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Abstract

In this note we are concerned with interior regularity properties of the p-Poisson
problem ∆p(u) = f with p > 2. For all 0 < λ ≤ 1 we constuct right-hand sides f of
differentiability −1 + λ such that the (Besov-) smoothness of corresponding solutions u
is essentially limited to 1 + λ/(p− 1). The statements are of local nature and cover all
integrability parameters. They particularly imply the optimality of a shift theorem due
to Savaré [J. Funct. Anal. 152:176–201, 1998], as well as of some recent Besov regularity
results of Dahlke et al. [Nonlinear Anal. 130:298–329, 2016].
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1 Introduction and main results

In what follows we deal with interior regularity properties of solutions u ∈ W 1
p (Ω) to the

p-Poisson problem

−∆p(u) = f (1)

on bounded Lipschitz domains Ω ⊂ Rd for d ∈ N and 1 < p < ∞. Here the p-Laplace
operator ∆p is given by

∆p(u) := div(A(∇u)), where A(∇u) := |∇u|p−2∇u
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is called the naturally associated vector field. For distributions f ∈ W−1
p′ (Ω) := (W 1

p,0(Ω))′,
with 1/p+ 1/p′ = 1, the corresponding variational formulation is given by∫

Ω

〈A(∇u)(x),∇ψ(x)〉Rd dx = f(ψ), ψ ∈ D(Ω),

where D(Ω) := C∞0 (Ω) is the set of test functions on Ω, the space W 1
p,0(Ω) is the closure of

D(Ω) w.r.t. the first order Lp-Sobolev norm, and 〈·, ·〉Rd denotes the usual inner product on
Rd.

Equations of type (1) arise in various applications such as non-Newtonian fluid theory,
rheology, radiation of heat and many others. In fact the quasi-linear operator ∆p has a
similar model character for nonlinear problems as the ordinary Laplacian (i.e., the case
p = 2) for linear problems. Meanwhile, many results concerning existence and uniqueness of
solutions are known. For details we refer to [16] and the references therein. However, most
of these results deal with fairly classical function spaces like Hölder spaces and BMO, or
Lebesgue-Sobolev spaces of non-fractional smoothness s ∈ N0; see, e.g., [4, 5] and [6, 13]. On
the other hand, in view of strong relations to nonlinear approximation classes and adaptive
numerical algorithms, regularity results in more general Sobolev-Slobodeckij and Besov type
spaces of fractional smoothness became more and more important in recent times; cf. [8, 11].
For the p-Poisson equation (1) and related quasi-linear problems only few results are known
in this direction, see [3, 9, 12], as well as [1, 10, 19, 21].

Let us recall that for 0 < %, q ≤ ∞ and s ∈ R Besov spaces Bs
%,q(Rd) on the whole of Rd

are quasi-Banach spaces which can be defined as subsets of tempered distributions f ∈ S ′(Rd)
by means of harmonic analysis. The corresponding spaces on domains Ω (i.e. connected
open subsets of Rd) are then defined by restriction such that we obtain subsets of D′(Ω), the
topological dual of D(Ω).

Remark 1.1 (Function spaces). We assume that the reader is familiar with the basics
of function space theory as it can be found, e.g., in the monographic series of Triebel
[23, 24, 25, 26] or in [7, Appendix A]. Anyhow, let us mention that by now various equivalent
characterizations, embeddings, interpolation and duality assertions for the scale of Besov
spaces are known. Without going into further details, let us recall the following results, valid
for bounded Lipschitz domains Ω ⊂ Rd or Ω = Rd itself:
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(i) For 0 < %, q ≤ ∞, and s > d max{0, 1/% − 1} the Besov space Bs
%,q(Ω) can be

characterized as collection of all g ∈ L%(Ω) for which

|g|Bs%,q(Ω) :=



(∫ t

0

[
t−s sup

h∈Rd,
|h|2≤t

∥∥∆k
hg L%(Ωh,k)

∥∥ ]q dt

t

)1/q

, 0 < q <∞,

sup
0<t≤t

t−s sup
h∈Rd,
|h|2≤t

∥∥∆k
hg L%(Ωh,k)

∥∥ , q =∞,

is finite [25, Sect. 1.11.9]. In fact, the expression∥∥g Bs
%,q(Ω)

∥∥ := ‖g L%(Ω)‖+ |g|Bs%,q(Ω)

provides a quasi-norm on Bs
%,q(Ω). Here we assume t > 0 and k > s to be fixed. Further,

∆k
hg denotes the k-th order finite difference of g with step size h ∈ Rd and

Ωh,k := {x ∈ Rd x+ `h ∈ Ω for all ` = 0, . . . , k}.

(ii) For 0 < s /∈ N we have Bs
∞,∞(Ω) = Cs(Ω) (Hölder spaces) and

W s
% (Ω) = Bs

%,%(Ω) for all 1 ≤ % <∞,

(Sobolev-Slobodeckij spaces) in the sense of equivalent norms.

So, roughly speaking, in Bs
%,q(Ω) we collect all g such that their weak partial derivatives Dαg

up to order s belong to the Lebesgue space L%(Ω). The third parameter 0 < q ≤ ∞ acts as a
minor important fine index. �

In his seminal paper [19] Savaré developed a variational argument which allows to show
the following shift theorem for the p-Poisson problem:

Proposition 1.2 (see [19, Thm. 2]). For d ∈ N let Ω ⊂ Rn be a bounded Lipschitz domain.
For 2 < p <∞ and f ∈ W−1

p′ (Ω) let u be the unique weak solution to (1) in W 1
p,0(Ω). Then

for all λ ∈ (0, 1/p′) the following implications hold:

f ∈ W−1+λ
p′ (Ω) =⇒ u ∈ W

1+ λ
p−1

p (Ω) (2)

and

f ∈ B
−1+ 1

p′

p′,1 (Ω) =⇒ u ∈ B
1+

1/p′
p−1

p,∞ (Ω).
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In addition, Savaré argues that (2) is “optimal” [19, Rem. 4.3] and refers to Simon [21].
But Simon’s optimality results refer to a (slightly) different equation on the whole of Rd

with right hand sides in Lr or C∞ and hence they unfortunately do not cover Savaré’s claim.
However, as we will see in Theorem 1.3 below, it is possible to use similar ideas in order to
show that for p > 2 and all 0 < λ < 1 there are right-hand sides of smoothness −1 + λ such
that the smoothness of corresponding solutions to the p-Poisson problem (1) is essentially
limited by 1 + λ/(p − 1). Moreover, this actually holds independently of the integrability
parameter. That is, in sharp contrast to point singularities, we do not gain smoothness when
derivatives are measured in weaker L%-norms!

For a (constructive) proof of the following main result of this paper we refer to Section 2.2
below.

Theorem 1.3. Let d ∈ N and 2 ≤ p <∞ be fixed. Further let Ω ⊆ Rd be either Rd itself, a
bounded Lipschitz domain, or an interval (if d = 1). Moreover, assume 0 < ε < 1/p. Then
for all ε (p− 1) < λ < 1− ε and 1 < µ ≤ ∞ there exists a right-hand side

f = fλ,µ ∈ B−1+λ
µ,∞ (Ω) ∩W−1

p′ (Ω)

with compact support in Ω such that the corresponding weak solution u ∈ W 1
p,0(Ω) to (1) is

compactly supported as well and satisfies

u ∈


B

1+ λ
p−1
−ε

%,q (Ω) \ B
1+ λ

p−1
%,q (Ω) if µ(p− 1) < % ≤ ∞ and 0 < q ≤ ∞,

B
1+ λ

p−1
%,∞ (Ω) \ B

1+ λ
p−1

%,q (Ω) if % = µ(p− 1) and 0 < q <∞,
B

1+ λ
p−1

%,q (Ω) \ B
1+ λ

p−1
+ε

%,q (Ω) if 1 ≤ % < µ(p− 1) and 0 < q ≤ ∞.

(3)

In addition, the naturally associated vector field satisfies

A(∇u) ∈


(
Bλ−ε
%,q (Ω) \ Bλ

%,q(Ω)
)d

if µ < % ≤ ∞ and 0 < q ≤ ∞,(
Bλ
%,∞(Ω) \ Bλ

%,q(Ω)
)d

if % = µ and 0 < q <∞,(
Bλ
%,q(Ω) \ Bλ+ε

%,q (Ω)
)d

if 1 ≤ % < µ and 0 < q ≤ ∞.
(4)

Before we proceed some general comments are in order:

Remark 1.4. First of all, let us stress the point that, due to the compact support of f and u,
Theorem 1.3 is of local nature.

Moreover, we note that the restriction to % ≥ 1 is for notational convenience only. Using
standard embeddings (see Proposition 2.2iii below) and complex interpolation (see, e.g.,
Kalton et al. [15, Theorem 5.2]) we can easily extend (3) to

u ∈ B
1+ λ

p−1
%,q (Ω) \ B

1+ λ
p−1

+c%ε
%,q (Ω) for all 0 < % < 1 and 0 < q ≤ ∞

with some c% ∼ 1/%. Likewise, the same arguments can be used to extend also (4). �
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Observe that Theorem 1.3 applied for µ := p′ indeed shows optimality of Savaré’s result
in some sense:

Corollary 1.5. In Proposition 1.2 the smoothness of u w.r.t. Lp cannot be improved without
strengthening the assumptions on f .

Proof. Choosing λ := λ̃ + (p − 1)δ with some λ̃ ∈ (0, 1/p′) and δ > 0 arbitrarily small,

Theorem 1.3 allows to find a right-hand side f ∈ B−1+λ
µ,∞ (Ω) ↪→ B−1+λ̃

p′,p′ (Ω) = W−1+λ̃
p′ (Ω)

such that the corresponding solution of the Dirichlet problem for the p-Poisson equation

satisfies u /∈ B
1+ λ̃

p−1
+δ

p,p (Ω) = W
1+ λ̃

p−1
+δ

p (Ω). Similarly for λ := 1/p′ + δ with δ > 0, there

exists f ∈ B−1+λ
µ,∞ (Ω) ↪→ B

−1+ 1
p′

p′,1 (Ω) such that u /∈ B
1+ λ

p−1
p,q (Ω) ←↩ B

1+
1/p′
p−1

+δ
p,∞ (Ω). In view of

Remark 1.4, these examples remain valid also on smooth domains. �

Furthermore, Theorem 1.3 shows that regarding regularity questions it seems better to
look at the the mapping f 7→ A(∇u), rather than f 7→ u. In fact, in view of the case % = µ
in (4), one might conjecture the existence of a p-independent mechanism which (for some
range of parameters) locally transfers exactly one order of regularity from the right-hand
side f to the naturally associated vector field A(∇u). For the case d = 2 this already has
been verified in [2, 3]. In other words, Theorem 1.3 shows that also their results cannot
be improved. Let us note in passing that in the linear case (p = 2) the vector field A(∇u)
reduces to ∇u. In this situation, it is well-known that f ∈ W s−1

%,loc(Ω) implies u ∈ W s+1
%,loc(Ω)

and hence ∇u ∈
(
W s
%,loc(Ω)

)d
, at least for some 1 < % <∞ and s ≥ 0. However, the seminal

work of Jerison and Kenig [14] shows that there are C1 domains for which a global analogue of
this shift mechanism fails if the smoothness parameter s is too large w.r.t. the integrability %.
For corresponding assertions in Besov spaces, see, e.g., [17, Thm. 3.1]. Further, we refer to [7,
Sect. 3.1] for an extensive discussion of these results.

Theorem 1.3 is complemented by

Theorem 1.6. Let d ∈ N and 2 < p <∞. Further let Ω ⊆ Rd be either Rd itself, a bounded
Lipschitz domain, or an interval (if d = 1). Moreover, let 0 < ε < min{1/(p−1), 1−1/(p−1)}.
Then for all 1 < µ ≤ ∞ there exists a compactly supported right-hand side

f = fµ ∈ Lν(Ω) ∩W−1
p′ (Ω) for all

{
0 < ν < µ if µ <∞,
0 < ν ≤ ∞ if µ =∞,

such that the corresponding weak solution u ∈ W 1
p,0(Ω) to (1) is compactly supported as well

and satisfies (3) with λ = 1. Moreover, then for 1 < % <∞ there holds

A(∇u) ∈
(
W 1
% (Ω)

)d
if and only if % < µ.
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Here Remark 1.4 applies likewise. Moreover, also this result implies certain optimality
statements:

Remark 1.7. At first, let us mention [6, Thm. 2.4] which shows that under some boundary

regularity assumptions f ∈ L2(Ω) implies A(∇u) ∈
(
W 1

2 (Ω)
)d

.
Secondly, setting µ := % :=∞ in Theorem 1.6, we recover the well-known assertion that

for bounded right-hand sides the local Hölder regularity of the gradient ∇u of solutions to
the p-Poisson equation (1) with p > 2 is bounded by 1/(p− 1).

Last but not least, in [9] it has been shown that for p > 2, bounded Lipschitz domains
Ω ⊂ R2, and right-hand sides f ∈ L∞(Ω) the unique solution u ∈ W 1

p,0(Ω) to (1) satisfies

u ∈ Bσ
τσ ,τσ(Ω) for all 0 < σ < σ := 1 +

1

p− 1
and

1

τσ
=
σ

2
+

1

p
.

In view of Theorem 1.6 and Remark 1.4, σ cannot be replaced by any larger number. �

The rest of this note is devoted to the proofs of Theorems 1.3 and 1.6, respectively.
Section 2.1 collects some quite technical preparations. Afterwards, the statements are proven
easily in Sections 2.2 and 2.3.

Notations: In the sequel N denotes the natural numbers without zero and we use R+

for the set of strictly positive real numbers. For families {aj j ∈ J } and {bj j ∈ J } of
non-negative real numbers over a common index set J we write aj . bj if there exists a
constant c > 0 (independent of the context-dependent parameters j) such that aj ≤ c · bj
holds uniformly in j ∈ J . Consequently, aj ∼ bj means aj . bj and bj . aj . In addition, the
symbol ↪→ is used to denote continuous embeddings.

2 Proofs

Our main proofs given in Sections 2.2 and 2.3 below require some preparations. The basic
idea will be based on a construction given by Simon [22]; cf. also Remark 2.4 below.

2.1 Preparations

For 1 < θ <∞ define the sequence

an,θ := 4
n−1∑
j=1

j−θ, n ∈ N \ {1}.
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Then for all n ≥ 3

4 = a2,θ < . . . < an,θ < an+1,θ = an,θ + 4n−θ < . . . < a∞,θ := lim
n→∞

an,θ = 4 ζ(θ) <∞,

where ζ denotes the Riemann zeta function. Further, with σ ∈ R+ let wσ,θ : R→ [0,∞) be
defined piecewise by

wσ,θ(ξ) :=


(ξ − an,θ)σ if an,θ ≤ ξ < an,θ + n−θ,
n−θσ if an,θ + n−θ ≤ ξ < an,θ + 2n−θ,
(an,θ + 3n−θ − ξ)σ if an,θ + 2n−θ ≤ ξ < an,θ + 3n−θ,
0 if an,θ + 3n−θ ≤ ξ < an+1,θ,

(5)

on [an,θ, an+1,θ), n ≥ 2, and

wσ,θ(ξ) := 0 on R \ [a2,θ, a∞,θ).

Moreover, let us define Sθ := [4, 4 ζ(θ)] ⊂ R, as well as the set of transition points

Pθ :=
{
ξ ∈ [a2,θ, a∞,θ) ξ = an,θ + k n−θ for some n ≥ 2 and k ∈ {0, . . . , 3}

}
∪ {a∞,θ} ⊂ R.

Lemma 2.1 (Properties of wσ,θ). Let σ ∈ R+ and 1 < θ <∞, as well as 0 < % ≤ ∞. Then

(i) wσ,θ is continuous with compact support supp(wσ,θ) ⊆ Sθ.

(ii) Pθ is countable and wσ,θ is continuously differentiable on R\Pθ, i.e., w′σ,θ exists almost
everywhere.

(iii) wγσ,θ = (wσ,θ)
γ−1wσ,θ for all γ ∈ R+.

(iv) 0 ≤ wσ,θ(ξ) ≤ 2−σθ for all ξ ∈ R.

Proof. All statements are obvious consequences of the definition of wσ,θ. In order to see (iv),
note that 0 ≤ wσ,θ(ξ) ≤ n−σθ on [an,θ, an+1,θ] with n ≥ 2. �

In the sequel, we will need sharp regularity assertions for wσ,θ. Before we state and prove
them, let us recall some more or less well-known embedding results for Besov spaces which
are proven here for the sake of completeness.

Proposition 2.2 (Embeddings). For d ∈ N let Ω ⊆ Rd be either Rd itself, a bounded
Lipschitz domain, or an interval (if d = 1). Further let 0 < %, %0, %1, q, q0, q1 ≤ ∞ and
s, s0, s1 ∈ R. Then
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(i) There holds B1+s
%,q (Ω) =

{
g ∈ Bs

%,q(Ω)
∣∣ ∇g ∈ (Bs

%,q(Ω))d
}

with∥∥g B1+s
%,q (Ω)

∥∥ ∼ ∑
α∈Nd0,
|α|1≤1

∥∥Dαg Bs
%,q(Ω)

∥∥ .
(ii) If s1 < s0, then g ∈ Bs0

%,q0
(Ω) implies g ∈ Bs1

%,q1
(Ω).

(iii) If %1 ≤ %0 and g ∈ Bs
%0,q

(Ω) has compact support in Rd, then g ∈ Bs
%1,q

(Ω).

Proof. Assertion (i) is a special instance of [26, Prop. 4.21].
So, let us prove (ii). By means of Rychkov’s extension operator [18] we can w.l.o.g. assume

that Ω = Rd. Further, we let c(g) denote the sequence of wavelet coefficients of g w.r.t. a
sufficiently smooth Daubechies wavelet system on Rd. Then the wavelet isomorphism from
[25, Thm. 3.5] implies that

∥∥g Bs
%,q(Rd)

∥∥ ∼ ∥∥c(g) bs%,q(∇)
∥∥ for all 0 < %, q ≤ ∞ and s ∈ R

with bs%,q(∇) being suitable sequence spaces. Now (ii) follows from the standard embedding
bs0%0,q0

(∇) ↪→ bs1%0,q1
(∇) if s1 < s0 which can be found, e.g., in [27, Prop. 2.5].

In order to prove assertion (iii), we note that the compact support of g implies that∥∥c(g) bsp,q(∇)
∥∥ equals

∥∥∥c(g)
∣∣
∇̃ bsp,q(∇̃)

∥∥∥, where bsp,q(∇̃) refers to the corresponding sequence

space for some bounded domain. For these spaces there holds the embedding bs0%0,q0
(∇̃) ↪→

bs0%1,q0
(∇̃) if %1 ≤ %0, see [27, Prop. 2.5] again. �

Lemma 2.3 (Regularity of wσ,θ). Let σ ∈ R+ and 1 < θ <∞, as well as 0 < % ≤ ∞. Then

(i) wσ,θ ∈ L%(R),

(ii) w′σ,θ ∈ L%(R) holds if and only if

σ ≥ 1, or 0 < σ < 1 and
1− σ

1− 1/θ
<

1

%
. (6)

(iii) Additionally assume 0 < σ < 1/θ < 1 and

0 ≤ 1

%
< min

{
θ (1 + σ),

1− σ
1− 1/θ

}
. (7)

Then wσ,θ ∈ Bs
%,q(R) holds if and only if

s = σ +
1− 1/θ

%
and q =∞, or s < σ +

1− 1/θ

%
and 0 < q ≤ ∞.
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Proof. In view of Lemma 2.1(i) assertion (i) is obvious.
Let us show (ii). Clearly w′σ,θ ∈ L∞(R) is equivalent to σ ≥ 1. On the other hand, for

0 < % <∞ we have∥∥w′σ,θ L%(R)
∥∥% =

∞∑
n=2

(∫ an,θ+n−θ

an,θ

∣∣w′σ,θ(ξ)∣∣% dξ +

∫ an,θ+3n−θ

an,θ+2n−θ

∣∣w′σ,θ(ξ)∣∣% dξ

)

= 2σ%
∞∑
n=2

∫ n−θ

0

x(σ−1)% dx.

The latter integral is finite if and only if 1 + (σ − 1)% > 0. In this case, there holds∥∥w′σ,θ L%(R)
∥∥% ∼ ∞∑

n=2

n−θ(1+(σ−1)%) = ζ
(
θ(1 + (σ − 1)%)

)
− 1

which is finite if only if the argument of the zeta function ζ is strictly larger than one. Thus,
for 0 < % <∞ we have w′σ,θ ∈ L%(R) if and only if 1 + (σ − 1)% > 0 and θ(1 + (σ − 1)%) > 1
which is equivalent to

max

{
1− σ, 1− σ

1− 1/θ

}
<

1

%
. (8)

For σ ≥ 1 this condition holds for all %. On the other hand, if 0 < σ < 1, then 0 < 1− σ < 1
and 1/(1− 1/θ) = θ/(θ − 1) > 1 implies that the maximum in (8) is attained by its second
entry. Hence, w′σ,θ ∈ L%(R) is equivalent to (6).

It remains to show assertion (iii). We split its proof into several steps.
Step 1 (Preparations). Note that for (iii) it suffices to show that wσ,θ ∈ Bs

%,∞(R) \Bs
%,q(R)

for

s = σ +
1− 1/θ

%
and all q ∈ R+.

Indeed, according to Proposition 2.2(ii), wσ,θ ∈ Bs
%,∞(R) implies wσ,θ ∈ Bs′

%,q(R) for all s′ < s

and 0 < q ≤ ∞. Similarly, wσ,θ ∈ Bs′′
%,q(R) for some s′′ > s and some 0 < q ≤ ∞ would yield

wσ,θ ∈ Bs
%,1(R).

From (i) we know that ‖wσ,θ L%(R)‖ <∞, so that it remains to prove that

|wσ,θ|Bs%,q(R) <∞ if and only if q =∞.

To this end, note that 0 < σ and 1/θ < 1 implies s > 0, while 1/% < θ (1 + σ) holds if and
only if s > 1/%− 1. Moreover, the assumption 1/% < (1− σ)/(1− 1/θ) is equivalent to s < 1.
Hence,

max

{
0,

1

%
− 1

}
< s < 1,

9



so that we can use first order differences. Therefore it is enough to show that

‖∆hwσ,θ L%(R)‖ ∼ |h|σ+(1−1/θ)/% for all h ∈ R with |h| ≤ (1/6)θ =: t, (9)

because then
t−s sup

h∈R,
|h|≤t

‖∆hwσ,θ L%(R)‖ ∼ 1, 0 < t ≤ t.

Of course, we may assume w.l.o.g. that h > 0.
Step 2 (Case % = ∞). We prove “.” for % = ∞ in (9). For this purpose, it suffices to

show that

|wσ,θ(x)− wσ,θ(y)| ≤ 2 |x− y|σ for all x, y ∈ R with x < y. (10)

So let x, y ∈ R with h := y−x > 0 be fixed. Note that it is enough to consider a2,θ ≤ x < a∞,θ,
because x < a2,θ implies

|wσ,θ(x)− wσ,θ(y)| = |wσ,θ(x+ h)| ≤ hσ for all h > 0,

while x ≥ a∞,θ would lead to wσ,θ(x) = wσ,θ(y) = 0. For x ∈ [a2,θ, a∞,θ) the quantity

M := M(x, θ) := max{n ≥ 2 an,θ ≤ x}

is well-defined. In case h = y − x ≥M−θ, we have

|wσ,θ(x)− wσ,θ(y)| ≤ |wσ,θ(x)|+ |wσ,θ(y)| ≤ 2 (M−θ)σ ≤ 2hσ,

as claimed. So let us turn to the case 0 < h < M−θ. If y > aM+1,θ, then again wσ,θ(x) = 0.
Moreover, in this case aM+1,θ < y = x+ h < aM+1,θ + h, i.e.,

|wσ,θ(x)− wσ,θ(y)| = |wσ,θ(y)| < hσ.

Similarly, if y ∈ [aM+1,θ −M−θ, aM+1,θ], then wσ,θ(y) = 0 and

|wσ,θ(x)− wσ,θ(y)| = |wσ,θ(x)| ≤ hσ.

Hence, we are left with the case aM,θ ≤ x < y < aM,θ + 3M−θ and 0 < h = y − x < M−θ,
but for this situation (10) is obvious.

For the corresponding lower bound let 0 < h < t. Then

‖∆hwσ,θ L∞(R)‖ ≥ esssup
x∈(a2,θ−h,a2,θ)

|wσ,θ(x+ h)− wσ,θ(x)|

= esssup
y∈(a2,θ,a2,θ+h)

|wσ,θ(y)|

= wσ,θ(a2,θ + h)

= hσ.
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Step 3 (Case % <∞). In order to prove (9) for % <∞, consider the disjoint union

R = Lθ ∪

(
∞⋃
n=2

(Ln,θ ∪Tn,θ ∪Rn,θ)

)
∪Rθ,

where we set Lθ := (−∞, 4), Rθ := [4 ζ(θ),∞), as well as

Ln,θ := [an,θ, an,θ + n−θ), Tn,θ := [an,θ + n−θ, an,θ + 3n−θ),

and Rn,θ := [an,θ + 3n−θ, an,θ + 4n−θ) for all n ∈ N with n ≥ 2. Now let 0 < h ≤ t = (1/6)θ

be arbitrarily fixed. Then N(h, θ) :=
⌈
h−1/θ/3

⌉
∈ N satisfies N(h, θ) ≥ 2 and

N(h, θ)− 1 ≥ 1

3
h−1/θ − 1 = h−1/θ

(
1

3
− h1/θ

)
≥ 1

6
h−1/θ

due to the assumption θ > 1. Further, for all n ∈ N with 2 ≤ n ≤ N(h, θ) it holds
n ≤ h−1/θ/3 + 1, i.e.,

0 < h ≤ 1

3θ(n− 1)θ
≤ (n+ 1)−θ.

In this case,

‖∆hwσ,θ L%(Rn,θ)‖% =

∫ an,θ+4n−θ

an,θ+3n−θ
|wσ,θ(ξ + h)− wσ,θ(ξ)|% dξ

=

∫ an+1,θ+h

an+1,θ

wσ,θ(y)% dy

=

∫ h

0

yσ% dy

=
1

σ%+ 1
hσ%+1 (11)

which yields the desired lower bound

‖∆hwσ,θ L%(R)‖% ≥

∥∥∥∥∥∥∆hwσ,θ L%

N(h,θ)⋃
n=2

Rn,θ

∥∥∥∥∥∥
%

=

N(h,θ)∑
n=2

‖∆hwσ,θ L% (Rn,θ)‖%

≥ (N(h, θ)− 1)
1

σ%+ 1
hσ%+1

& hσ%+1−1/θ.

11



Let us show the corresponding upper bound. Using Step 2 and log-convexity of L%-norms,
we see that the bound for L% implies the respective bound for all Lp with 0 < 1/p < 1/%:

‖∆hwσ,θ Lp(R)‖p ≤
(
‖∆hwσ,θ L%(R)‖%/p ‖∆hwσ,θ L∞(R)‖1−%/p

)p
= ‖∆hwσ,θ L%(R)‖% ‖∆hwσ,θ L∞(R)‖p−%

. h%σ+1−1/θ (hσ)p−%

= hpσ+1−1/θ.

Therefore, since (1− σ)/(1− 1/θ) > 1 if and only if σ < 1/θ, we may assume w.l.o.g.

1 ≤ 1

%
<

1− σ
1− 1/θ

.

So, let 0 < % ≤ 1 and consider 2 ≤ n ≤ N(h, θ). Then Hölder’s inequality (with 1/r := 1− %
and 1/r′ = %) and the monotonicity of wσ,θ imply

‖∆hwσ,θ L%(Ln,θ)‖ ≤
(
n−θ
)1/%−1

∫ an,θ+n−θ

an,θ

(
wσ,θ(ξ + h)− wσ,θ(ξ)

)
dξ

= n−θ(1/%−1)

(∫ an,θ+n−θ+h

an,θ+h

wσ,θ(y) dy −
∫ an,θ+n−θ

an,θ

wσ,θ(ξ) dξ

)

= n−θ(1/%−1)

(
hn−θσ −

∫ an,θ+h

an,θ

wσ,θ(ξ) dξ

)
≤ hn−θ(σ+1/%−1),

i.e., ‖∆hwσ,θ L%(Ln,θ)‖% ≤ h% n−θ(σ%+1−%), as well as

‖∆hwσ,θ L%(Tn,θ)‖ ≤
(
2n−θ

)1/%−1
∫ an,θ+3n−θ

an,θ+n−θ

(
wσ,θ(ξ + h)− wσ,θ(ξ)

)
dξ

. n−θ(1/%−1)

(∫ an,θ+3n−θ

an,θ+n−θ
wσ,θ(ξ) dξ −

∫ an,θ+3n−θ+h

an,θ+n−θ+h

wσ,θ(ξ) dξ

)

= n−θ(1/%−1)

∫ an,θ+n−θ+h

an,θ+n−θ
wσ,θ(ξ)︸ ︷︷ ︸
=n−θσ

dξ −
∫ an,θ+3n−θ+h

an,θ+3n−θ
wσ,θ(ξ)︸ ︷︷ ︸

=0

dξ


= hn−θ(σ+1/%−1)
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so that ‖∆hwσ,θ L%(Tn,θ)‖% . h% n−θ(σ%+1−%). Further we have σ% + 1 − % > 0 because
1/% ≥ 1 ≥ 1− σ. So, (11) and h ≤ n−θ yield that also

‖∆hwσ,θ L%(Rn,θ)‖% ∼ hσ%+1 = h% hσ%+1−% . h% n−θ(σ%+1−%).

Combining the latter estimates shows that∥∥∥∥∥∥∆hwσ,θ L%

N(h,θ)⋃
n=2

(Ln,θ ∪Tn,θ ∪Rn,θ)

∥∥∥∥∥∥
%

. h%
N(h,θ)∑
n=2

n−θ(σ%+1−%) for all 0 < % ≤ 1.

(12)

Now additionally assume 1/% < (1− σ)/(1− 1/θ). Then there holds 0 < θ(σ%+ 1− %) < 1
and hence

N(h,θ)∑
n=2

n−θ(σ%+1−%) ≤
∫ N(h,θ)

1

x−θ(σ%+1−%) dx

=
1

1− θ(σ%+ 1− %)

(
N(h, θ)1−θ(σ%+1−%) − 1

)
,

where

N(h, θ)1−θ(σ%+1−%) − 1 ≤
(

1

3
h−1/θ + 1

)1−θ(σ%+1−%)

− 1

≤
(

1

3
h−1/θ

)1−θ(σ%+1−%)

∼ h−%+σ%+1−1/θ.

Therefore, we arrive at∥∥∥∥∥∥∆hwσ,θ L%

N(h,θ)⋃
n=2

(Ln,θ ∪Tn,θ ∪Rn,θ)

∥∥∥∥∥∥
%

. hσ%+1−1/θ.

Moreover, (10) and θ > 1 yield that also∥∥∥∥∥∥∆hwσ,θ L%

 ∞⋃
n=N(h,θ)+1

(Ln,θ ∪Tn,θ ∪Rn,θ)

∥∥∥∥∥∥
%

=
∞∑

n=N(h,θ)+1

∥∥∆hwσ,θ L%
(
[an,θ, an,θ + 4n−θ]

)∥∥%
13



is bounded by

∞∑
n=N(h,θ)+1

4n−θ (2hσ)% . hσ%
∫ ∞
N(h,θ)

x−θ dx

= hσ%
1

θ − 1
N(h, θ)1−θ

. hσ%+1−1/θ.

Finally, we clearly have wσ,θ(x) = 0 on Lθ ∪Rθ and hence ‖∆hwσ,θ L%(Rθ)‖ = 0, as well as

‖∆hwσ,θ L%(Lθ)‖% =

∫ a2,θ+h

a2,θ

wσ,θ(y)% dy

≤
∫ h

0

xσ% dx

=
1

σ%+ 1
hσ%+1

. hσ%+1−1/θ.

Altogether, this shows (9) and thus the proof is complete. �

Remark 2.4. As already mentioned, the piecewise construction of wσ,θ in (5) goes back to
Simon. In [22, Sect. 4] he used first order differences to show that for fixed σ there exists
some θ such that wσ,θ satisfies certain Sobolev regularity assertions independently of the
integrability parameter % (restricted to [1,∞]) of the spaces. However, for the application we
have in mind, stronger results in Besov spaces are needed which required a more detailed
analysis. Note that indeed our characterizations in Lemma 2.3 reveal a fairly complicated
interplay of the parameters of wσ,θ and its smoothness and integrability which is not visible
in the results of Simon.

Further, we like to stress that some parameter restrictions in Lemma 2.3(iii) are stronger
than required. If % =∞, our proof actually works for all 0 < σ < 1 < θ <∞. Moreover, the
upper bound on 1/% in (7) seems to be an artifact of our proof technique. At least for the
“only if” part it can be dropped, as can be seen easily using complex interpolation.

In order to proceed, again let σ ∈ R+ and 1 < θ < ∞. Then, based on wσ,θ as defined
in (5) above, let us set

vσ,θ : R+ → R, r 7→ vσ,θ(r) := wσ,θ
(
16 ζ(θ) r − 4 ζ(θ)

)
− wσ,θ

(
16 ζ(θ) r − 8 ζ(θ)

)
,

uσ,θ : R+ → R, r 7→ uσ,θ(r) :=

∫ r

0

vσ,θ(ξ) dξ.
(13)
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Lemma 2.5 (Properties of vσ,θ and uσ,θ). Let σ ∈ R+ and 1 < θ <∞. Then

(i) the supports of uσ,θ and vσ,θ are contained in S̃θ := [1/4, 3/4].

(ii) vγσ,θ = |vσ,θ|γ−1 vσ,θ for all γ ∈ R+.

(iii) uσ,θ ∈ C1(R+) with u′σ,θ = vσ,θ.

(iv) for all 0 < %, q ≤ ∞ and s < 1 we have

uσ,θ ∈ B1+s
%,q (R+) if and only if wσ,θ ∈ Bs

%,q(R).

(v) for all 1 < % <∞ we have

uσ,θ ∈ W 2
% (R+) if and only if wσ,θ ∈ W 1

% (R).

Proof. We use supp(wσ,θ) ⊆ Sθ = [a2,θ, a∞,θ] = [4, 4 ζ(θ)], as shown in Lemma 2.1(i), to
deduce the representation

vσ,θ(r) =


wσ,θ(t) if r =

t+ 4 ζ(θ)

16 ζ(θ)
∈
[

1

4
+

1

4 ζ(θ)
,
1

2

]
,

−wσ,θ(t′) if r =
t′ + 8 ζ(θ)

16 ζ(θ)
∈
[

1

2
+

1

4 ζ(θ)
,
3

4

]
,

0 else.

(14)

This proves (i) for vσ,θ. Moreover, for 0 < r < 1/4 we have uσ,θ(r) =
∫ r

0
0 dξ = 0, while for

r > 3/4 we may write

uσ,θ(r) =

∫ r

0

vσ,θ(ξ) dξ = 0 +

∫ 1/2

1/4

vσ,θ(ξ) dξ −
∫ 3/4

1/2

−vσ,θ(ξ) dξ + 0 = 0

which shows (i) for uσ,θ. Further, (ii) directly follows from (14) and Lemma 2.1(iii).
We are left with proving the regularity assertions (iii)–(v). The fact that uσ,θ ∈ C1(R+)

with u′σ,θ = vσ,θ is a consequence of the fundamental theorem of calculus and the continuity
of vσ,θ, cf. (13) and Lemma 2.1(i) again. This shows (iii).

If we assume that wσ,θ ∈ Bs
%,q(R), then also

ṽσ,θ := wσ,θ
(
16 ζ(θ) · −4 ζ(θ)

)
− wσ,θ

(
16 ζ(θ) · −8 ζ(θ)

)
∈ Bs

%,q(R)

because Bs
%,q(R) is invariant under diffeomorphic coordinate transformations; see, e.g., Triebel

[23, Sect. 2.10.2]. Since vσ,θ = ṽσ,θ
∣∣
R+

this yields vσ,θ ∈ Bs
%,q(R+). On the other hand,
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vσ,θ ∈ Bs
%,q(R+) implies that there exists g ∈ Bs

%,q(R) such that vσ,θ = g
∣∣
R+

. Now let

χ ∈ C∞(R) with

χ(x) =


1 for

1

4
≤ x ≤ 1

2
+

1

6 ζ(θ)
,

0 for x ≤ 1

5
or

1

2
+

1

5 ζ(θ)
≤ x.

Then, according to a multiplication theorem by Triebel [24, Sect. 4.2.2], we conclude that
wσ,θ = χ g ∈ Bs

%,q(R). Due to (iii), this shows that for all 0 < %, q ≤ ∞ and s ∈ R

u′σ,θ ∈ Bs
%,q(R+) if and only if wσ,θ ∈ Bs

%,q(R). (15)

In addition, we may extend uσ,θ ∈ C1(R+) by zero in order to obtain ũσ,θ ∈ C1(R). Using the
characterization of Besov spaces in terms of first order differences (cf. Remark 1.1(i)), we see
that this gives ũσ,θ ∈ B1−ε

∞,q(R) for all 0 < ε < 1. Choosing ε small enough such that s < 1− ε
then shows ũσ,θ ∈ Bs

∞,q(R) ↪→ Bs
%,q(R), i.e., uσ,θ ∈ Bs

%,q(R+), where we used Proposition 2.2
and the compact support of ũσ,θ. Therefore, (iv) follows from Proposition 2.2(i).

Since Sobolev spaces W k
% can be identified with special Triebel-Lizorkin spaces F k

%,2, we can
argue similarly for this case. Instead of (15) we now have that for every k ∈ N0 (particularly
for k = 1) and 1 < % <∞ there holds u′σ,θ ∈ W k

% (R+) if and only if wσ,θ ∈ W k
% (R). Further,

from (i) and (iii) we clearly have uσ,θ ∈ W 1
% (R+). Together this shows (v) and hence the

proof is complete. �

Next, for d ∈ N let Ω ⊆ Rd be either Rd itself, a bounded Lipschitz domain, or an interval
(if d = 1), and assume that Ω contains the Euclidean unit ball

B1(0) := {x ∈ Rd |x|2 < 1}.

Given σ ∈ R+, as well as 1 < p, θ <∞, for all test functions ψ ∈ D(Ω) we then let

uσ,θ,d(ψ) :=

∫
Ω

uσ,θ(|x|2)ψ(x) dx and f
[p]
σ,θ,d(ψ) :=

∫
Ω

v(p−1)σ,θ(|x|2)

〈
x

|x|2
,∇ψ(x)

〉
Rd

dx.

(16)

Since Lemma 2.5(iii) implies uσ,θ, v(p−1)σ,θ ∈ L∞(R+), it is easily seen that these integrals are

bounded linear functionals of ψ such that we actually deal with distributions uσ,θ,d and f
[p]
σ,θ,d

from D′(Ω). Moreover, these functionals are closely related:
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Lemma 2.6. Let d ∈ N and 1 < p, θ <∞, as well as σ ∈ R+. Further let Ω ⊆ Rd be either
Rd itself, a bounded Lipschitz domain, or an interval (if d = 1), and assume B1(0) ⊆ Ω.
Then

(i) we have

supp(uσ,θ,d), supp(f
[p]
σ,θ,d) ⊆ B4/5(0),

(ii) for all x ∈ Ω it holds

A(∇uσ,θ,d)(x) = v(p−1)σ,θ(|x|2)
x

|x|2
= ∇u(p−1)σ,θ,d(x), (17)

(iii) there holds f
[p]
σ,θ,d ∈ W

−1
p′ (Ω) and uσ,θ,d ∈ W 1

p (Ω) constitutes a weak solution u to

−∆pu = f
[p]
σ,θ,d and u|∂Ω = 0.

Proof. In view of Lemma 2.5 assertion (i) is obvious. Further, it is clear that the distribution
uσ,θ,d ∈ D′(Ω) is regular and can be identified with the function

(
uσ,θ ◦ rd

)∣∣
Ω
∈ C1(Ω), where

we set

rd : Rd → R, x 7→ rd(x) := |x|2 . (18)

With this interpretation we have

∂uσ,θ,d
∂xj

(x) = 0 = vσ,θ(|x|2)
xj
|x|2

, j = 1, . . . , d,

for all x ∈ B1/4(0), while on Ω \B1/8(0) the chain rule and Lemma 2.5(iii) give

∂uσ,θ,d
∂xj

=
∂(uσ,θ ◦ rd)

∂xj
= vσ,θ(rd(·))

∂rd
∂xj

,

where

∂rd
∂xj

(x) =
∂

∂xj

( d∑
k=1

x2
k

)1/2
 (x) =

1

2

(
d∑

k=1

x2
k

)−1/2

2xj =
xj
|x|2

.

Together this shows

∂uσ,θ,d
∂xj

(x) = vσ,θ(|x|2)
xj
|x|2

for all j = 1, . . . , d and x ∈ Ω (19)
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and hence

∥∥uσ,θ,d W 1
p (Ω)

∥∥ = ‖uσ,θ,d Lp(Ω)‖+
d∑
j=1

∥∥∥∥∂uσ,θ,d∂xj
Lp(Ω)

∥∥∥∥ <∞
since uσ,θ, vσ,θ ∈ L∞(R+) with compact support and |xj/ |x|2| ≤ 1. So, we can conclude
uσ,θ,d ∈ W 1

p,0(Ω). Further, as a direct consequence of (19), we obtain

|∇uσ,θ,d(x)|2 =

(
d∑
j=1

∣∣∣∣∂uσ,θ,d∂xj
(x)

∣∣∣∣2
)1/2

(19)
=

(
|vσ,θ(|x|2)|2

|x|22

d∑
j=1

|xj|2
)1/2

= |vσ,θ(|x|2)|

such that by Lemma 2.5(ii) with γ := p− 1 we have that

A(∇uσ,θ,d)(x) = |∇uσ,θ,d(x)|p−2
2 ∇uσ,θ,d(x)

= |vσ,θ(|x|2)|(p−1)−1 vσ,θ(|x|2)
x

|x|2
= v(p−1)σ,θ(|x|2)

x

|x|2

holds for all x ∈ Ω. Together with (19) this proves (17), as well as∫
Ω

〈A(∇uσ,θ,d)(x),∇ψ(x)〉Rd dx =

∫
Ω

v(p−1)σ,θ(|x|2)

〈
x

|x|2
,∇ψ(x)

〉
Rd

dx = f
[p]
σ,θ,d(ψ) (20)

for each ψ ∈ D(Ω). In other words, there holds −∆p(uσ,θ,d) = f
[p]
σ,θ,d in the weak sense. Finally,

Hölder’s inequality on B1(0) ⊆ Ω proves∣∣∣f [p]
σ,θ,d(ψ)

∣∣∣ ≤ ∫
Ω

∣∣v(p−1)σ,θ(|x|2)
∣∣ |∇ψ(x)|2 dx

≤
∥∥v(p−1)σ,θ L∞(R+)

∥∥ ∫
B1(0)

|∇ψ(x)|2 dx

.
∥∥v(p−1)σ,θ L∞(R+)

∥∥ ∥∥ψ W 1
p (Ω)

∥∥ , ψ ∈ D(Ω).

Since by definition D(Ω) is dense W 1
p,0(Ω) we therefore have f

[p]
σ,θ,d ∈ (W 1

p,0(Ω))′ = W−1
p′ (Ω)

and the proof is complete. �

In order to provide further regularity assertions for uσ,θ,d and f
[p]
σ,θ,d, we will need the

subsequent result which characterizes the smoothness and integrability of rotationally invariant
functions. Therein rd has the same meaning as in (18).
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Proposition 2.7. Let 0 < a < b <∞. Assume that g : R+ → C is measurable with support
supp(g) ⊆ [a, b] and let gd := g ◦ rd. Then

(i) gd : Rd → C is well-defined almost everywhere.

(ii) for 0 < %, q ≤ ∞ and s > d max{0, 1/%− 1} there holds

gd ∈ L%(Rd) if and only if g ∈ L%(R+), (21)

as well as

gd ∈ Bs
%,q(Rd) if and only if g ∈ Bs

%,q(R+).

(iii) for 1 < % <∞ and k ∈ N there holds

gd ∈ W k
% (Rd) if and only if g ∈ W k

% (R+).

Proof. With g and rd also gd is measurable such that it can be represented as an almost
everywhere convergent pointwise limit of simple functions. This proves (i).

If d = 1, the equivalences in (ii) and (iii) are trivial, as g vanishes in a neighborhood of the
origin. So let us assume d ≥ 2. Then for % <∞ the first assertion in (ii) follows from a simple
transformation into (generalized) polar coordinates x = r ϑ(φ) with (r, φ) ∈ [0,∞)× Φ:∥∥gd L%(Rd)

∥∥% =

∫
Rd
|g(rd(x))|% dx =

∫
Φ

∫ b

a

|g(r)|% rd−1T (φ) dr dφ ∼ ‖g L%((0,∞))‖% ,

where we used that supp(g) ⊆ [a, b] and that T is some tensor product of trigonometric
functions defined on Φ ⊂ [−π, π]d−1. For % =∞ the equivalence (21) is obvious.

It remains to prove the equivalences for multivariate Besov and Sobolev spaces. In case
of Bs

%,q and % =∞, this follows from results due to Sickel et al. [20, Thm. 2], while the case
0 < % <∞ is covered by [20, Cor. 1 & 2]. However, [20, Cor. 1 & 2] also covers the assertion
for Sobolev spaces since W k

% = F k
%,2 if 1 < % <∞. �

Lemma 2.8 (Regularity of uσ,θ,d, A(∇uσ,θ,d), and f
[p]
σ,θ,d). Let d ∈ N and 1 < p, θ < ∞, as

well as σ ∈ R+. Further let Ω ⊆ Rd be either Rd itself, a bounded Lipschitz domain, or an
interval (if d = 1), and assume B1(0) ⊆ Ω. Moreover, let 0 < %, q ≤ ∞ and s ∈ R with
d max{0, 1/%− 1} < s < 1. Then

(i) there holds
uσ,θ,d ∈ B1+s

%,q (Ω) if and only if wσ,θ ∈ Bs
%,q(R)

and 1 < % <∞ implies that

uσ,θ,d ∈ W 2
% (Ω) if and only if wσ,θ ∈ W 1

% (R).
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(ii) we have

A(∇uσ,θ,d) ∈
(
Bs
%,q(Ω)

)d
if and only if w(p−1)σ,θ ∈ Bs

%,q(R)

and 1 < % <∞ implies that

A(∇uσ,θ,d) ∈
(
W 1
% (Ω)

)d
if and only if w(p−1)σ,θ ∈ W 1

% (R).

Additionally assume that min{%, q} > 1. Then

(iii) A(∇uσ,θ,d) ∈
(
Bs
%,q(Ω)

)d
implies f

[p]
σ,θ,d ∈ B−1+s

%,q (Ω),

(iv) w′(p−1)σ,θ ∈ L%(R) implies f
[p]
σ,θ,d ∈ L%(Ω).

Proof. Recall that uσ,θ,d ∈ D′(Ω) can be identified with the function uσ,θ ◦ rd restricted to Ω.
Hence, uσ,θ ◦ rd ∈ B1+s

%,q (Rd) implies uσ,θ,d ∈ B1+s
%,q (Ω). On the other hand, if uσ,θ,d ∈ B1+s

%,q (Ω),

then by definition there exists ũ ∈ B1+s
%,q (Rd) with ũ

∣∣
Ω

= uσ,θ,d. Now let χ ∈ C∞(Rd) with

χ(x) =

{
1 if x ∈ B4/5(0),

0 if x ∈ Rd \B1(0).

Then uσ,θ ◦ rd = χ ũ ∈ B1+s
%,q (Rd) due to [24, Sect. 4.2.2]. Therefore, uσ,θ,d ∈ B1+s

%,q (Ω) is
equivalent to uσ,θ ◦ rd ∈ B1+s

%,q (Rd). By Lemma 2.5(i) and Proposition 2.7(ii) this holds if and
only if uσ,θ ∈ B1+s

%,q (R+). Since we assume s < 1, we can use Lemma 2.5(iv) to see that this
in turn is equivalent to wσ,θ ∈ Bs

%,q(R). Thus, we have shown (i) in the case of Besov spaces.
For Sobolev spaces we can argue similarly.

Next we apply (i) to deduce that w(p−1)σ,θ ∈ Bs
%,q(R) is equivalent to u(p−1)σ,θ,d ∈ B1+s

%,q (Ω).
By Proposition 2.2(i) this holds if and only if u(p−1)σ,θ,d ∈ Bs

%,q(Ω) and∇u(p−1)σ,θ,d ∈ (Bs
%,q(Ω))d.

Since we assume that s < 1, the first condition is always fulfilled (cf. the proof of Lemma 2.5!),
and by Lemma 2.6(ii) ∇u(p−1)σ,θ,d is nothing but A(∇uσ,θ,d). Also here the proof for Sobolev
spaces is essentially the same.

Let us prove (iii). To this end, we note that A(∇uσ,θ,d) ∈
(
Bs
%,q(Ω)

)d
implies that for

every j = 1, . . . , d we have

A(∇uσ,θ,d)j ∈ B̃s
%,q(Ω) :=

{
g ∈ D′(Ω) ∃ g̃ ∈ Bs

%,q(Rd) with g = g̃
∣∣
Ω

and supp(g̃) ⊆ Ω
}

according to Lemma 2.6, where we set∥∥∥g B̃s
%,q(Ω)

∥∥∥ := inf
g̃∈Bs%,q(Rd): g=g̃|Ω,

supp(g̃)⊆Ω

∥∥g̃ Bs
%,q(Rd)

∥∥ ,
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cf. Triebel [26, Def. 2.1]. Further from [26, Thm. 3.30] and min{%, q} > 1 it follows that

B̃s
%,q(Ω) = (B−s%′,q′(Ω))′ such that for all j = 1, . . . , d we can estimate

|A(∇uσ,θ,d)j(ϕ)| .
∥∥ϕ B−s%′,q′(Ω)

∥∥ , ϕ ∈ D(Ω).

Therefore the representation formula (20) together with Proposition 2.2(i) yield that for all
ψ ∈ D(Ω) there holds

∣∣∣f [p]
σ,θ,d(ψ)

∣∣∣ =

∣∣∣∣∣
d∑
j=1

∫
Ω

A(∇uσ,θ,d)j(x)
∂ψ

∂xj
(x) dx

∣∣∣∣∣
≤

d∑
j=1

∣∣∣∣A(∇uσ,θ,d)j
(
∂ψ

∂xj

)∣∣∣∣
.

d∑
j=1

∥∥∥∥ ∂ψ∂xj B−s%′,q′(Ω)

∥∥∥∥
.
∥∥ψ B1−s

%′,q′(Ω)
∥∥

≤
∥∥∥ψ B̃1−s

%′,q′(Ω)
∥∥∥ .

Now we again employ [26, Thm. 3.30] to see that D(Ω) is dense in B̃1−s
%′,q′(Ω) and hence we

conclude
f

[p]
σ,θ,d ∈

(
B̃1−s
%′,q′(Ω)

)′
= B−1+s

%,q (Ω),

as claimed.
It remains to prove (iv). For this purpose, note that for f

[p]
σ,θ,d ∈ L%(Ω) = (L%′(Ω))′ it is

sufficient to find fd ∈ L%(Ω) such that

f
[p]
σ,θ,d(ψ) =

∫
Ω

fd(x)ψ(x) dx, ψ ∈ D(Ω), (22)

since D(Ω) is dense in L%′(Ω) if 1 ≤ %′ <∞. We claim that this fd is given by the restriction
of fd = f ◦ rd to Ω, where

f(r) := −v′(p−1)σ,θ(r)− v(p−1)σ,θ(r)
d− 1

r
for a.e. r > 0.

Recall that, due to Lemma 2.5, v(p−1)σ,θ is continuous with support in the interval [1/4, 3/4].
Hence, the function r 7→ g(r) := v(p−1)σ,θ(r)/r belongs to L%(R+). Moreover, it is clear that
our assumption w′(p−1)σ,θ ∈ L%(R) implies that also v′(p−1)σ,θ ∈ L%(R+). Therefore, we have
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f ∈ L%(R+) and from Proposition 2.7 we conclude fd ∈ L%(Rd). This shows that indeed
fd ∈ L%(Ω). Thus, we are left with proving (22). To this end, let ψ ∈ D(Ω) be arbitrarily
fixed and assume for a moment that d ≥ 2. Then B1(0) ⊆ Ω and a transformation into polar
coordinates x = r ϑ(φ) with (r, φ) ∈ [0,∞)× Φ, yields∫

Ω

fd(x)ψ(x) dx =

∫
Φ

∫ 3/4

1/4

f(r)ψ(r ϑ(φ)) rd−1 T (φ) dr dφ (23)

(cf. the proof of Proposition 2.7). Since v′(p−1)σ,θ belongs to L1(R+) and ψ is smooth, we may
use integration by parts to see that∫ 3/4

1/4

v′(p−1)σ,θ(r)ψ(r ϑ(φ)) rd−1 dr

=
[
v(p−1)σ,θ(r)ψ(r ϑ(φ)) rd−1

]3/4
r=1/4

−
∫ 3/4

1/4

v(p−1)σ,θ(r)
d

dr

(
ψ(r ϑ(φ)) rd−1

)
(r) dr

is finite, because the boundary term vanishes and

d

dr

(
ψ(r ϑ(φ)) rd−1

)
(r) =

d

dr
(ψ(r ϑ(φ))) (r) rd−1 + (d− 1)ψ(r ϑ(φ)) rd−2

= 〈∇ψ(r ϑ(φ)), ϑ(φ)〉Rd r
d−1 +

d− 1

r
ψ(r ϑ(φ)) rd−1

as well as v(p−1)σ,θ are bounded on [1/4, 3/4]. Hence, for the inner integral in (23) we find∫ 3/4

1/4

f(r)ψ(r ϑ(φ)) rd−1 dr

= −
∫ 3/4

1/4

v′(p−1)σ,θ(r)ψ(r ϑ(φ)) rd−1 dr −
∫ 3/4

1/4

v(p−1)σ,θ(r)
d− 1

r
ψ(r ϑ(φ)) rd−1 dr

=

∫ 3/4

1/4

v(p−1)σ,θ(r)

〈
∇ψ(r ϑ(φ)),

r ϑ(φ)

r

〉
Rd
rd−1 dr
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and thus (20) shows that we indeed have (22):∫
Ω

fd(x)ψ(x) dx =

∫
Φ

∫ 3/4

1/4

f(r)ψ(r ϑ(φ)) rd−1 T (φ) dr dφ

=

∫
Φ

∫ 3/4

1/4

v(p−1)σ,θ(r)

〈
∇ψ(r ϑ(φ)),

r ϑ(φ)

r

〉
Rd
rd−1 T (φ) dr dφ

=

∫
Ω

v(p−1)σ,θ,d(x)

〈
∇ψ(x),

x

|x|2

〉
Rd

dx (24)

= f
[p]
σ,θ,d(ψ).

Finally, a similar calculation shows that (24) remains valid also for d = 1. So, the proof is
complete. �

Now we are well-prepared to give profound proofs of our main results stated in Theorems 1.3
and 1.6.

2.2 Proof of Theorem 1.3

Proof. Let d ∈ N, as well as 2 ≤ p <∞, and 0 < ε < 1/p be given fixed. Further let Ω ⊆ Rd

be either Rd itself, a bounded Lipschitz domain, or an interval (if d = 1). Since Ω is open it
contains inner points. By a simple translation and dilation argument (see, e.g. [9, Sect. 4]) we
may w.l.o.g. assume that the Euclidean ball of radius one, B1(0), is contained in Ω. In what
follows we will choose specific values σ ∈ (0, 1) as well as θ ∈ (1,∞) and define u := uσ,θ,d
and f := f

[p]
σ,θ,d according to (16). From Lemma 2.6 it then follows that u ∈ W 1

p,0(Ω) is a

weak solution to (1) with right-hand side f ∈ W−1
p′ (Ω) and that the supports of u and f are

contained in B4/5(0).
Given 1 < µ ≤ ∞ and ε (p− 1) < λ < 1− ε we choose θ such that 0 < 1− ε < 1/θ < 1

and define

σ :=
λ

p− 1
− 1− 1/θ

(p− 1)µ
.

Then it is easily seen that

0 <
λ

p− 1
− ε < σ ≤ (p− 1)σ <

1

θ
< 1. (25)
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Indeed, the lower bound on λ shows that λ/(p− 1)− ε is strictly positive. If 1 < µ <∞, we
note that p ≥ 2 implies 1− ε (p− 1)µ < 1− ε < 1/θ and hence

λ

p− 1
− ε =

λ

p− 1
+

1− ε (p− 1)µ− 1

(p− 1)µ
<

λ

p− 1
+

1/θ − 1

(p− 1)µ
= σ,

while the corresponding estimate for µ =∞ is trivial since ε > 0. Moreover, 1/θ < 1 yields

σ ≤ (p− 1)σ ≤ λ < 1− ε < 1

θ
< 1

which completes the proof of (25).
Next we note that (25) particularly implies that

min

{
θ (1 + σ),

1− σ
1− 1/θ

}
> 1.

So, we can employ Lemma 2.3(iii) to see that for 1 ≤ % ≤ ∞ there holds

wσ,θ ∈ Bs
%,q(R) if and only if s = s% and q =∞, or s < s% and 0 < q ≤ ∞, (26)

where

s% := σ +
1− 1/θ

%
=

λ

p− 1
+

(
1

%
− 1

(p− 1)µ

)(
1− 1

θ

)
.

Note that our assumptions imply that 0 < 1− 1/θ < ε,

1

%
− 1

(p− 1)µ
∈


(−1, 0) if (p− 1)µ < % ≤ ∞,
{0} if % = (p− 1)µ,
(0, 1) if 1 < % < (p− 1)µ,

as well as 0 < λ/(p− 1)± ε < 1. If % is large, we have λ/(p− 1)− ε < s% < λ/(p− 1). Thus
(26) and Lemma 2.8(i) prove

u = uσ,θ,d ∈ B
1+ λ

p−1
−ε

%,q (Ω) \B
1+ λ

p−1
%,q (Ω), 0 < q ≤ ∞,

for this case. The regularity statements for u in the remaining cases are obtained likewise.
Similarly, (25) and Lemma 2.3(iii) show that for 1 ≤ % ≤ ∞ there holds

w(p−1)σ,θ ∈ Bs
%,q(R) if and only if s = s̃% and q =∞, or s < s̃% and 0 < q ≤ ∞,

where now (depending on the relation of % and µ to each other)

s̃% := (p− 1)σ +
1− 1/θ

%
= λ+

(
1

%
− 1

µ

)(
1− 1

θ

)
∈ (λ− ε, λ+ ε) ( (0, 1).

Therefore, we can use Lemma 2.8(ii) to deduce the regularity statements for A(∇u). In

particular we have A(∇u) ∈
(
Bλ
µ,∞(Ω)

)d
such that, by Lemma 2.8(iii), f = f

[p]
σ,θ,d ∈ B−1+λ

µ,∞ (Ω),
as claimed. �
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2.3 Proof of Theorem 1.6

In order to show Theorem 1.6, we essentially follow the lines of the proof of Theorem 1.3. So
let us focus on the necessary modifications only.

Proof. Given 1 < µ ≤ ∞ and 0 < ε < min{1/(p − 1), 1 − 1/(p − 1)} (note that this time
p > 2!) we choose θ such that 0 < 1− ε < 1/θ < 1 and define

σ :=
1

p− 1
− 1− 1/θ

(p− 1)µ
.

Then there holds

0 < σ <
1

θ
< (p− 1)σ ≤ 1.

Indeed, µ > 1 and 0 < 1/θ < 1 show that 0 ≤ (1− 1/θ)/µ < 1− 1/θ < 1. This proves 0 < σ,
as well as 1/θ < (p− 1)σ ≤ 1. Hence, we also have σ ≤ 1/(p− 1) < 1− ε < 1/θ due to our
assumption on ε.

Now the claimed regularity of u follows exactly as in the proof of Theorem 1.3, where
this time our restrictions on ε ensure that 0 < 1/(p− 1)± ε < 1.

In order to prove the regularity statement for A(∇u) we like to apply Lemma 2.8(ii).
To this end, we have to show that w(p−1)σ,θ ∈ W 1

% (R) for 1 < % < ∞ if and only if % < µ.
By Lemma 2.3(i) this reduces to the claim w′(p−1)σ,θ ∈ L%(R). If µ = ∞, then we actually

have (p− 1)σ = 1. Therefore, from Lemma 2.3(ii) it follows that w′(p−1)σ,θ ∈ L%(R) for all

0 < % ≤ ∞. On the other hand, if µ < ∞, then 0 < (p − 1)σ < 1. Hence, in this case we
have w′(p−1)σ,θ ∈ L%(R) if and only if

1− (p− 1)σ

1− 1/θ
=

1

µ
<

1

%
.

In conclusion, A(∇u) ∈
(
W 1
% (Ω)

)d
for 1 < % <∞ is equivalent to % < µ, as claimed.

It remains to prove that f = f
[p]
σ,θ,d belongs to Lν(Ω). If ν > 1, this follows from

Lemma 2.8(iv) and the calculations above. However, in view of the compact support of f ,
this lower bound on ν can be dropped. �
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665 of Lecture Notes in Math., pages 205–227. Springer, Berlin, 1978.
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