∇h) ∈ C1 immediately implies that A(∇h) ∈ C1 for p ≥ 2 and ∇h ∈ C1 for p ≤ 2.

In particular, for p ≥ 2 it follows that ∇h ∈ C1, 1
p−1 and therefore h ∈ Cp′ (in the sense of Hölder

spaces). Thus the conjecture is stronger than the well known p′-conjecture, see [1]. In addition, an
almost linear decay of the V (∇h)-oscillations would simplify a few steps in Section 3 below.

3. Oscillation Estimates

In this section we will derive decay estimates for oscillations of the flux A(∇u). These will be
crucial later in deriving Calderón-Zygmund type estimates for A(∇u) in the scale of Besov or
Triebel-Lizorkin spaces. The goal of this section is the proof of the following estimate.

Theorem 3.1. Let 2 ≤ p <∞ and Ω ⊂ R2. For given F ∈ Lp′(Ω) let u ∈W 1,p(Ω) be a (scalar)
weak solution to

−div(A(∇u)) = −divF in Ω.(3.1)

Then for all β ∈ (0, 1) there exists θ0 ∈ (0, 1) and c = c(β, θ0) > 0 such that for all balls B ⊂ Ω
there holds (

−
∫
θ0B

|A(∇u)− 〈A(∇u)〉θ0B |
p′
dx

) 1
p′

≤ θβ0
(
−
∫
B

|A(∇u)− 〈A(∇u)〉B |p
′
dx

) 1
p′

+ c

(
−
∫
B

|F − 〈F 〉B |p
′
dx

) 1
p′

.
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Remark 3.2. In the case of higher dimensions and vectorial solutions we get the same oscillation
decay estimate but with β restricted to β ∈ (0, β0), where β0 ∈ (0, 1) is some (unknown) small
number. The reason is the worse decay estimate for p-harmonic functions in this more general
situation, see Remark 2.4. In fact, our oscillation estimates hold exactly in the same range as the
decay estimate for p-harmonic functions.

Theorem 3.1 shows that the oscillation of A(∇u) decreases for some fixed(!) reduction of the
radius by a factor of θ0. We can iterate the estimate to obtain an oscillation decay for arbitrary
reductions θ ∈ (0, 1). However, to formulate this it is useful to introduce the following short
notations on oscillations.

Let Bt(x) denote the ball of radius t > 0 centered at x. Then for g ∈ Lwloc(Rd), w ≥ 1, we define
its (zero order) oscillation by

oscw g(x, t) :=

(
−
∫
Bt(x)

|g(y)− 〈g〉Bt(x)|
w
dy

) 1
w

.

Note that in this definition it is possible to replace the mean by an infimum over all constants,
which gives rise to an equivalent expression, see Lemma 2.10.

Theorem 3.3. Let u, p, F , and β be as in Theorem 3.1. Then there exists c > 0 such that for
all θ ∈ (0, 1) and all balls Bt(x) ⊂ Ω there holds

oscp′ A(∇u)(x, θt) ≤ c θβ oscp′ A(∇u)(x, t) + c θβ
∫ 1

θ

λ−β oscp′ F (x, λt)
dλ

λ
.

Both theorems will be proven in Subsection 3.4.

3.1. Non-linear comparison. In the proof of our oscillation estimates, we will need to compare
the function u locally with the p-harmonic function h that solves

−div
(
A(∇h)

)
= 0 in B,

h = u on ∂B.
(3.2)

The basic idea is to transfer the decay estimate of V (∇h) to V (∇u), resp. A(∇h) to A(∇u), by
using the following comparison result.

Lemma 3.4 (Non-linear comparison). Let h be the solution of (3.2). Then

−
∫
B

|V (∇u)− V (∇h)|2 dx . −
∫
B

ϕ∗|A(∇u)|(|F − 〈F 〉B |) dx.

Proof. We take take the difference of the equations for u and h and test it with u − h scaled
by |B|−1

. So for arbitrarily small δ > 0 we obtain∫
B

|V (∇u)− V (∇h)|2 dx .
∫
B

(
A(∇u)−A(∇h)

)
·
(
∇u−∇h

)
dx

≤
∫
B

|F − 〈F 〉B | |∇u−∇h|dx

≤ cδ
∫
B

ϕ∗|A(∇u)|(|F − 〈F 〉B |) dx+ δ

∫
B

ϕ|∇u|(|∇u−∇h|) dx

. cδ

∫
B

ϕ∗|A(∇u)|(|F − 〈F 〉B |) dx+ δ

∫
B

|V (∇u)− V (∇h)|2 dx,

where we have used Lemma 2.7, as well as (ϕ|∇u|)
∗ h ϕ∗|A(∇u)|. Now we absorb the last integral to

prove the claim. �

In the following we need an estimate of reverse Hölder type from [6, Corollary 2.4] which is also
contained in the proof of [15, Corollary 3.5].
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Lemma 3.5 ([6, Corollary 2.4]). Let u solve (3.1). Then for all vectors Q we have

−
∫
B

|V (∇u)− V (Q)|2 dx

≤ ϕ∗|A(Q)|

(
−
∫

2B

|A(∇u)−A(Q)| dx
)

+ c −
∫

2B

ϕ∗|A(Q)|(|F − 〈F 〉2B |) dx.

Now the decay assertion for V (∇h) in Lemma 2.22 provides us with a preliminary decay estimate
for V (∇u). However note that the decay exponent is far from being optimal. Anyhow, we need
this decay estimate to control our final oscillation on a small subset.

Lemma 3.6. Let γ > 0 be as in Lemma 2.22. Then there exists c = c(γ) > 0 such that we have
the following decay estimate:

−
∫
θB

|V (∇u)− 〈V (∇u)〉θB |2 dx

≤ c θ2γ −
∫

2B

|A(∇u)− 〈A(∇u)〉2B |p
′
dx+ c θ−d −

∫
2B

|F − 〈F 〉2B |p
′
dx.

Proof. Let h be the solution of (3.2). We estimate

Iθ := −
∫
θB

|V (∇u)− 〈V (∇u)〉θB |2 dx

. −
∫
θB

|V (∇h)− 〈V (∇h)〉θB |2 dx+ −
∫
θB

|V (∇u)− V (∇h)|2 dx

and use the decay estimate for V (∇h), see Lemma 2.22, together with θ2γ < θ−d to conclude that

Iθ . θ
2γ −
∫
B

|V (∇h)− 〈V (∇h)〉B |2 dx+ θ−d −
∫
B

|V (∇u)− V (∇h)|2 dx

. θ2γ −
∫
B

|V (∇u)− 〈V (∇u)〉B |2 dx+ θ−d −
∫
B

|V (∇u)− V (∇h)|2 dx.

Now, Lemma 2.11 and Lemma 3.4, imply

Iθ . θ
2γ −
∫
B

|V (∇u)− V
(
〈∇u〉AB

)
|2 dx+ θ−d −

∫
B

ϕ∗|A(∇u)|(|F − 〈F 〉B |) dx.

For the first integral we can employ Lemma 3.5 with Q := 〈∇u〉AB and Corollary 2.8 to obtain

−
∫
B

|V (∇u)− V
(
〈∇u〉AB

)
|2 dx

≤ ϕ∗|A(Q)|

(
−
∫

2B

|A(∇u)− 〈A(∇u)〉B | dx
)

+ c −
∫

2B

ϕ∗|A(Q)|(|F − 〈F 〉2B |) dx

. −
∫

2B

|A(∇u)− 〈A(∇u)〉B |p
′
dx+ −

∫
2B

|F − 〈F 〉2B |p
′
dx

. −
∫

2B

|A(∇u)− 〈A(∇u)〉2B |p
′
dx+ θ−2γ−d −

∫
2B

|F − 〈F 〉2B |p
′
dx.

Similarly the second integral can be estimated by

−
∫
B

ϕ∗|A(∇u)|(|F − 〈F 〉B |) dx . −
∫
B

|F − 〈F 〉B |p
′
dx . −

∫
2B

|F − 〈F 〉2B |p
′
dx.

Hence, combining the last two bounds shows the claim. �

3.2. Degenerate case. Let us begin with the degenerate case. In particular, we assume that

−
∫
B

|V (∇u)− 〈V (∇u)〉B |2 dx > εDG −
∫
B

|V (∇u)|2 dx.(3.3)

The parameter εDG > 0 is fixed in this section. The specific value of εDG will be determined later
by the non-degenerate case.

We are now prepared to prove the desired A-decay estimate.
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Proposition 3.7. Let β ∈ (0, 1). Then there exists a constant c = c(β) > 0 such that for
every θ, εDG ∈ (0, 1) we have the following decay estimate on balls B with (3.3):(
−
∫
θB

|A(∇u)− 〈A(∇u)〉θB |p
′
dx

) 1
p′

≤ c θβ
(
−
∫

2B

|A(∇u)− 〈A(∇u)〉2B |p
′
dx

) 1
p′

+ c ε
− (p−1)2

p

DG θ−(p−1)(β+d)

(
−
∫

2B

|F − 〈F 〉2B |p
′
dx

) 1
p′

.

Proof. Let h be the solution of (3.2). Similar to the proof of Lemma 3.6 we estimate

Iθ := −
∫
θB

|A(∇u)− 〈A(∇u)〉θB |p
′
dx

. −
∫
θB

|A(∇h)− 〈A(∇h)〉θB |p
′
dx+ −

∫
θB

|A(∇u)−A(∇h)|p
′
dx,

where this time the decay estimate for A(∇h), see Proposition 2.15, implies

Iθ . θ
p′β −
∫
B

|A(∇h)− 〈A(∇h)〉B |p
′
dx+ θ−d −

∫
B

|A(∇u)−A(∇h)|p
′
dx.

Now we shall show that the second integral is bounded by

R := −
∫
B

|A(∇u)−A(∇h)|p
′
dx

. θp
′β+d −

∫
B

|A(∇u)− 〈A(∇u)〉B |p
′
dx+ ε1−p

DG θ−pβ+d(1−p) −
∫
B

|F − 〈F 〉B |p
′
dx,

because then the claim follows by replacing B by 2B in all occurring averages. To this end, we
employ a shift-change (Lemma 2.9 applied to P = 0 and Q = ∇u), which shows that for λ ∈ (0, 1]
(to be specified later) there holds

R . −
∫
B

ϕ∗0
(
|A(∇u)−A(∇h)|

)
dx

. λ −
∫
B

|V (∇u)|2 dx+ λ1−p −
∫
B

ϕ∗|A(∇u)|
(
|A(∇u)−A(∇h)|

)
dx.

Here the first integral can be bounded by using the degeneracy condition (3.3), Lemmata 2.7 and
2.11, as well as Corollary 2.8 (using p ≥ 2) which gives

−
∫
B

|V (∇u)|2 dx < ε−1
DG −
∫
B

|V (∇u)− 〈V (∇u)〉B |2 dx

h ε−1
DG −
∫
B

|V (∇u)− V
(
〈∇u〉AB

)
|2 dx

. ε−1
DG −
∫
B

|A(∇u)− 〈A(∇u)〉B |p
′
dx.

In addition, the other integral can be estimated by Lemma 2.7, non-linear comparison (Lemma 3.4)
and Corollary 2.8 again such that we obtain

−
∫
B

ϕ∗|A(∇u)|
(
|A(∇u)−A(∇h)|

)
dx . −

∫
B

|V (∇u)− V (∇h)|2 dx

. −
∫
B

ϕ∗|A(∇u)|(|F − 〈F 〉B |) dx

. −
∫
B

|F − 〈F 〉B |p
′
dx.

Hence, we have shown that

R .
λ

εDG
−
∫
B

|A(∇u)− 〈A(∇u)〉B |p
′
dx+ λ1−p −

∫
B

|F − 〈F 〉B |p
′
dx.
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Since p′(1− p) = −p choosing λ := εDG θ
p′β+d now yields the claimed estimate on R and thus the

proof is complete. �

3.3. Non-degenerate case. Let us now turn to the non-degenerate case. In particular, we will
assume that u satisfies the following non-degeneracy condition on B

−
∫
B

|V (∇u)− 〈V (∇u)〉B |2 dx ≤ εDG −
∫
B

|V (∇u)|2 dx.(3.4)

Unfortunately, we cannot proceed as in the degenerate case and compare u with a p-harmonic
function h. The reason is a technical one, namely that the shift-changes cannot be controlled by
means of oscillations.

However, the non-degeneracy condition ensures that V (∇u) is in some sense close to the con-
stant 〈V (∇u)〉B . This implies that ∇u is close to 〈∇u〉AB . Hence, the system behaves approximately
like a linear one with constant coefficients. In particular, this argument works best on the set
where |∇u− 〈∇u〉AB | � |〈∇u〉AB |. The non-degeneracy condition however is only in the integral
sense, so there is a small set of points that fail this condition. It turns out that we can control
the critical terms on this set by the (non-optimal) decay estimates of Lemma 3.6. This is done in
Lemma 3.10 below. On the remaining “nice” set, we will estimate the A-oscillation by using an
approximation by a linear system with constant coefficients, see Lemma 3.12.

Before we get to Lemma 3.10, we need a few auxiliary results on averages. The subsequent two
lemmata follow the spirit of [6, Lemma 2.12].

Lemma 3.8. There exists a constant ε0 such that if u satisfies the non-degeneracy condition (3.4)
on B with εDG ≤ ε0, then

1

2
max

{
|〈∇u〉B |, |〈∇u〉AB |

}
≤ |〈∇u〉VB | ≤ 2 min

{
|〈∇u〉B |, |〈∇u〉AB |

}
,(3.5)

and

max
{
|〈∇u〉B − 〈∇u〉VB |, |〈∇u〉AB − 〈∇u〉VB |

}
≤ c
√
εDG |〈∇u〉VB |.(3.6)

Proof. Using (3.4) we estimate

−
∫
B

|V (∇u)− 〈V (∇u)〉B |2 dx ≤ εDG −
∫
B

|V (∇u)|2 dx

≤ 2 εDG −
∫
B

|V (∇u)− 〈V (∇u)〉B |2 dx+ 2 εDG|〈V (∇u)〉B |2.

For εDG ≤ ε0 ≤ 1
4 we can absorb the first term on the right-hand side and obtain

−
∫
B

|V (∇u)− 〈V (∇u)〉B |2 dx ≤ 4 εDG|〈V (∇u)〉B |2 = 4 εDG|V
(
〈∇u〉VB

)
|2.(3.7)

Now let Q ∈
{
〈∇u〉B , 〈∇u〉AB

}
. Then we can use Lemma 2.11 and (3.7) to derive

|V
(
〈∇u〉VB

)
− V (Q)|2 = |〈V (∇u)〉B − V (Q)|2

≤ −
∫
B

|V (∇u)− V (Q)|2 dx

≤ c −
∫
B

|V (∇u)− 〈V (∇u)〉B |2 dx

≤ c εDG|V
(
〈∇u〉VB

)
|2(3.8)

and hence

(1− c ε1/2
DG)2 |V

(
〈∇u〉VB

)
|2 ≤ |V (Q)|2 ≤ (1 + c ε

1/2
DG)2 |V

(
〈∇u〉VB

)
|2.

Now we choose ε0 ≥ εDG small enough and use that |V (Q)| = |Q|p/2 to conclude

1
2 |〈∇u〉

V
B | ≤ |Q| ≤ 2 |〈∇u〉VB |, Q ∈

{
〈∇u〉B , 〈∇u〉AB

}
,

which shows (3.5).
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It remains to prove (3.6). To this end, let P := 〈∇u〉VB . Since p ≥ 2, it then follows from
Lemma 2.7 and (3.8) that

|P |p−2|P −Q|2 ≤ (|P |+ |Q|)p−2 |P −Q|2 ≤ c εDG |V (P )|2 = c εDG |P |p,

i.e.,

|P −Q| ≤ c
√
εDG |P |

which completes the proof. �

If εDG is small enough, our non-degeneracy condition passes over from B to some sub-balls:

Lemma 3.9. For all τ ∈ (0, 1) there exists ε = ε(τ) > 0 with the following property: If u satisfies
the non-degeneracy condition (3.4) on B with some εDG ≤ ε, then u also satisfies (3.4) on τB
with εDG replaced by 16 τ−d εDG and we have

1
2 |〈V (∇u)〉B | ≤ |〈V (∇u)〉τB | ≤ 2 |〈V (∇u)〉B |,

1
2 |〈∇u〉

V
B | ≤ |〈∇u〉VτB | ≤ 2 |〈∇u〉VB |.

(3.9)

Proof. Let us show (3.9) first. For this purpose we use (3.4) on B to estimate∣∣〈V (∇u)〉τB − 〈V (∇u)〉B
∣∣2 dx ≤ −∫

τB

|V (∇u)− 〈V (∇u)〉B |2 dx

≤ τ−d −
∫
B

|V (∇u)− 〈V (∇u)〉B |2 dx

≤ τ−d εDG |〈V (∇u)〉B |2.

Now fix δ ∈ (0, 1
2 ) small enough such that (1−δ)

2
p ≥ 1

2 and (1+δ)
2
p ≤ 2. Then, for small ε ≥ εDG > 0,

we have τ−dεDG ≤ δ2 and therefore∣∣〈V (∇u)〉τB − 〈V (∇u)〉B
∣∣ ≤ δ |〈V (∇u)〉B |,

i.e.,

(1− δ) |〈V (∇u)〉B | ≤ |〈V (∇u)〉τB | ≤ (1 + δ) |〈V (∇u)〉B |.

Thus, our choice of δ and the fact that |〈V (∇u)〉B | = |〈∇u〉VB |
p
2 proves (3.9).

Further, we may estimate

−
∫
τB

|V (∇u)− 〈V (∇u)〉τB |2 dx ≤ −
∫
τB

|V (∇u)− 〈V (∇u)〉B |2 dx

≤ τ−d −
∫
B

|V (∇u)− 〈V (∇u)〉B |2 dx.

We can additionally assume that ε is so small that (3.7) from the proof of Lemma 3.8 holds true.
Together with the first part of (3.9) this yields

−
∫
τB

|V (∇u)− 〈V (∇u)〉τB |2 dx ≤ 4 τ−d εDG |〈V (∇u)〉B |2

≤ 16 τ−d εDG |〈V (∇u)〉τB |2

≤ 16 τ−d εDG −
∫
τB

|V (∇u)|2 dx

which completes the proof. �

The following lemma is an adaptation of [6, Lemma 2.19].
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Lemma 3.10. Let σ, τ ∈ (0, 1
4 ). Then there exists ε = ε(σ, τ) > 0 such that if u satisfies the

non-degeneracy condition (3.4) on B with εDG ≤ ε, then

−
∫
B

|A(∇u)− 〈A(∇u)〉B |p
′
χ{|∇u−〈∇u〉AB |≥σ|〈∇u〉AB |} dx

≤ c σ−2pτ2γ

(
−
∫

2B

|A(∇u)− 〈A(∇u)〉2B |p
′
dx+ τ−d−2γ −

∫
2B

|F − 〈F 〉2B |p
′
dx

)
with γ from Lemma 2.22.

Proof. Let σ, τ ∈ (0, 1
4 ). Then it is possible to cover B by a locally finite set of balls τBj , where

the Bj are translates of B with centers within B. In particular, B ⊂
⋃
j(τBj) ⊂ 2B and Bj ⊂ 2B.

We define

Ij := −
∫
τBj

|A(∇u)− 〈A(∇u)〉B |p
′
χEσ dx

with Eσ := {x | |∇u− 〈∇u〉AB | ≥ σ|〈∇u〉AB |}. Then

I := −
∫
B

|A(∇u)− 〈A(∇u)〉B |p
′
χ{|∇u−〈∇u〉AB |≥σ|〈∇u〉AB |} dx ≤

∑
j

|τBj |
|B|

Ij .

If ε = ε(τ) is small enough, then according to Lemma 3.9 u also satisfies the non-degeneracy
condition (3.4) w.r.t. the ball τBj . Now, Lemma 3.8 for B and τBj and Lemma 3.9 imply that

|〈∇u〉AB | ≤ 2 |〈∇u〉VB | ≤ 4 |〈∇u〉VτBj | ≤ 8 |〈∇u〉AτBj |,

|〈∇u〉AτBj | ≤ 2 |〈∇u〉VτBj | ≤ 4 |〈∇u〉VB | ≤ 8 |〈∇u〉AB |.
(3.10)

Therefore, on the set τBj we can estimate

|∇u− 〈∇u〉AB |χEσ ≤
(
|∇u− 〈∇u〉AτBj |+ |〈∇u〉

A
B |+ |〈∇u〉AτBj |

)
χEσ

≤
(
|∇u− 〈∇u〉AτBj |+ 9 |〈∇u〉AB |

)
χEσ

≤ c σ−1|∇u− 〈∇u〉AτBj |χEσ

(3.11)

since σ < 1. Moreover, we can employ Lemma 2.7 (with P := ∇u and Q := 〈∇u〉AB and p ≥ 2) to
obtain

|A(∇u)− 〈A(∇u)〉B |p
′
χEσ ≤ c

((
|〈∇u〉AB |+ |∇u− 〈∇u〉AB |

)p−2

|∇u− 〈∇u〉AB |
)p′

χEσ

≤ c
∣∣V (∇u)− V (〈∇u〉AB)

∣∣2( |〈∇u〉AB |+ |∇u− 〈∇u〉AB |
|∇u− 〈∇u〉AB |

)2−p′

χEσ

≤ c σp
′−2
∣∣V (∇u)− V (〈∇u〉AB)

∣∣2χEσ .
Applying Lemma 2.7 once more, together with (3.10), (3.11) and the fact that p′ − 2− p > −2p
this yields

|A(∇u)− 〈A(∇u)〉B |p
′
χEσ ≤ c σp

′−2 ϕ|〈∇u〉AB |(|∇u− 〈∇u〉
A
B |)χEσ

≤ c σp
′−2 ϕ|〈∇u〉AτBj |

(c σ−1|∇u− 〈∇u〉AτBj |)χEσ

≤ c σ−2p ϕ|〈∇u〉AτBj |
(|∇u− 〈∇u〉AτBj |)χEσ

≤ c σ−2p |V (∇u)− V (〈∇u〉AτBj )|
2

on every τBj such that

I ≤ c σ−2p
∑
j

|τBj |
|B|

−
∫
τBj

|V (∇u)− V (〈∇u〉AτBj )|
2
dx.
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For these local integrals it follows from Lemma 3.6 (applied for 1
2Bj), |Bj | = |B|, and Bj ⊂ 2B

that

−
∫
τBj

|V (∇u)− 〈V (∇u)〉τB |2 dx

≤ c (2τ)2γ −
∫
Bj

|A(∇u)− 〈A(∇u)〉Bj |
p′
dx+ c (2τ)−d −

∫
Bj

|F − 〈F 〉Bj |
p′
dx.

≤ c τ2γ −
∫

2B

|A(∇u)− 〈A(∇u)〉2B |p
′
dx+ c τ−d −

∫
2B

|F − 〈F 〉2B |p
′
dx.

This together with the previous estimate and the covering properties of the τBj proves

I . σ−2p
∑
j

|τBj |
|B|

(
τ2γ −

∫
2B

|A(∇u)− 〈A(∇u)〉2B |p
′
dx+ τ−d −

∫
2B

|F − 〈F 〉2B |p
′
dx

)

≤ c σ−2pτ2γ

(
−
∫

2B

|A(∇u)− 〈A(∇u)〉2B |p
′
dx+ τ−d−2γ −

∫
2B

|F − 〈F 〉2B |p
′
dx

)
,

as claimed. �

Sometimes it is useful to apply Lemma 3.10 with a different kind of indicator set, namely with
the A-mean value 〈∇u〉AB replaces by the standard mean value 〈∇u〉B on B. The following lemma
shows that the two cases are the same up to a possible change of the constant σ.

Lemma 3.11. For all σ > 0 there exists ε = ε(σ) > 0 such that if u satisfies the non-degeneracy
condition (3.4) on B with εDG ≤ ε, then there holds

{x | |∇u− 〈∇u〉B | ≥ σ|〈∇u〉B |} ⊆
{
x | |∇u− 〈∇u〉AB | ≥

σ

8
|〈∇u〉AB |

}
.

Proof. For each x with |∇u(x)− 〈∇u〉B | ≥ σ|〈∇u〉B | and small enough ε we estimate with
Lemma 3.8

|∇u(x)− 〈∇u〉AB | ≥ |∇u(x)− 〈∇u〉B | − |〈∇u〉AB − 〈∇u〉B |
≥ σ |〈∇u〉B | − c

√
εDG |〈∇u〉VB |.

≥ σ
4 |〈∇u〉

A
B | − c

√
ε |〈∇u〉AB |.

So for c
√
ε ≤ σ

8 we get

|∇u(x)− 〈∇u〉AB | ≥
σ

8
|〈∇u〉AB |

which proves the claim. �

In order to proceed towards the desired linear comparison result, let z denote the solution of
the following linear system with constant coefficients:

−div
(
(DA)(〈∇u〉AB)∇z

)
= 0 in B,

z = u on ∂B.
(3.12)

We know from linear theory that there exists some constant c > 0 such that for any θ ∈ (0, 1) we
have

sup
x,x′∈θB

|∇z(x)−∇z(x′)| ≤ c θ −
∫
B

|∇z − 〈∇z〉B | dy.(3.13)

For vectors P,Q ∈ R2 let us define

H(P,Q) := A(P )−A(Q)− (DA)(Q) (P −Q).

Then we can use our original system (1.1),

−div
(
A(∇u)

)
= −divF,

to conclude

−div
(
(DA)(〈∇u〉AB)∇(u− z)

)
= div

(
H(∇u, 〈∇u〉AB)

)
− div(F − 〈F 〉B).(3.14)
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In particular, the function w := u− z satisfies

−div
(
(DA)(〈∇u〉AB)∇w

)
= div

(
H(∇u, 〈∇u〉AB)

)
− div(F − 〈F 〉B) in B,

w = 0 on ∂B.

It follows from Lemma 2.7 for P := Q + tξ with t → 0 and arbitrarily fixed Q, ξ ∈ R2 that the
constant matrix (DA)(Q) satisfies

c |Q|p−2|ξ|2 ≤
(
(DA)(Q) ξ

)
· ξ ≤ C |Q|p−2|ξ|2.(3.15)

As in [17] and [6] we get the following comparison estimate.

Lemma 3.12 (Linear Comparison). Let z be the solution of (3.12), then

|〈∇u〉AB |
(p−2)p′ −

∫
B

|∇u−∇z|p
′
dx ≤ c −

∫
B

|H(∇u, 〈∇u〉AB)|p
′

dx+ c −
∫
B

|F − 〈F 〉B |p
′
dx.

Proof. If w := u− z, then it is the solution to a linear system of the form

− div(B∇w) = −divG in B,

w = 0 on ∂B,

where we put B := (DA)(〈∇u〉AB) and G := −H(∇u, 〈∇u〉AB) + (F − 〈F 〉B). Due to (3.15) with
Q = 〈∇u〉AB , we have the ellipticity condition

c |〈∇u〉AB |
p−2|ξ|2 ≤ Bξ · ξ ≤ C |〈∇u〉AB |

p−2|ξ|2, ξ ∈ R2.

Therefore we can apply the classical Lp
′
-regularity result for systems with constant coefficients, see

[20, Lemma 2], to conclude ∥∥|〈∇u〉AB |p−2∇w
∥∥
Lp′ (B)

≤ c ‖G‖Lp′ (B).

Thus, the definitions of w and G prove the claim. �

In order to estimate the H-term in Lemma 3.12 we need the following Lemma.

Lemma 3.13. If p ≥ 2, then we have

|H(P,Q)| ≤ c |A(P )−A(Q)| |P −Q|
|Q|+ |P −Q|

for all P,Q ∈ R2.

Proof. We have to distinguish two cases.
Case |P −Q| ≥ 1

2 |Q|: We can apply Lemma 2.7 for p ≥ 2 to conclude

|H(P,Q)| ≤ |A(P )−A(Q)|+ |(DA)(Q)| |P −Q|

≤ |A(P )−A(Q)|+ c |Q|p−2|P −Q|
≤ |A(P )−A(Q)|+ c (|Q|+ |P −Q|)p−2|P −Q|
≤ c |A(P )−A(Q)|

≤ c |A(P )−A(Q)| |P −Q|
|Q|+ |P −Q|

.

Case |P −Q| < 1
2 |Q|: Using |(D2A)(R)| ≤ c |R|p−3

, we obtain with Taylor’s formula

|H(P,Q)| =
∣∣∣∣∫ 1

0

(
(DA)(Q+ t(P −Q))− (DA)(Q)

)
dt (P −Q)

∣∣∣∣
≤
∫ 1

0

t

∫ 1

0

|(D2A)(Q− st(P −Q))| ds dt |P −Q|2

≤ c
∫ 1

0

∫ 1

0

|Q− st(P −Q)|p−3
ds dt |P −Q|2.
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Since |P −Q| < 1
2 |Q|, we have 1

2 |Q| ≤ |Q− st(P −Q)| ≤ |Q|+ |P −Q| ≤ 2|Q| for all s, t ∈ (0, 1).
Thus, Lemma 2.7 yields

|H(P,Q)| ≤ c
(
|Q|+ |P −Q|

)p−3|P −Q|2 ≤ c |A(P )−A(Q)| |P −Q|
|Q|+ |P −Q|

and the proof is complete. �

We are now prepared to prove the A-decay in the non-degenerate case.

Proposition 3.14. Let θ ∈ (0, 1). Then there exist ε = ε(θ) > 0 and cθ > 0 such that if u satisfies
the non-degeneracy condition (3.4) on B with εDG ≤ ε, then(

−
∫
θB

|A(∇u)− 〈A(∇u)〉θB |p
′
dx

) 1
p′

≤ c θ
(
−
∫

2B

|A(∇u)− 〈A(∇u)〉2B |p
′
dx

) 1
p′

+ cθ

(
−
∫

2B

|F − 〈F 〉2B |p
′
dx

) 1
p′

.

Proof. According to Lemma 2.10 we have

I := −
∫
θB

|A(∇u)− 〈A(∇u)〉θB |p
′
dx

. −
∫
θB

|A(∇u)− 〈A(∇u)〉θB |p
′
χ{|∇u−〈∇u〉θB |≥σ|〈∇u〉θB |} dx

+ −
∫
θB

|A(∇u)−A(〈∇u〉θB)|p
′
χ{|∇u−〈∇u〉θB |<σ|〈∇u〉θB |} dx

=: II + III.

If εDG is sufficiently small (depending on θ), it follows from Lemma 3.9 that u also satisfies the
non-degeneracy condition (3.4) on θB. Therefore, we get by Lemmata 3.11, 3.10, and 2.10 for
any 0 < τ < 1

4

II ≤ −
∫
θB

|A(∇u)− 〈A(∇u)〉θB |p
′
χ{|∇u−〈∇u〉AθB |≥σ8 |〈∇u〉AθB |}

dx

. σ−2pτ2γ

(
−
∫

2θB

|A(∇u)− 〈A(∇u)〉2θB |p
′
dx+ τ−d−2γ −

∫
2θB

|F − 〈F 〉2θB |p
′
dx

)
. σ−2pτ2γθ−d

(
−
∫

2B

|A(∇u)− 〈A(∇u)〉2B |p
′
dx+ τ−d−2γ −

∫
2B

|F − 〈F 〉2B |p
′
dx

)
.

Later we will take τ = τ(σ, θ) small such that the factor in front of the A-oscillation on 2B is small.
Of course, the price will be a large factor in front of the F -oscillation.

Let us now estimate III. We apply Lemma 2.7 and use that σ ≤ 1 and p ≥ 2 to obtain

III .−
∫
θB

[
(|〈∇u〉θB |+ |∇u−〈∇u〉θB |)p−2|∇u−〈∇u〉θB |

]p′
χ{|∇u−〈∇u〉θB |<σ|〈∇u〉θB |}dx

. |〈∇u〉θB |(p−2)p′ −
∫
θB

|∇u− 〈∇u〉θB |p
′
dx.

The latter integral can be estimated further in terms of the solution z of the linearized equation (3.12).

Indeed, from the linear decay (3.13) of solutions to linear systems and θp
′
< 1 < θ−d it follows

−
∫
θB

|∇u− 〈∇u〉θB |p
′
dx . −

∫
θB

|∇z − 〈∇z〉θB |p
′
dx+ −

∫
θB

|∇u−∇z|p
′
dx

. sup
x,x′∈θB

|∇z(x)−∇z(x′)|p
′

+ −
∫
θB

|∇u−∇z|p
′
dx

. θp
′
−
∫
B

|∇z − 〈∇z〉B |p
′
dx+ θ−d −

∫
B

|∇u−∇z|p
′
dx

. θp
′
−
∫
B

|∇u− 〈∇u〉B |p
′
dx+ θ−d −

∫
B

|∇u−∇z|p
′
dx.
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In addition, Lemma 3.9 and Lemma 3.8 imply

|〈∇u〉θB | h |〈∇u〉B | h |〈∇u〉AB |.

Since p ≥ 2 we can use this estimate to conclude that

III . θp
′
|〈∇u〉AB |

(p−2)p′ −
∫
B

|∇u− 〈∇u〉B |p
′
dx+ θ−d |〈∇u〉AB |

(p−2)p′ −
∫
B

|∇u−∇z|p
′
dx

=: III1 + III2.

Now we apply Lemmata 2.10 and 2.7 with p ≥ 2 to obtain the following bound on III1:

III1 . θ
p′ |〈∇u〉AB |

(p−2)p′ −
∫
B

|∇u− 〈∇u〉AB |
p′

dx

. θp
′
−
∫
B

|A(∇u)−A(〈∇u〉AB)|p
′

dx

= θp
′
−
∫
B

|A(∇u)− 〈A(∇u)〉B |p
′
dx.(3.16)

Next, for III2 we use the linear comparison of Lemma 3.12 and the estimate for H from
Lemma 3.13 to deduce

III2 ≤ θ−dc −
∫
B

|H(∇u, 〈∇u〉AB)|p
′

dx+ θ−d −
∫
B

|F − 〈F 〉B |p
′
dx

. θ−d −
∫
B

|A(∇u)−A(〈∇u〉AB)|p
′
(

|∇u− 〈∇u〉AB |
|〈∇u〉AB |+ |∇u− 〈∇u〉AB |

)p′
dx+ θ−d −

∫
B

|F − 〈F 〉B |p
′
dx

=: IIIA2 + IIIF2 ,

where for σ, τ < 1

IIIF2 . σ
−2pτ−dθ−d −

∫
2B

|F − 〈F 〉2B |p
′
dx.

Note that on the set {x | |∇u− 〈∇u〉AB | < σ|〈∇u〉AB |} the fraction in the integral of IIIA2 is smaller
than σ, while on its complement it is bounded by one. Hence,

IIIA2 ≤ θ−d −
∫
B

|A(∇u)− 〈A(∇u)〉B |p
′
χ{|∇u−〈∇u〉AB |≥σ|〈∇u〉AB |} dx

+ σp
′
θ−d −

∫
B

|A(∇u)− 〈A(∇u)〉B |p
′
χ{|∇u−〈∇u〉AB |<σ|〈∇u〉AB |} dx,

where we have also used 〈A(∇u)〉B = A(〈∇u〉AB). Clearly, the second integral is small for small σ > 0.
Moreover, the first one can be estimated further by Lemma 3.10 provided that ε = ε(σ, τ) ≥ εDG

is small enough. Overall, in combination with (3.16) we arrive at

III . III1 + IIIA2 + IIIF2

. θp
′
−
∫
B

|A(∇u)− 〈A(∇u)〉B |p
′
dx

+ σ−2pτ2γθ−d
(
−
∫

2B

|A(∇u)− 〈A(∇u)〉2B |p
′
dx+ τ−d−2γ −

∫
2B

|F − 〈F 〉2B |p
′
dx

)
+ σp

′
θ−d −

∫
B

|A(∇u)− 〈A(∇u)〉B |p
′
dx.

Recall that also

−
∫
B

|A(∇u)− 〈A(∇u)〉B |p
′
dx ≤ c −

∫
2B

|A(∇u)− 〈A(∇u)〉2B |p
′
dx.
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Thus, combing the estimates for II and III we obtain our final estimate

I .
(
θp
′
+ σ−2pτ2γθ−d + σp

′
θ−d

)
−
∫

2B

|A(∇u)− 〈A(∇u)〉2B |p
′
dx

+ σ−2pτ−dθ−d −
∫

2B

|F − 〈F 〉2B |p
′
dx.

Now, we choose the parameters in the following order: Given θ ∈ (0, 1), we first choose σ = σ(θ) > 0

small enough such that σp
′
θ−d ≤ θp

′
. Second, we choose τ = τ(θ, σ, γ) = τ(θ) > 0 small such

that also σ−2pτ2γθ−d ≤ θp
′
. Moreover, for the validity of the above estimates (applicability of

Lemma 3.10) we have to choose ε = ε(σ, τ) = ε(θ) > 0 small. Taking the p′-root then proves our
desired A-decay. �

3.4. Proof of Theorems 3.1 and 3.3. We will now combine the estimates for the degenerate
and the non-degenerate case to prove the main results of this section, namely Theorems 3.1 and 3.3.

Proof of Theorem 3.1. Let β ∈ (0, 1). Define β2 := 1+β
2 such that β < β2 < 1. We will combine

Propositions 3.7 (with β2) and 3.14 to prove our claim. To this end, we first choose θ ∈ (0, 1) so

small such that θ0 := 1
2θ satisfies c θβ2 + c θ ≤ θβ0 , where c θβ2 is from Proposition 3.7 and c θ from

Proposition 3.14. In particular this determines ε = ε(θ) in Proposition 3.14.
If u satisfies the non-degeneracy condition (3.4) on 1

2B, then the claim follows by Proposition 3.14.

If, however, (3.4) is not satisfied on 1
2B, then we can apply Proposition 3.7 to deduce our claim. �

Proof of Theorem 3.3. It follows by repeated use of Theorem 3.1 that for our fixed θ0 and all k ∈ N
there holds

oscp′ A(∇u)(x, θk0 t) ≤ θ
kβ
0 oscp′ A(∇u)(x, t) + c

k−1∑
j=0

θ
(k−1−j)β
0 oscp′ F (x, θj0t).(3.17)

Now, let θ ∈ (0, 1). Then we find k ∈ N0 such that θk+1
0 ≤ θ ≤ θk0 . Moreover, note that for

general G ∈ Lp′ , any λ ∈ [θ0, 1], and s > 0 we have

oscp′ G(x, θ0s) . oscp′ G(x, λs) . oscp′ G(x, s)(3.18)

with constants only depending on the fixed θ0. Thus, the claim follows from (3.17) in a standard
way by changing the discrete sum by an integral using (3.18). This step also introduces the constant
in front of θβ . �

3.5. Consequences and remarks. In this section we present a few consequences of Theorem 3.1.
Let us begin with how our estimates improve the results in [6], where pointwise regularity estimates
have been proven for the system version of (1.1) with 1 < p <∞ and Ω ⊂ Rd. As an important
intermediate step they prove an assertion very similar to our Theorem 3.1. For the case p ≥ 2 this
result reads as follows:

Proposition 3.15 ([6, Proposition 2.1]). For Ω ⊂ Rd and p ≥ 2 let γ denote the best possible
exponent in Lemma 2.22. If u solves (1.1), then for β ∈ (0, γ) there exists θ0 ∈ (0, 1) and cβ > 0
such that1 (

−
∫
θ0B

|A(∇u)− 〈A(∇u)〉θ0B |
p′
dx

) 1
p′

≤ θβ0
(
−
∫
B

|A(∇u)− 〈A(∇u)〉B |p
′
dx

) 1
p′

+ cβ

(
−
∫
B

|F − 〈F 〉B |p
′
dx

) 1
p′

.

In contrast to this, our Theorem 3.1 improves the condition on β from β ∈ (0, γ) to β ∈ (0, 1).
However, our result is restricted to the scalar problem in the plane.

Note that the best value of γ > 0 is not known for systems or higher dimensions. Even for the
scalar case in the plane it remains open whether the assertion extends to the limiting case β = 1.

1It is stated in [6, Proposition 2.1] that β ∈ (0,min {1, γ 2
p′ }), but this is a typo. It should be β ∈ (0,min {1, γ 2

p′ })
with p = min {p, 2}.
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See, in particular, the discussion in Subsection 2.7. Therefore, it was not possible for us to directly
apply Proposition 3.15 but rather make use of the improved A-decay of Theorem 2.2.

Let us remark that all the results of Subsection 3 are only based on the A-decay of Theorem 2.2.
In particular, if the p-harmonic system (2.1) is proven to satisfy an A-decay with power β, then
Theorem 3.1 remains valid for all (!) smaller exponents. Hence, all the consequences below will
remain valid. Especially all proofs of Subsection 3 are valid for any dimension as well as for systems.

At this point it is also worth to mention that for p ≥ 2 a V -decay with exponent γ directly
implies an A-decay for any exponent β ∈ (0, γ). This was proven in [15, Remark 5.6]. Hence, our
method is more flexible, since we only need A-decay.

Let us now present some results which improve Theorem 1.3 and Corollary 5.2 of [6]. Particularly,
we extend the range of admissible β’s to β ∈ (0, 1).

Corollary 3.16 (General oscillation estimate). Let Ω ⊂ R2 and p ≥ 2. Assume that u : Ω→ R
satisfies (1.1). If for R > 0, some β ∈ (0, 1), and ω : (0, R)→ (0,∞) the function r 7→ ω(r) r−β is
almost decreasing2 in (0, R), then for any ball BR with 2BR ⊂ Ω there holds

M ],1
ω,R(A(∇u))(x) ≤ cβM ],p′

ω,R(F )(x) + cβ
1

ω(R)

(
−
∫

2BR

|A(∇u)− 〈A(∇u)〉2BR |
p′
dx

) 1
p′

.

Here for any q ≥ 1 the localized fractional sharp maximal operator M ],q
ω,R of f ∈ Lqloc(R2) is

defined pointwise by

M ],q
ω,R(f)(x) := sup

Br3x
r<R

1

ω(r)

(
−
∫
Br

|f − 〈f〉Br |
q
dy

) 1
q

.

Corollary 3.17. For Ω ⊂ R2 and p ≥ 2 let u : Ω → R satisfy (1.1). If s ∈ (0, 1) and 2B ⊂ Ω,
then

|A(∇u)|Cs(B) ≤ cs
(
|F |Cs(2B) + −

∫
2B

|A(∇u)− 〈A(∇u)〉2B |p
′
dx

) 1
p′ )

.

The proofs of these results are only based on Proposition 3.15, resp. [6, Proposition 2.1]. Our
improved version in Theorem 3.1 immediately implies the claims.

Note that Corollary 3.17 is also covered by Theorem 4.1 below since Cs = Bs
∞,∞.

4. Regularity transfer - nonlinear Calderón-Zygmund estimates

In this section we show that Sobolev regularity up to order one transfers from the right-hand side
F to the flux A(∇u). We present this result in more general scales of Besov and Triebel-Lizorkin
spaces in Subsection 4.1. At first, in Theorem 4.1 it is shown that in terms of quasi-semi norms we
have

|A(∇u)|X(B) ≤ C |F |X(2B) + lower order terms of A(∇u),

where X stands for either Bs
%,q or Fs%,q. Afterwards, in Subsection 4.2, we study how this new

regularity for A(∇u) translates into regularity statements for ∇u and V (∇u).

4.1. Regularity transfer from F to A(∇u). For a ball B let us denote by Bs
%,q(B) and Fs%,q(B),

the Besov space, resp. Triebel-Lizorkin space, of functions on B with differentiability s > 0,
integrability 0 < % ≤ ∞, and fine index 0 < q ≤ ∞ (with % <∞ for the F-scale). We use ‖·‖Bs%,q(B)

to denote the (quasi-) norm and |·|Bs%,q(B) for the (quasi-) semi norm describing the part of the

s-order derivatives. Likewise we do for the F-scale. The exact definitions are introduced below. As
usual, we let (x)+ := max{0, x} for x ∈ R. Then our main result is the following local regularity
transfer:

2That is, we assume that ω(r) r−β ≤ c ω(%) %−β for all 0 < r < % < R.
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Theorem 4.1. Given 2 ≤ p < ∞, some domain Ω ⊂ R2, and F ∈ Lp′(Ω) let u ∈ W 1,p(Ω) be a
(scalar) weak solution to

−div(A(∇u)) = −divF in Ω.

Further, let s > 0 and %, q ∈ (0,∞] be such that

d

(
1

%
− 1

p′

)
+

< s < 1,(4.1)

i.e., Bs
%,q(B) ↪→↪→ Lp

′
(B). Then for any ball B with 2B ⊂ Ω there holds

|A(∇u)|Bs%,q(B) . |F |Bs%,q(2B) +

(
−
∫

2B

|A(∇u)− 〈A(∇u)〉2B |p
′
dx

) 1
p′

.(4.2)

If additionally % <∞ and

d

(
1

q
− 1

p′

)
+

< s < 1,(4.3)

then the same estimate (4.2) holds true when Bs
%,q is replaced by Fs%,q.

Remark 4.2. Our result also generalizes to higher dimensions and vectorial solutions. However,
in this setting the differentiability is restricted to s ∈ (0, β0), where β0 ≤ 1 is some unknown small
number. The reason behind this is the worse decay estimate for p-harmonic functions in this general
situation. In fact, our regularity transfer holds exactly for the same range as the decay estimates.
See the also the Remarks 2.4 and 3.2 for more details.

Let us introduce the norms used to describe our spaces Bs
%,q(B) and Fs%,q(B), respectively. In

order to have the constants in (4.2) independent of the chosen ball B = BR, we are using norms
that are invariant with respect to the scaling g 7→ gR := g(·/R). For a ball B we introduce the
scaling invariant L%(B) (quasi-) norm by

|||f |||L%(B) :=


(
−
∫
B

|f |% dx
) 1
%

for 0 < % <∞,

‖g‖L∞(B) if % =∞.

Moreover, we need a localized version of the oscillations from Section 3. For every g ∈ Lw(B) with
1 ≤ ω <∞ we define its localized oscillation by

oscBw g(x, t) :=

(
−
∫
Bt(x)∩B

|g − 〈g〉Bt(x)∩B |
w
dy

) 1
w

.

Using these ingredients there holds the following characterization of Bs
%,q(B) and Fs%,q(B), resp.,

which for simplicity we could take here also as a definition.

Lemma 4.3 (Characterization by oscillations). Let B ⊂ Rd be a ball with radius R. Further let
0 < %, q ≤ ∞, and s > 0, as well as 1 ≤ w ≤ ∞, and assume that

d

(
1

%
− 1

w

)
+

< s < 1,

i.e., Bs
%,q(B) ↪→↪→ Lw(B), resp. Fs%,q(B) ↪→↪→ Lw(B).

(a) Then there holds

Bs
%,q(B) =

{
g ∈ Lmax{%,w}(B) | ‖g‖Bs%,q(B) <∞

}
,

with ‖g‖Bs%,q(B) := |||g|||L%(B) + |g|Bs%,q(B), where

|g|Bs%,q(B) := Rs

(∫ R

0

( |||oscBw g(·, t)|||L%(B)

ts

)q
dt

t

) 1
q

with the usual modification for q =∞.
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(b) Additionally, assume % <∞ and

d

(
1

q
− 1

w

)
+

< s,

Then there holds

Fs%,q(B) =
{
g ∈ Lmax{%,w}(B) | ‖g‖Fs%,q(B) <∞

}
,

with ‖g‖Fs%,q(B) := |||g|||L%(B) + |g|Fs%,q(B), where

|g|Fs%,q(B) := Rs

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
(∫ R

0

(
oscBw g(·, t)

ts

)q
dt

t

) 1
q
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
L%(B)

(modification for q =∞).

Proof. For scalar functions this characterization is a special case of Triebel [26, Theorem 2.2.2 and
(2.22)] for bounded C∞ domains. Our scaling invariant version can be obtained by applying the
result of Triebel to the unit ball B1(0) and then scale by gR(x) := g(x/R) and translate. The
extension for vector-valued functions is straightforward. �

Note that the stated (quasi-) semi norm implicitly depends on the parameter w. This however
only gives rise to equivalent (quasi-) norms in the same space. Moreover, let us recall that the
Besov and Triebel-Lizorkin scales of smoothness s > 0 include (among others) the more familiar
Hölder-Zygmund spaces Cs = Bs

∞,∞, Sobolev-Slobodeckij spaces W s,% = Bs
%,% = Fs%,% (with

1 ≤ % <∞ and s /∈ N), and Bessel-potential spaces Hs,% = Fs%,2 (with 1 < % <∞). For details we
refer to [25].

Let us now prove our main result of this Section 4.

Proof of Theorem 4.1. For simplicity of presentation we first prove the result in the situation of
Banach spaces. That is, for now we assume %, q ≥ 1. The modifications needed for the quasi-
Banach case, where the used quasi-triangle inequalities produce additional constants, are explained
afterwards.

Let us choose β ∈ (s, 1). Then according to Theorem 3.1 we find θ0 < 1 and some constant cβ
such that the decay estimate

oscp′ A(∇u)(x, θ0t) ≤ θβ0 oscp′ A(∇u)(x, t) + cβ oscp′ F (x, t)(4.4)

holds for all x ∈ B and t > 0 such that Bt(x) ⊂ Ω.
Now, assume that q <∞. We start with the representation from Lemma 4.3 (using w = p′)

|A(∇u)|Bs%,q(B) . R
s

(∫ R

0

( |||oscBp′ A(∇u)(·, t)|||
L%(B)

ts

)q
dt

t

) 1
q

.

For every x ∈ B and t ∈ (0, R), we have |Bt(x) ∩B| h |Bt(x)| and therefore we may write
oscBp′ A(∇u)(·, t) . oscp′ A(∇u)(·, t). This implies

|A(∇u)|Bs%,q(B) . R
s

(∫ R

0

( |||oscp′ A(∇u)(·, t)|||L%(B)

ts

)q
dt

t

) 1
q

. Rs
(∫ θ0R

0

( |||oscp′ A(∇u)(·, t)|||L%(B)

ts

)q
dt

t

) 1
q

+Rs

(∫ R

θ0R

( |||oscp′ A(∇u)(·, t)|||L%(B)

ts

)q
dt

t

) 1
q

=: I + II.(4.5)
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Now, rescaling of the integral and our decay estimate (4.4) imply

I = Rs

(∫ R

0

( |||oscp′ A(∇u)(·, θ0t)|||L%(B)

(θ0t)s

)q
dt

t

) 1
q

≤ θβ−s0 Rs

(∫ R

0

( |||oscp′ A(∇u)(·, t)|||L%(B)

ts

)q
dt

t

) 1
q

+ cβ θ
−s
0 Rs

(∫ R

0

( |||oscp′ F (·, t)|||L%(B)

ts

)q
dt

t

) 1
q

.

Since θβ−s0 < 1 we can absorb the
∫ θ0R

0
· dt-part of the first integral into I to obtain

I . Rs
(∫ R

θ0R

( |||oscp′ A(∇u)(·, t)|||L%(B)

ts

)q
dt

t

) 1
q

+Rs

(∫ R

0

( |||oscp′ F (·, t)|||L%(B)

ts

)q
dt

t

) 1
q

= II +Rs

(∫ R

0

( |||oscp′ F (·, t)|||L%(B)

ts

)q
dt

t

) 1
q

.

For x ∈ B and t ∈ (0, R) we have oscp′ F (x, t) = osc2B
p′ F (x, t). Thus,

I . II +Rs

(∫ R

0

( |||osc2B
p′ F (·, t)|||

L%(2B)

ts

)q
dt

t

) 1
q

= II + |F |Bs%,q(2B).

Combining this with (4.5) we obtain

|A(∇u)|Bs%,q(B) . |F |Bs%,q(2B) + II.(4.6)

Moreover, for x ∈ B and t ∈ (θ0R,R) we have Bt(x) ⊂ 2B ⊂ Ω and |Bt(x)| h |2B| such that
(using Lemma 2.10)

oscp′ A(∇u)(x, t) .

(
−
∫

2B

|A(∇u)− 〈A(∇u)〉2B |p
′
dy

) 1
p′

.(4.7)

Hence,

II . Rs
(∫ R

θ0R

( |||1|||L%(B)

ts

)q
dt

t

) 1
q (
−
∫

2B

|A(∇u)− 〈A(∇u)〉2B |p
′
dy

) 1
p′

.

(
−
∫

2B

|A(∇u)− 〈A(∇u)〉2B |p
′
dy

) 1
p′

which together with (4.6) proves the claim for the Besov scale with q <∞. The proof for q =∞
follows by straightforward modifications. Finally, also the statement for the Triebel-Lizorkin scale
is shown completely analogously with |||·|||L%(B) and

∫
· dtt changing places.

So far we have shown our claim in the case of Banach spaces, i.e., if %, q ≥ 1. Let us now
explain the changes for the general quasi-Banach regime 0 < min{%, q} < 1. In this case additional
constants might appear in the application of the (quasi-) triangle inequalities for the (quasi-) norms

|||·|||% and (
∫
| · |q dtt )

1
q . Hence, θβ−s0 has to be replaced by c%,qθ

β−s
0 . Thus, our proof still works if θ0

is so small that c%,qθ
β−s
0 < 1. Unfortunately, this is not guaranteed by Theorem 3.1. However, it

immediately follows from Theorem 3.3 with the help of (3.18) that for every fixed θ1 ∈ (0, 1) we
have

oscp′ A(∇u)(x, θ1t) ≤ c θβ1 oscp′ A(∇u)(x, t) + cβ,θ1 oscp′ F (x, t).(4.8)

So, overall we obtain the factor c c%,qθ
β−s
1 instead of θβ−s0 . For small θ1 we can still absorb the

terms as in the Banach case. The price to pay is a larger factor in front of the F terms. Anyhow,
this proves the general case. �
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4.2. Transfer to ∇u and V (∇u). In this section we show how to transfer the regularity statements
for A(∇u) to ∇u and V (∇u). To this end, for fixed α > 0 let us define a transformation Tα of
arbitrary vectors or matrices Q by

Q 7→ Tα(Q) := |Q|α Q

|Q|
.

Then under composition {Tα |α > 0} forms a group (with identity T1 and inverse T−1
α = T 1

α
,

α > 0). In particular, for α, β > 0 there holds Tαβ(Q) = Tα(Tβ(Q)) and hence

∇u = T 2
p
(V (∇u)) = T 1

p−1
(A(∇u)), as well as V (∇u) = T p′

2

(A(∇u)).(4.9)

In our situation (p ≥ 2), we have 2
p ,

1
p−1 ,

p′

2 ∈ (0, 1]. Therefore, the subsequent proposition is of

fundamental importance to us.

Proposition 4.4. Let B ⊆ Rd denote some ball and assume α ∈ (0, 1].

(a) If 0 < r ≤ ∞, then we have

‖Tα(G)‖Lr/α(B) = ‖G‖αLr(B).

(b) If s, %, q, and w satisfy the conditions of Lemma 4.3, then

|Tα(G)|Bαs
%/α,q/α

(B) . |G|
α
Bs%,q(B).

Moreover, the same is true when the B spaces are replaced by F spaces.

We note in passing that Proposition 4.4(a) also holds for the respective scaling invariant norms.
Thus, Proposition 4.4(b) can be used to show that G ∈ Bs

%,q(B) implies Tα(G) ∈ Bαs
%/α,q/α(B) and

likewise for the F-case. In fact, also the stated bounds remain true if the (quasi-) semi norms
are replaced by the corresponding full (quasi-) norms. A similar statement for the scalar case is
contained in [25, Section 5.4]. However, the vectorial setting is different. Therefore, below we will
present a general but quite simple proof based on the representation in Lemma 4.3. Before we get
to this proof, we need an auxiliary lemma on oscillations.

Lemma 4.5. Let α ∈ (0, 1] and 1 ≤ w <∞. Then for all balls B and G ∈ Lw(B), there holds(
−
∫
B

|Tα(G)− 〈Tα(G)〉B |w dx
) 1
w

.

(
−
∫
B

|G− 〈G〉B |αw dx
) 1
w

.

Proof. Recall that Tα(Q) = |Q|α Q
|Q| . Thus Tα(Q) = A(Q) if we redefine our exponent p just for

this proof (!) as p := α+ 1 ∈ (1, 2]. Then it follows from Lemma 2.7 (with this p) that for all P,Q

|Tα(P )− Tα(Q)| = |A(P )−A(Q)|
h ϕ′|Q|(|P −Q|)

h (|Q|+ |P −Q|)α−1|P −Q|
≤ |P −Q|α.(4.10)

Using Lemma 2.10 and the bijectivity of Tα, and (4.10) we estimate(
−
∫
B

|Tα(G)− 〈Tα(G)〉B |w dx
) 1
w

h inf
H0

(
−
∫
B

|Tα(G)−H0|w dx
) 1
w

= inf
G0

(
−
∫
B

|Tα(G)− Tα(G0)|w dx
) 1
w

. inf
G0

(
−
∫
B

|G−G0|αw dx
) 1
w

h
(
−
∫
B

|G− 〈G〉B |αw dx
) 1
w

,

where the infimum is taken over all constants G0, resp. H0. �
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Remark 4.6. Note that in Lemma 4.5 it is possible to replace B by B ∩ Bt(x) for each x ∈ B
and all t ∈ (0, R], where R denotes the radius of B.

We are now prepared to prove Proposition 4.4.

Proof of Proposition 4.4. The formula ‖Tα(G)‖Lr/α(B) = ‖G‖αLr(B) is obvious for all r ∈ (0,∞].

So, let us now show part (b), i.e., |Tα(G)|Bαs
%/α,q/α

(B) . |G|
α
Bs%,q(B). For this purpose, we will use

the characterization of Lemma 4.3. It follows from Lemma 4.5 and Remark 4.6 that

oscBw/α(Tα(G))(x, t) .
(

oscBw G(x, t)
)α
.(4.11)

Moreover, s, %, q, w replaced by αs, %/α, q/α, w/α also satisfy the conditions of Lemma 4.3. Thus,
we can calculate

|Tα(G)|Bαs
%/α,q/α

(B) = Rs

(∫ R

0

( |||oscBw/α Tα(G)(·, t)|||
L%/α(B)

tαs

) q
α dt

t

)α
q

. Rs
(∫ R

0

( |||( oscBw G(·, t)
)α|||

L%/α(B)

tαs

) q
α dt

t

)α
q

= Rs

(∫ R

0

( |||oscBw G(·, t)|||L%(B)

ts

)q
dt

t

)α
q

= |G|αBs%,q(B).

This proves the Bs
%,q-estimate (with the obvious modifications for q =∞). The Fs%,q-case is shown

analogously. �

We can now combine Theorem 4.1 and Proposition 4.4 with the representations (4.9) to conclude
new regularity results for ∇u and V (∇u).

Corollary 4.7. Under the assumptions of Theorem 4.1 there holds

‖∇u‖p−1
L%(p−1)(B)

= ‖V (∇u)‖
2
p′

L2%/p′ (B)
= ‖A(∇u)‖L%(B)

and

|∇u|p−1

B
s
p−1
%(p−1),q(p−1)

(B)
. |V (∇u)|

2
p′

B
p′s
2

2%
p′ ,

2q
p′

(B)

. |A(∇u)|Bs%,q(B)

. |F |Bs%,q(2B) +

(
−
∫

2B

|A(∇u)− 〈A(∇u)〉2B |p
′
dx

) 1
p′

.

Under the same additional assumptions as in Theorem 4.1 the latter estimates remain true in the
scale of Triebel-Lizorkin spaces.

Remark 4.8. Let us compare Corollary 4.7 to the results from [8]. They prove for p ≥ 2, d ≥ 2,
s ∈ (0, 1), and 1 ≤ q ≤ 2d

d−2s that locally

F ∈ Bs
2,q implies V (∇u) ∈ B

p′s
2

2, 2q
p′
.

Our result applied to the same situation (% = 2 in dimension d = 2) yields that

F ∈ Bs
2,q implies V (∇u) ∈ B

p′s
2
4
p′ ,

2q
p′
.

In particular, the integrability of V (∇u) is increased from 2 to 4
p′ and we need no restrictions on

the fine index q.
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Remark 4.9. Let us compare our results also to the findings in [10]. They have studied the
Besov regularity of u measured in the Lp adaptivity scale, i.e., those Bσ

τ,τ with σ − d
τ = −dp .

For p ≥ 2, Lipschitz domains in d = 2, and f := −divF ∈ L∞ they show that globally u ∈ Bσ
τ,τ for

all σ ∈ (0, p′). However, for f ∈ L% with % ∈ (2p,∞) they obtain the condition σ < 1 + 1−2/%
p−1 . So

their upper bound for σ depends on %. The reason for this is that the lower integrability of f induces

a smaller exponent α∗% = 1−2/%
p−1 of local Hölder continuity for ∇u. Hence, with the techniques

from [10] it is only possible to treat differentiabilities up to s < α∗%. Moreover, for f ∈ L% with

% ∈ (2, 2p] they are restricted to σ < 1 + 1
p which is again non optimal. However, our interior

oscillations estimates do not require the use of Hölder spaces. Thus, this unnatural bound does not
appear. To see this, let us now assume that f ∈ L% with % ≥ p′ and d = 2. Using the Bogovskĭı
operator we find F ∈ F1

%,2 with divF = f . So F ∈ Bs
p′,q for any s < 1 and q ∈ (0,∞] such

that from Corollary 4.7 it follows that locally in the interior there holds u ∈ B
1+ s

p−1
p,q . Note that

independently of % this yields u ∈ Bσ
τ,τ for all σ ∈ (0, p′) which improves [10].
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