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Abstract. This note is concerned with an optimal control problem governed by the relativis-

tic Maxwell-Newton-Lorentz equations, which describes the motion of charges particles in electro-

magnetic fields and consists of a hyperbolic PDE system coupled with a nonlinear ODE. An external

magnetic field acts as control variable. Additional control constraints are incorporated by intro-

ducing a scalar magnetic potential which leads to an additional state equation in form of a very

weak elliptic PDE. Existence and uniqueness for the state equation is shown and the existence of a

global optimal control is established. Moreover, first-order necessary optimality conditions in form

of Karush-Kuhn-Tucker conditions are derived. A numerical test illustrates the theoretical findings.
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constraints
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1. Introduction. In this paper we discuss an optimal control problem governed
by the relativistic Maxwell-Newton-Lorentz equations. This system of equations con-
sists of Maxwell’s equations, i.e., a hyperbolic PDE system, and a nonlinear ODE.
It models the relativistic motion of charged particles in electromagnetic fields and
is therefore used for the simulation of particle accelerators [1, 18, 21, 30]. The con-
trol variable is an additional exterior magnetic field, which, in practice, could be
realized by exterior (dipole, quadrupole etc.) magnets surrounding the accelerator
tube [39, 45]. The aim of the optimization is to steer the particle beam to a given
desired track and/or end-time position. Beside the Maxwell-Newton-Lorentz system,
the optimization problem is subject to several additional constraints. First, the par-
ticle beam should stay inside the accelerator tube, which is realized by pointwise
constraints on the particle position and constitutes a pointwise state constraint from
a mathematical point of view. Moreover, as a stationary magnetic field, the control
has to satisfy certain constraints, e.g. its divergence has to vanish. In order to guaran-
tee these constraints, we introduce a scalar magnetic potential, whose boundary data
serve as new control variable. This gives rise to a Poisson equation for the exterior
magnetic field entering the system of state equations. Physically, the new control
variable can be interpreted as a surface current on the boundary of the computational
domain. In this way we obtain a Dirichlet boundary control problem.

Let us put our work into perspective. Optimal control of Maxwell’s equations
and coupled systems involving these have been subject to intensive research in the
recent past. We only mention the work of Tröltzsch et al. [16, 33–35, 44] and Yousept
[46–50]. However, most of these contributions deal with stationary or time harmonic
Maxwell’s equation. In [35] the so-called evolution Maxwell equation in form of a
(degenerate) parabolic PDE is considered. In contrast to this, we deal with a first-
order hyperbolic system for the electric and the magnetic fields. Optimal control
of magneto-hydrodynamic processes was investigated in [22]. These processes are
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modeled by a coupled system consisting of Maxwell’s equation and the Navier-Stokes
equations. However, [22] also focuses on the stationary case. Up to our best knowl-
edge, the non-standard coupling of the (hyperbolic) Maxwell’s equation and the ODE
for the relativistic motion of charged particles have not been treated so far in the
context of optimal control, neither from an analytical nor from a numerical point
of view. The mathematical treatment of the Maxwell-Newton-Lorentz system itself
however has been investigated by several authors before. Concerning the analysis
we mention [3, 17, 26, 42] and the references therein. Regarding its numerical treat-
ment we refer to [18, 21, 30]. The analytical and numerical investigations presented
in this paper will partly rely on these findings. As mentioned before the control
constraints on the external magnetic field are realized by introducing a scalar poten-
tial which leads to a boundary control problem of Dirichlet type. Optimal control
problems of this type have been intensely investigated in the recent past, see e.g.
[11, 15, 29, 31, 37]. We choose L2(Γ) as control space, so that the associated Poisson
equation is treated in very weak form, which is a well-established procedure, cf. e.g.
[31]. Another challenging aspect of the optimal control under consideration are the
pointwise state constraints on the particle position. Lagrange-multipliers associated
with constraints of this type, in general, lack in regularity and are only measures,
see e.g. [9, 10] for the case of PDEs and [23] and the references therein for the case
of ODEs. Numerically, such constraints are frequently treated by regularization and
relaxation methods, especially in the PDE case, cf. e.g. [24, 32, 41]. We also follow
this approach and apply an interior point method to realize the state constraints.

The paper is organized as follows: in the following section we introduce the phys-
ical model, i.e., the Maxwell-Newton-Lorentz system. This model is not directly
amenable for a mathematically rigorous treatment mainly due to two reasons, which
are addressed at the end of Section 2. We therefore slightly modify the model in
Section 3 by replacing the point charge with a distributed volume charge density. In
addition the scalar magnetic potential is introduced in this section which allows us
to formulate the optimal control problem, first in a formal way. After stating our
standing assumptions in Section 3.1, Section 3.2 is then devoted to a mathematically
sound and rigorous statement of the optimal control problem, including the function
spaces for all optimization variables as well as the notion of solutions for the differ-
ential equations involved in the state system. We start the analysis of the optimal
control problem by discussing the state equation in Section 4. Then we turn to the
optimal control problem and show the existence of globally optimal controls in Section
5. The analytical part of the paper ends with the derivation of first-order-necessary
optimality conditions involving Lagrange multipliers in Section 6. The final Section 7
is devoted to the numerical treatment of the optimal control problem. After describ-
ing the discretization of the state system and the optimization algorithm, we present
an exemplary numerical result for the end time tracking of a single-particle beam.

2. Statement of the physical model. In this section we introduce the physical
model underlying the optimal control problem. The precise mathematical model will
be stated in Section 3.2.

To keep the discussion concise we will restrict to the motion of only one particle
in the accelerator. The adaptation of the model to a finite number of particles is
straightforward, see Remark 2.2 below. Our model is based on the classical inhomo-
geneous Maxwell’s equations with the boundary conditions of a perfect conductor. In
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strong form these equations read:

ǫ
∂

∂t
E(x, t) − µ−1 curl B(x, t) = j(x, t) in Ω × [0, T ](2.1a)

∂

∂t
B(x, t) + curlE(x, t) = 0 in Ω × [0, T ](2.1b)

divE(x, t) =
1

ǫ
ρ(x, t), divB(x, t) = 0 in Ω × [0, T ](2.1c)

E(x, 0) = E0(x), B(x, 0) = B0(x) in Ω(2.1d)

E × n = 0, B · n = 0 on Γ × [0, T ].(2.1e)

Herein, E and B denote the electric and magnetic field, respectively, and Ω is the
domain occupied by the interior of the accelerator channel. Its boundary ∂Ω is denoted
by Γ, and n is the outward unit normal on Γ. Moreover, ǫ is the permittivity of free
space, while µ denotes the permeability, which are assumed to be constant in Ω.
Finally, ρ and j denote the charge density and the electric current.

Remark 2.1. Provided the conservation of charge holds, the two Gauss laws in
(2.1c) as well as the boundary condition on B intrinsically follow from Faraday’s and
Ampere’s laws in (2.1a) and (2.1b) so that (2.1) is not overdetermined.

In our case, the charge density is generated by a single point charge and therefore
given by

(2.2) ρ(x, t) := qδ(|x − r(t)|2) in Ω × [0, T ],

where q > 0 is the constant particle charge, r denotes the particle position, and | . |2
is the Euclidean norm of a vector. Furthermore, δ : R → {0,∞} is the Dirac delta
distribution. The current j(x, t) arising on the right hand side in (2.1a) is generated
by the motion of the particle and thus given by

(2.3) j(x, t) := −qδ(|x− r(t)|2)v(p(t)) in Ω × [0, T ],

where p denotes the relativistic momentum of the particle. Moreover, we set

(2.4) v(p(t)) := (mq
0 γ(p(t)))−1p(t)

with the mass at rest mq
0 and the Lorentz factor

γ(p(t)) :=

√

(1 +
‖p(t)‖2
(mq

0c)
2

),

where c > 0 denotes the speed of light. Note that v(p) is nothing else than the
velocity of the particle. It is easily verified that ρ and j chosen in this way satisfy the
conservation of charge.

We summarize the constants of the model in Table 1.

In addition to (2.4) we introduce the abbreviation

(2.5) β(p(t)) := c−1v(p(t)),

which prove helpful in the sequel.

3



Physical constants Name of quantity

c speed of light
ǫ permittivity
µ permeability
mq

0 rest mass
q particle charge

Table 1
Overview of arising constants

The motion of the particle in electromagnetic fields is governed by the relativistic
Newton-Lorentz equations given by the formulae

ṗ(t) = q
[

e(r(t)) + E(r(t), t) + β(p(t)) ×
(

b(r(t)) + B(r(t), t)
)]

in [0, T ](2.6a)

ṙ(t) = v(p(t)) in [0, T ](2.6b)

p(0) = p0 and r(0) = r0(2.6c)

with initial particle position and momentum p0, r0 ∈ R
3. Furthermore, e and b denote

the external electric and magnetic fields, respectively. These fields are generated by
exterior capacitors and magnets in order to steer the particle beam. They are assumed
to fulfill the homogeneous Maxwell’s equations in Ω. As we only consider magnets for
manipulating the beam, we assume e to equal zero. Therefore, the external magnetic
field b has to satisfy the conditions

(2.7) div b = 0, curl b = 0 and ∂tb = 0 in Ω.

This external magnetic field b will serve as control in the following.
To summarize the overall model reads as follows:

ǫ
∂

∂t
E(x, t) − µ−1 curlB(x, t) = −qδ(|x− r(t)|2)v(p(t)) in Ω × [0, T ](2.8a)

∂

∂t
B(x, t) + curlE(x, t) = 0 in Ω × [0, T ](2.8b)

divE(x, t) =
1

ǫ
qδ(|x − r(t)|2), divB(x, t) = 0 in Ω × [0, T ](2.8c)

ṗ(t) = q
(

E(r(t), t) + β(p(t)) ×
(

b(r(t)) + B(r(t), t)
)

)

in [0, T ](2.8d)

ṙ(t) = v(p(t)) in [0, T ](2.8e)

E(x, 0) = E0(x), B(x, 0) = B0(x), r(0) = r0, p(0) = p0, in Ω(2.8f)

E × n = 0, B · n = 0 on Γ × [0, T ].(2.8g)

Remark 2.2. In case of an entire bunch of n particles the electric current is given
by −∑n

i=1 qiδ(|x − ri(t)|2)v(pi(t)), while the charge density becomes
∑n

i=1 qiδ(|x −
ri(t)|2). The rest of the system remains unchanged, except that we had n equations
of the form (2.8d), (2.8e) for each of the n particles, cf. e.g. [42, Section 11]. It
is therefore straightforward to adapt the analysis presented in the following to the
situation of n particles.

The model equations in (2.8) feature two critical aspects. First, the particle
must not leave the computational domain Ω, i.e. the interior of the accelerator, since
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otherwise the right hand side in (2.8d) is not well defined. This issue will be resolved
by adding an additional state constraints to the optimal control problem. From an
application driven point of view this constraint is meaningful, too. Secondly, the
pointwise evaluation of the electric and the magnetic fields precisely at the point
x = r(t) in (2.8d) is, in general, not well defined, since solutions of Maxwell’s equations
with j given by (2.3) are singular at this point. We will overcome this difficulty by
introducing the so-called Abraham model, which is addressed in the next section. For
further details on the Abraham model, we refer to [42, Section 2.4].

3. The optimal control problem. This section is devoted to the optimal con-
trol problem. Having established the Abraham model, we introduce a scalar potential
to cope with the additional conditions in the external magnetic field in (2.7). Then,
we state the complete optimal control problem including the objective functional and
the additional state constraints on the particle position. The rest of this section is
concerned with the standing assumptions and the mathematically rigorous statement
of the optimal control problem.

As described above, the pointwise evaluation in (2.8d) is, in general, not well
defined. To resolve this issue, we replace the Dirac delta distribution by a smeared
out version. For this purpose we fix a function ϕ : R3 → R such that

(3.1)

ϕ ∈ C2,1(R3), supp(ϕ) ⊆ BR(0), ϕ(x) ≥ 0 ∀x ∈ R
3

∫

R3

ϕ(x) dx = 1, ϕ(x) = ϕ(y) if |x|2 = |y|2

(i.e., ϕ is rotationally symmetric). The pointwise evaluations in (2.8d) are then ap-
proximated by

E(r(t), t) + β(p(t)) ×
(

b(r(t)) + B(r(t), t)
)

≈
∫

Ω

ϕ(x − r(t))
[

E(x, t) + β(p(t)) ×
(

b(x) + B(x, t)
)

]

dx.(3.2)

Accordingly, the charge distribution and the current density are replaced by

(3.3) ρ(x, t) = q ϕ(x− r(t)) and j(x, t) = −q ϕ(x− r(t))v(p(t)).

One readily verifies that the conservation of charge is also fulfilled by this choice for
ρ and j.

To incorporate the conditions on the external magnetic field in (2.7), we intro-
duce a scalar magnetic potential as solution of the following Poisson’s equation with
Dirichlet boundary data

(3.4) −∆η = 0 in Ω, η = u on Γ.

Under the assumption that Ω is a simply connected domain, the gradient b := ∇η is
a conservative vector field so that

div b = div
(

∇η
)

= ∆η = 0, curl b = curl
(

∇η
)

= 0, ∂tb = 0,

i.e. (2.7), is fulfilled almost everywhere. The Dirichlet data u in (3.4) will serve as the
new control variable in the following. Employing (3.4) and integration by parts, one
rewrites the integral involving b in (3.2) by

(3.5)

∫

Ω

ϕ(x− r(t))β(p(t)) × b(x)dx = −q

∫

Ω

η∇ϕ(x− r(t)) × β(p(t)) dx

+ q

∫

Γ

uϕ(x− r(t))β(p(t)) × n ds.
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Summing up all components of the physical model, the optimal control problem under
consideration reads

(P̃) minimize J (r, u) :=

∫ T

0

J1(r(t)) dt + J2(r(T )) +
α

2

∫

Γ

u2 dς

subject to Maxwell’s equations

ǫ
∂

∂t
E(x, t) − µ−1 curlB(x, t) = −qϕ(x− r(t))v(p(t)) in Ω × [0, T ](3.6a)

∂

∂t
B(x, t) + curlE(x, t) = 0 in Ω × [0, T ](3.6b)

div E(x, t) =
1

ǫ
qϕ(x− r(t)), div B(x, t) = 0 in Ω × [0, T ](3.6c)

E(x, 0) = E0(x), B(x, 0) = B0(x) in Ω(3.6d)

E × n = 0, B · n = 0 on Γ × [0, T ],(3.6e)

the relativistic Newton-Lorentz equations

ṗ(t) = q

∫

Ω

ϕ(x− r(t))
[

E(x, t) + β(p(t)) ×B(x, t)
]

dx

− q

∫

Ω

η∇ϕ(x− r(t)) × β(p(t)) dx(3.7a)

+ q

∫

Γ

uϕ(x− r(t))β(p(t)) × n ds in [0, T ]

ṙ(t) = v(p(t)) in [0, T ](3.7b)

r(0) = r0, p(0) = p0,(3.7c)

Poisson’s equation

(3.8) −∆η = 0 in Ω, η = u on Γ,

and pointwise state constraints on the particle position

(3.9) r(t) ∈ Ω̃.

Herein, J1, J2 : R3 → R are given functions which reflect the goal of the optimization
to steer the beam on the overall time interval and at end time, respectively. Moreover,
the Tikhonov parameter α is a positive real number. Finally, Ω̃ ⊂ Ω is a closed
subdomain fulfilling

dist(Ω̃,Γ) > R,

where R is the number defining the support of the smeared out delta distribution, cf.
(3.1).

Remark 3.1. Note that now the integrands on the right-hand side of (3.7a) are
well-defined in any case, even if r(t) /∈ Ω for some t ∈ [0, T ]. However, in this case,
the model becomes physically meaningless. In this way the state constraint in (3.9)
ensures that the model does not loose its physical validity. Moreover, in applications,
it is important to keep the particles inside the accelerator tube, which is also reflected
by the condition (3.9).
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3.1. Standing assumptions and notation. We start by introducing several
function spaces which will be useful in the sequel.

Definition 3.2 (H(curl; Ω)-spaces). By X we denote the space X =L2(Ω;R3).
For convenience of notation the scalar products and corresponding norms in X and
X ×X are both denoted by (., .)X and ‖.‖X, respectively. Moreover, we set

H(curl; Ω) := {ω ∈ X : curlω ∈ X},
where curl : X → D′ denotes the distributional curl-operator. With the obvious scalar
product H(curl; Ω) becomes a Hilbert space. It is well known that there exists a linear
and continuous operator τn : H(curl; Ω) → H−1/2(Γ;R3) such that τnω = ω × n for
all ω ∈ H(curl; Ω) ∩ C(Ω̄;R3), see e.g. [20, Chapter 2]. In the sequel we will denote
τnω by ω × n for all ω ∈ H(curl; Ω) for simplicity and call this operator tangential
trace. For a detailed discussion of the tangential trace we refer to [2]. Furthermore,
we define the set

HΓ
curl := {V = (V1, V2) ∈ H(curl; Ω) ×H(curl; Ω) : V1 × n = 0} .

As a closed subspace of a Hilbert space, HΓ
curl is a Hilbert space itself.

Definition 3.3 (H(div; Ω)-spaces). We define the set

H(div; Ω) :=
{

ω ∈ X : divω ∈ L2(Ω)
}

,

where div : X → D′ denotes the distributional divergence. Equipped with the obvious
scalar product, H(div; Ω) becomes a Hilbert space. Functions in H(div; Ω) admit
a normal trace, i.e., there is a linear and continuous operator γn : H(div; Ω) →
H−1/2(Γ) such that γnω = ω · n for all ω ∈ H(div; Ω) ∩ C(Ω̄;R3), see e.g. [43,
Theorem 1.2]. As above, we denote the normal trace by ω · n for all ω in H(div; Ω).
Furthermore, we define the set

H :=
{

v ∈ H1
0 (Ω) : ∇v ∈ H(div ; Ω), ∂nv ∈ L2(Γ)

}

,

where we set ∂nv := n · ∇v. Endowed with the norm

‖v‖H = (
∥

∥v‖2H1(Ω) + ‖∆v‖2L2(Ω) + ‖∂nv‖2L2(Γ)

)
1

2

and the corresponding scalar product, it is a Hilbert space, too. Here and in the
following, ∆ := div∇ : H → L2(Ω) denotes the Laplacian.

Now we are in the position to state the assumptions on the domain Ω.
Assumption 3.4 (Regularity of the domain).
1. The domain Ω ⊂ R

3 is open, bounded, and simply connected.
2. The subdomain Ω̃ can be represented by

Ω̃ =
{

x ∈ R
3 : gi(x) ≤ 0, i = 1, ...,m

}

where m ∈ N and gi ∈ C1(R3,R) with absolutely continuous derivatives g′i.
3. Furthermore, Ω is such that for all g ∈ L2(Ω) there exists a unique solution

w ∈ H of

(3.10)

∫

Ω

∇w · ∇v dx =

∫

Ω

g v dx ∀ v ∈ H1
0 (Ω)

and the following a priori estimate

‖w‖H ≤ C ‖g‖L2(Ω)

is fulfilled with a constant C > 0 independent of g and w.
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Remark 3.5. By the Lax-Milgram Lemma (3.10) admits a unique solution in
w ∈ H1

0 (Ω) and, due to g ∈ L2(Ω), it immediately follows that ∇w ∈ H(div ; Ω). The
additional condition ∂nw ∈ L2(Γ) is satisfied under rather mild assumptions on the
boundary of Ω, cf. [12, Chapter 6].

Assumption 3.6 (Problem data). We assume the following assumptions on the
data in (P):

• r0 ∈ Ω̃.
• The first two contributions to the objective fulfill J1, J2 ∈ C1(R3). Fur-
thermore, we assume that J1 and J2 are bounded from below by constants
c1 > −∞ and c2 > −∞.

• The Tikhonov regularization parameter satisfies α ∈ R, α > 0.
• The smeared out delta distribution ϕ fulfills the assumptions in (3.1).
• ǫ, µ positive constants. To simplify the depiction, we set them w.l.o.g. equal
to one.

• q is a positive constant.
• E0, B0 ∈ X.
• g1, ..., gm ∈ C1(R3).

Given a linear normed space X we denote by C{0}([0, T ];X ) the space of func-
tions from C([0, T ];X ) which vanish at t = 0. The space C1

{0}([0, T ];X ) is defined
analogously. By

Y := {(r, p) ∈ H1(]0, T [;R3)2 : r(0) = p(0) = 0}, Z := L2(]0, T [;R3)2

we denote the state space, which comes into play in Section 6. To keep the notation
concise, we also denote the space {r ∈ H1(]0, T [;R3) : r(0) = 0} by Y . In addition,
the Jacobian of the electric current j as given in (3.3) is denoted by

(3.11) j′(r, p) :=
(

∂rj(r, p), ∂pj(r, p)
)

=

(

∂rj1(r, p) ∂pj1(r, p)
∂rj2(r, p) ∂pj2(r, p).

)

If X and Y are linear normed spaces, we write L(X ,Y) for the space of linear and
bounded operators from X to Y. Furthermore, |v|2 is the Euclidean norm of a vector
v ∈ R

3. Abusing the notation slightly, we denote the Euclidean norm on R
3 × R

3

by the same symbol, i.e., |(v, w)|2 :=
√

|v|22 + |w|22 for v, w ∈ R
3. If A ∈ R

3×3, then
|A|F denotes the Frobenius norm of A. Finally, throughout the paper, C is a generic
constant.

3.2. Mathematically rigorous formulation of the optimal control prob-

lem. In the following we define a rigorous notion of solutions to the system of state
equations in (3.6)–(3.8). We start with Maxwell’s equation and define the linear and
unbounded operator

A : X ×X → X ×X, A :=

(

0 − curl
curl 0

)

with its domain of definition D(A) = HΓ
curl. In view of Remark 2.1, Maxwell’s equation

can then be reformulated by the following Cauchy-Problem:

(3.12)

∂

∂t

(

E(t)
B(t)

)

+ A
(

E(t)
B(t)

)

= j a.e. in [0, T ]

(

E(0)
B(0)

)

=

(

E0

B0

)
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As shown in [13, Chapter XVII.B., Section 4] and [14, Chapter IX, Section 3], −iA
is self-adjoint, i.e., −iA = iA∗ = −(iA)∗, and consequently the theorem of Stone
states that A is the infinitesimal generator of a C0-semigroup, see [38]. We denote
this semigroup and its two components by

(3.13) G(t) : X ×X → X ×X, G(t) :=

(

E(t)
B(t)

)

.

As G is strongly continuous, the following notion of solutions to (3.12) is meaningful:
Definition 3.7 (Mild solution of Maxwell’s equations). Let (E0, B0) ∈ X ×X

and j ∈ L1([0, T ];X)2 be given. Then we call (E,B) ∈ C([0, T ];X)2, given by

(3.14)

(

E(t)
B(t)

)

= G(t)

(

E0

B0

)

+

∫ t

0

G(t− τ)j(r, p)(τ) dτ 0 ≤ t ≤ T,

mild solution of the Cauchy problem (3.12) on [0, T ].
Note that the strong continuity of G implies that the right-hand side in (3.14)

indeed defines an element of C([0, T ];X)2. Moreover, by strong continuity, there are
constants M ≥ 1 and ω ≥ 0 such that

(3.15) ‖G(t)‖L(X×X,X×X) ≤ Meω t ∀ t ∈ [0, T ]

giving in turn the following a priori estimate

(3.16) ‖(E,B)‖C([0,T ];X×X) ≤ 2Meω T
(

||(E0, B0)‖X×X + ‖j‖L1([0,T ];X×X)

)

.

Next we turn to the Poisson equation (3.8). As the Dirichlet data are given by
the control function u ∈ L2(Γ), we employ the following notion of solutions:

Definition 3.8 (Very weak solution of Poisson equation). For given u ∈ L2(Γ)
we call η ∈ L2(Ω) very weak solution of (3.8), if it solves the very weak formulation

(3.17) −
∫

Ω

η∆v dx +

∫

Γ

u ∂nv dς = 0 ∀ v ∈ H.

Lemma 3.9. For every u ∈ L2(Γ) there exists a unique solution η ∈ L2(Ω) of
(3.17) satisfying an a priori estimate

‖η‖L2(Ω) ≤ C ‖u‖L2(Γ)

with a constant C > 0 independent of u and η.
Proof. Assumption 3.4 and the open mapping theorem yield that −∆−1 ∈

L(L2(Ω),H) and consequently (−∆∗)−1 ∈ L(H∗, L2(Ω)). Moreover, by definition
of H, the mapping

R : L2(Γ) → H∗, 〈Ru, v〉H∗,H := −
∫

Γ

u ∂nv dς, u ∈ L2(Γ), v ∈ H

is linear and continuous. Therefore,

(3.18) η = (−∆∗)−1Ru

is the unique solution of (3.17). This immediately implies the a priori estimate with
C = ‖(−∆)−1‖L(L2(Ω),H)‖R‖L(L2(Γ),H∗).

Remark 3.10. The low regularity of the very weak solution implies that the
external magnetic field b = ∇η is in general only a distribution and no proper function.
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Note however that, thanks to integration by parts in (3.5), only η and u appear on the
right hand side of (3.7a).

Remark 3.11. We point out that the magnetic field b = ∇η can be extended
outside of Ω in a divergence-free manner. The boundary data u, i.e., the control
function, can physically be interpreted as a surface current density on Γ. Naturally,
one can, in general, not realize such current density in L2(Γ) in practice so that the
numerical results presented in Section 7.4 are rather of theoretical interest.

Based on the above findings, in particular (3.14) and (3.18), we can eliminate E,
B, and η from the state system to obtain a system of equations in r, p, and u only.
This gives rise to the following definition:

Definition 3.12 (Solution of state system). Let the mappings j, FL, and e be
defined as follows:
1. Current density:

j : C([0, T ];R3)2 → C([0, T ];X)2, j(r, p)(x, t) :=

(

−q ϕ(x − r(t))v(p(t))
0

)

,

2. Lorentz force:

FL : C([0, T ];R3)2 → C([0, T ];X)

FL(r, p)(x, t) := E(x, t) + β(p(t)) ×B(x, t)

= E(t)

(

E0

B0

)

+

∫ t

0

E(t− τ)j(r, p)(τ) dτ

+ β(p(t)) ×
(

B(t)

(

E0

B0

)

+

∫ t

0

B(t− τ)j(r, p)(τ) dτ

)

,

with the components E and B of the semigroup G, see (3.13)

3. State system operator:

e : C1
{0}([0, T ];R3)2 × L2(Γ) → C([0, T ];R3)2, e(w, z, u) :=

(

e1(w, z, u)
e2(w, z, u)

)

,

e1(w, z, u)(t) := ż(t) − q

∫

Ω

ϕ(x − w(t) − r0)FL(w + r0, z + p0)(t) dx

+ q

∫

Ω

(

(−∆∗)−1Ru
)

[

∇ϕ(x− w(t) − r0) × β(z(t) + p0)
]

dx

− q

∫

Γ

uϕ(x− w(t) − r0)β(z(t) + p0) × n dς

e2(w, z, u)(t) := ẇ(t) − v(z(t) + p0).

Then we call a triple (w, z, u) ∈ C1
{0}([0, T ];R3)2×L2(Γ) solution of the state system,

if it satisfies e(w, z, u) = 0.
We point out that, due to the smoothness assumptions on ϕ in (3.1) and the

regularity of the mild solution, see Definition (3.7), the mappings j, FL, and e indeed
possess the asserted mapping properties. Note that both PDEs, i.e., Maxwell’s equa-
tions as well as the Poisson equation, are incorporated into this notion of solution by
means of the solution operators of the respective PDE in form of (3.14) and (3.18).
Therefore we call the equation e(w, z, u) = 0 reduced (state) system, as it only involves
the variables w, z, and u.
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With this notion of solution to the state system at hand, we are now in the
position to state a mathematically rigorous version of the optimal control problem
under consideration:

(P)

min J (w + r0, u)

s.t. w, z ∈ C1
{0}([0, T ];R3), u ∈ L2(Γ)

e(w, z, u)(t) = 0 ∀ t ∈ [0, T ]

gi(w(t) + r0) ≤ 0, i = 1, ...,m, ∀ t ∈ [0, T ].























For the sake of clarity we recall all variables and their meaning in Table 2. Here
and in all what follows, we denote the couple (w, z) by y. For completeness we also
list the adjoint variables arising in the upcoming sections in this table.

Variable Name of quantity

State variables
E electric field
B magnetic field
r position of particle
p relativistic momentum of particle
w normalized particle position
z normalized momentum
y := (w, z)
η solution of Poisson equation
Control variable
u boundary data of Poisson equation
Adjoint variables
Φ adjoint electric field
Ψ adjoint magnetic field
̺ adjoint particle position
π adjoint relativistic momentum
ω := (̺, π)
χ adjoint Poisson solution
µ Lagrange multiplier
Further variables
j electric current
FL Lorentz force
ρ charge density
γ Lorentz factor
b external magnetic field
e external electric field
ϕ smeared out delta distribution

Table 2
Overview of arising variables

4. Analysis of the state equation. We begin the discussion of (P) with an
existence and uniqueness result for the reduced state system. To be more precise,
we prove that, for every u ∈ L2(Γ), there exists a unique y ∈ C1

{0}([0, T ];R3)2 such

that e(y, u) = 0. The proof is classical and based on Banach’s contraction principle.
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It follows the lines of [28] and [42, Section 2.4], where existence and uniqueness is
shown for the Abraham model for the case Ω = R

3 and without the Poisson equation
for the external magnetic field. Let u ∈ L2(Γ) be fix but arbitrary. The constraint
e(y, u) = 0 in (P) is equivalent to

(4.1) ẏ(t) = f(y, u)(t) ∀ t ∈ [0, T ], y(0) = 0,

where f = (f1, f2) : C([0, T ];R3)2 → C([0, T ];R3)2 is given by

f1(w, z, u)(t) := q

∫

Ω

ϕ(x − w(t) − r0)FL(w + r0, z + p0)(t) dx

− q

∫

Ω

(

(−∆∗)−1Ru
)

[

∇ϕ(x − w(t) − r0) × β(z(t) + p0)
]

dx

+ q

∫

Γ

uϕ(x− w(t) − r0)β(z(t) + p0) × n dς

f2(w, z, u)(t) := v(z(t) + p0).

For the rest of this section we suppressed the dependency of f on u, as u is fixed
throughout this section. In order to apply the Banach’s fixed point theorem, we
prove the following

Lemma 4.1. The right hand side in the reduced system (4.1) is globally Lipschitz
continuous with respect to y in the following sense

(4.2) |f(y1)(t) − f(y2)(t)|2 ≤ L ‖y1 − y2‖C([0,t];R3)2 ∀ t ∈ [0, T ]

with Lipschitz constant L ≥ 0.
Proof. First observe that, by definition of v in (2.4), we have

(4.3) |v(p)|2 ≤ c, |v′(p)|F ≤
√

3

mq
0

∀ p ∈ R
3.

Moreover, (3.1) implies

(4.4)
‖ϕ(.− r1) − ϕ(.− r2)‖L2(Ω) ≤

√

4

3
πR3 Lϕ |r1 − r2|2 ∀ r1, r2 ∈ R

3

‖ϕ(.− r2)‖L2(Ω) ≤
√

‖ϕ‖L∞(R3)‖ϕ‖L1(R3) =
√

Cϕ ∀ r2 ∈ R
3,

where Lϕ > 0 denotes the Lipschitz constant of ϕ and Cϕ := maxx∈R3 |ϕ(x)|. Note
that ϕ is globally Lipschitz since it is continuously differentiable and has bounded
support.

The assertion for f2 follows from

|f2(y1)(t) − f2(y2)(t)|2
= |v(z1(t) + p0) − v(z2(t) + p0)|2

≤ |v′(z2(t) + p0 + s(z1(t) − z2))|F |y2(t) − y1(t)|2 ≤
√

3

mq
0

‖y1 − y2‖C([0,t];R3)2 .

To verify the global Lipschitz continuity of f1, we exemplary consider

f̂(y)(t) :=q

∫

Ω

ϕ(x − w(t) − r0)

[

E(t)

(

E0

B0

)

+

∫ t

0

E(t− τ)j(w + r0, z + p0)(τ)dτ

]

dx,
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which is one of the terms that arise, if one inserts the definition of FL into f1. Now
let t ∈ [0, T ] and y1 = (w1, z1), y2 = (w2, z2) ∈ C([0, t];R3)2 be arbitrary. Using the
abbreviations ri = wi + r0 and pi = zi + p0, i = 1, 2, we obtain by means of (3.15)
that

|f̂(y1)(t) − f̂(y2)(t)|2

≤ q
(∥

∥

∥E(t)

(

E0

B0

)

∥

∥

∥

X

+

∫ t

0

‖E(t− τ)j(r1, p1)(τ)‖Xdτ
)

‖ϕ(.− r1(t)) − ϕ(. − r2(t))‖L2(Ω)

+ q

∫ t

0

‖E(t− τ)j(r1, p1)(τ) − E(t− τ)j(r2, p2)(τ)‖Xdτ ‖ϕ(.− r2(t))‖L2(Ω)

≤ qMeωT
(

‖j(r1, p1)‖L1([0,t];X×X) + ‖(E0, B0)‖X×X

)√
π RLϕ |r1(t) − r2(t)|2

+ qMeωT
√

Cϕ ‖j(r1, p1) − j(r2, p2)‖L1([0,t];X×X).

Concerning the expressions involving j, we find by employing (4.3) and (4.4) that

‖j(r1, p1) − j(r2, p2)‖L1([0,t];X×X)

= q

∫ t

0

‖ϕ(.− r1(τ))v(p1(τ)) − ϕ(.− r2(τ))v(p2(τ))‖Xdτ

≤ q

∫ t

0

(

‖ϕ(.− r1(τ)) − ϕ(.− r2(τ))‖L2(Ω)|v(p1(τ))|2

+ ‖ϕ(.− r2(τ))‖L2(Ω)|v(p1(τ)) − v(p2(τ))|2
)

dτ

≤ q T
(√

π RLϕ c ‖r1 − r2‖C([0,t];R3) +
√

Cϕ

√
3

mq
0

‖p1 − p2‖C([0,t];R3)

)

and

(4.5)
‖j(r1, p1)‖L1([0,t];X×X) = q

∫ t

0

‖ϕ(.− r1(τ))‖L2(Ω) |v(p1(τ))|2dτ

≤ q T
√

Cϕ c.

By inserting these estimates we end up with

|f̂(y1)(t) − f̂(y2)(t)| ≤ K
(

‖r1 − r2‖C([0,t];R3) + ‖p1 − p2‖C([0,t];R3)

)

≤
√

2K ‖y1 − y2‖C([0,t];R3)2

with a constant K > 0 independent of t, y1, and y2. The Lipschitz continuity of the
remaining parts in f1 can be proven by similar estimates.

Remark 4.2. We point out that the Lipschitz constant in (4.2) depends on u so
that one should rather write

|f(y1, u)(t) − f(y2, u)(t)|2 ≤ L(u) ‖y1 − y2‖C([0,t];R3)2 ∀ t ∈ [0, T ].

Of course, the proof of existence of a solution to (4.1) for fixed u is not affected by
this dependency.
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Based on the Lipschitz-estimate in Lemma 4.1, existence and uniqueness can now
be shown by Banach’s contraction principle. The arguments are classical and follow
the lines of [42, Section 2.4]. For convenience of the reader we sketch the proof in
Appendix A.

Theorem 4.3. For all u ∈ L2(Γ) there exists a unique solution y ∈ C1
{0}([0, T ];R3)2

of the reduced system (4.1) and the following a priori estimate is fulfilled

‖y‖C1([0,T ];R3)2 ≤ C1 ‖u‖L2(Γ) + C2

with a constants C1, C2 > 0 independent of u and y.

5. Existence of an optimal control. With the existence result for the re-
duced state system in Theorem 4.3 at hand, it is now straightforward to establish the
existence of a globally optimal control.

Theorem 5.1. Assume that there is a control u ∈ L2(Γ) such that the associated
state y = (w, z) ∈ C1

{0}([0, T ];R3)2 satisfies the state constraint gi(w(t) + r0) ≤ 0 for

all i = 1, ...,m and all t ∈ [0, T ]. Then there exists at least one globally optimal control
for (P).

Proof. By assumption the feasible set of (P) is non-empty. Thus there ex-
ists a minimizing sequence {yn, un} = {wn, zn, un} ⊂ C1

{0}([0, T ];R3)2 × L2(Γ), i.e.,

e(yn, un) = 0, wn(t) + r0 ∈ Ω̃ for all t ∈ [0, T ], and

J (wn + r0, un)
n→∞−→ inf (P) =: j ∈ R ∪ {−∞}.

From Assumption 3.6 we deduce

α

2
‖un‖2L2(Γ) ≤ J (wn + r0, un) − c1 T − c2

so that {un} is bounded in L2(Γ). As e(yn, un) = 0, Theorem 4.3 yields the bound-
edness of {yn} in H1([0, T ];R3)2. Consequently, there exist weakly converging subse-
quences, and w.l.o.g. we assume weak convergence of the whole sequences, i.e.

un ⇀ u∗ in L2(Γ) and yn ⇀ y∗ = (w∗, z∗) in H1(]0, T [;R3)2.

The compactness of the embedding H1(]0, T [;R3)2 →֒ C([0, T ];R3)2 then yields strong
convergence of {yn} in the maximum-norm so that Lemma 4.1 and Remark 4.2 give

‖f(yn, u
∗) − f(y∗, u∗)‖C([0,T ];R3)2 ≤ L(u∗) ‖yn − y∗‖C([0,T ];R3)2

n→∞−→ 0.

Moreover, the strong convergence of the state in C([0, T ];R3)2 further implies

‖β(pn) − β(p∗)‖C([0,T ];R3) → 0, ‖ϕ(.− rn) − ϕ(.− r∗)‖C([0,T ];H1(Ω)) → 0.

As the control only appears linearly in the state system, these convergences allow
to pass to the limit in the reduced state equation in weak form, i.e., for every v =
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(v1, v2) ∈ L2(0, T ;R3)2 there holds

∫ T

0

ẏ∗(t) · v(t) dt

= lim
n→∞

∫ T

0

ẏn(t) · v(t) dt

= lim
n→∞

∫ T

0

f(yn, un)(t) · v(t) dt

= lim
n→∞

(

∫ T

0

f(yn, u
∗)(t) · v(t) dt

− q

∫

Ω

(

(−∆∗)−1R(un − u∗)
)

∫ T

0

[

∇ϕ(x − rn(t)) × β(pn(t))
]

· v1(t)dt dx

+ q

∫

Γ

(un − u∗)

∫ T

0

[

ϕ(x − rn(t))β(pn(t)) × n
]

· v1(t)dt dς

)

=

∫ T

0

f(y∗, u∗)(t) · v(t) dt.

Therefore, we obtain

ẏ∗(t) = f(y∗, u∗)(t) f.a.a. t ∈ [0, T ].

Because of y∗ ∈ C([0, T ];R3)2 the right hand side is continuous such that y∗ ∈
C1([0, T ];R3)2. From yn → y∗ in C([0, T ];R3)2 we further infer that y∗(0) = 0,
and consequently y∗ coincides with the unique solution of (4.1) associated with u∗.
The convergence of the state in C([0, T ];R3)2 and the continuity of gi, i = 1, ...,m,
moreover yield

gi(w
∗(t) + r0) ≤ 0 ∀ i = 1, ...,m ⇔ w∗(t) + r0 ∈ Ω̃

for all t ∈ [0, T ] such that the state constraint is also fulfilled in the limit. Therefore,
the couple (y∗, u∗) fulfills all constraints in (P).

Finally, the strong convergence of {yn} in C([0, T ];R3)2, the weak convergence
of {un} in L2(Γ), and the weak lower semicontinuity of ‖.‖2L2(Γ) allow to pass to the
limit in the objective:

j = lim
n→∞

J (wn + r0, un)

≥ lim
n→∞

(

∫ T

0

J1(wn(t) + r0) dt + J2(wn(T ) + r0)
)

+ lim inf
n→∞

α

2

∫

Γ

u2
n dς

≥ J (w∗ + r0, u
∗),

which implies the optimality of (y∗, u∗).

6. First-order necessary optimality conditions. For the rest of the paper,
we slightly change the functional analytical framework of the optimal control problem
under consideration. To be more precise, we weaken the regularity of the state space
in order to obtain a more regular adjoint state and treat the state as a function in

Y = {y ∈ H1(]0, T [;R3)2 : y(0) = 0}.
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Thus the mapping associated with the reduced state system becomes e : Y ×L2(Γ) →
Z = L2(]0, T [;R3)2, with a slight abuse of notation still denoted by e. It is easily seen
that this modification does not affect the above analysis, in particular the proof of ex-
istence of an optimal control, since the state is treated as a function in H1(]0, T [;R3)2

there anyway. Note that H1(]0, T [;R3)2 →֒ C([0, T ];R3)2 so that the mappings j and
FL from Definition 3.12 are still well-defined.

Remark 6.1. If a couple (y, u) ∈ Y × L2(Γ) satisfies the constraint e(y, u) = 0,
i.e.,

ẏ(t) = f(y, u)(t) f.a.a. t ∈ [0, T ], y(0) = 0,

then f(y, u) ∈ C([0, T ];R3)2 implies y ∈ C1([0, T ];R3)2 so that y coincides with the
unique solution of (4.1) from Theorem 4.3. In other words, the treatment of (P) in
the weaker state space Y does not affect the regularity of the optimal state.

6.1. The linearized state equation. We start the derivation of a qualified
optimality system by the analysis of the linearized reduced state system.

Lemma 6.2. The reduced form e is continuously Fréchet-differentiable from Y ×
L2(Γ) to Z. Its partial derivatives at (y, u) = (w, z, u) ∈ Y × L2(Γ) in direction
(φ, h) = (φr , φp, h) ∈ Y × L2(Γ) are given by

(∂e1
∂y

(y, u)φ
)

(t) = φ̇p(t) −
(∂f1
∂y

(y, u)φ
)

(t),

(∂e2
∂y

(y, u)φ
)

(t) = φ̇r(t) −
(∂f2
∂y

(y, u)φ
)

(t),

(∂e1
∂u

(y, u)h
)

(t) = −
(∂f1
∂u

(y, u)h
)

(t),
(∂e1
∂u

(y, u)h
)

(t) = 0

with

(∂f1
∂u

(y, u)h
)

(t) = q

∫

Γ

hϕ(x− r(t))β(p(t)) × n dς

− q

∫

Ω

(−∆∗)−1Rh[∇ϕ(x− r(t)) × β(p(t))] dx,

(∂f2
∂y

(y, u)φ
)

(t) = v′(p(t))φp(t),

and

(∂f1
∂y

(y, u)φ
)

(t) = −q

∫

Ω

[

∇ϕ(x− r(t)) · φr(t)
]

FL(r, p)(t) dx

+ q

∫

Ω

ϕ(x− r(t))
(

∂yFL(r, p)φ
)

(t) dx

+ q

∫

Γ

u
[

ϕ(x − r(t))β′(p(t))φp(t)

−
[

∇ϕ(x − r(t)) · φr(t)
]

β(p(t))
]

× n dς

+ q

∫

Ω

(

(−∆∗)−1Ru
)

[

∇2ϕ(x − r(t))φr(t) × β(p(t))

−∇ϕ(x − r(t)) × β′(p(t))φp(t)
]

dx,
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with r = w + r0, p = z + p0, the derivative of the Lorentz force term FL
(

∂yFL(r, p)φ
)

(t) =
(

∂rFL(r, p)φr + ∂pFL(r, p)φp

)

(t)

=

∫ t

0

E(t− τ)
(

j′(r, p)(τ)φ(τ)
)

dτ

+ β(p(t)) ×
∫ t

0

B(t− τ)
(

j′(r, p)(τ)φ(τ)
)

dτ

+ β′(p(t))φp(t) ×
(

B(t)

(

E0

B0

)

+

∫ t

0

B(t− τ)j(r, p)(τ) dτ

)

and j′ as given in (3.11).
Proof. As a linear and bounded operator the time derivative is clearly continu-

ously Fréchet-differentiable for H1(]0, T [;R3) to L2(]0, T [;R3). All nonlinear Nemyzki-
operators involved in f are differentiated in spaces of continuous functions. Because
of its slightly non-standard structure, we exemplary study the Fréchet-differentiability
of r 7→ ∇ϕ(. − r) from C([0, T ];R3) to C([0, T ];L2(Ω)):

‖∇ϕ(.− (r + φr)) −∇ϕ(. − r) −∇2ϕ(.− r) · φr‖2C([0,T ];L2(Ω))

= max
t∈[0,T ]

∫

Ω

|∇ϕ(x − r(t) − φr(t)) −∇ϕ(x − r(t)) −∇2ϕ(x − r(t))φr(t)|2dx

= max
t∈[0,T ]

∫

Ω

∣

∣

∣

∫ 1

0

∇2ϕ
(

x− r(t) − θφr(t)
)

φr(t)dθ −∇2ϕ(x − r(t))φr(t)
∣

∣

∣

2

dx

≤ max
t∈[0,T ]

∫

Ω

∣

∣

∣

∫ 1

0

Lϕ,2 θ |φr(t)|2dθ
∣

∣

∣

2

dx =
1

4
L2
ϕ,2 |Ω| ‖φr(t)‖4C([0,T ];R3),

where Lϕ,2 denotes the Lipschitz constant of ∇2ϕ. This gives the partial differentia-
bility of f w.r.t. y. As u only appears linearly, f is moreover partially differentiable
w.r.t. u. Furthermore, one readily verifies that these partial derivatives are continuous
in (y, u). Therefore, [8, Theorem 3.7.1] gives the continuous Fréchet-differentiability
of e.

Lemma 6.3. Let (y, u) ∈ Y × L2(Γ) be given. Then for every h ∈ Z there exists
a unique solution φ = (φr, φp) ∈ Y of the linearized equation

(6.1)
∂e

∂y
(y, u)φ = h.

Proof. In view of Lemma 6.2, (6.1) is equivalent to
(

φ̇p(t)

φ̇r(t)

)

=
(∂f

∂y
(y, u)φ

)

(t) + h(t) f.a.a. t ∈ [0, T ], φ(0) = 0

with ∂yf(y, u)φ = (∂yf1(y, u)φ, ∂yf2(y, u)φ). As in the proof of Theorem 4.3, exis-
tence and uniqueness of the equivalent integral equation, given by

(

φp(t)
φr(t)

)

=

∫ t

0

[(∂f

∂y
(y, u)φ

)

(τ) + h(τ)
]

dτ,

can again be proven by Banach’s contraction principle, provided that there is a con-
stant C > 0 such that

∣

∣

∣

(∂f

∂y
(y, u)φ

)

(t)
∣

∣

∣

2
≤ C ‖φ‖C([0,t];R3)2 ∀ t ∈ [0, T ],
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cf. (4.2). (Note in this context that φ 7→ ∂yf(y, u)φ is a linear mapping so that
Lipschitz continuity is equivalent to boundedness.) The latter inequality however can
be verified by estimates similar to the proof of Lemma 4.1.

6.2. KKT conditions. Having established the differentiability of the reduced
state system, we are now in the position to derive first-order optimality system in
qualified form, i.e., Karush-Kuhn-Tucker (KKT) conditions involving Lagrange mul-
tipliers associated with the constraints in (P). To this end, let (y∗, u∗) = (w∗, z∗, u∗) ∈
Y × L2(Γ) be a arbitrary local optimum of (P). As before, we set r∗ = w∗ + r0 and
p∗ = z∗ + p0 in all what follows. It is known that the existence of Lagrange multipli-
ers requires certain constraint qualifications, see e.g. [51]. In our case, one of these,
namely the surjectivity of ∂ye(y

∗, u∗), was established in Lemma 6.3. However, we
need an additional condition to obtain a Lagrange multiplier for the pointwise state
constraint in (P), too.

Assumption 6.4 (Linearized Slater condition). We assume that there is a func-

tion ĥ ∈ L2(Γ) so that

(6.2) gi(r
∗(t)) + g′i(r

∗(t))φ̂r(t) < 0 ∀ t ∈ [0, T ], i = 1, ...,m,

where φ̂ = (φ̂r, φ̂p) ∈ Y is the solution to (6.1) for h = ĥ.
Note that the Nemyzki operators associated with g1, ..., gm are Fréchet-differentiable

from C([0, T ];R3) to C([0, T ]) by Assumption 3.6. The same holds for the functions
J1 and J2 within the objective.

Given that Assumption 6.4 is fulfilled, one can establish the existence of La-
grange multipliers, see for instance [25, Section 1.7.3.4]. To be more precise, under
Assumption 6.4 there exists (π, ̺, λ) ∈ Z × C([0, T ];Rm)∗ such that the following
KKT conditions are satisfied:

e(y∗, u∗)(t) = 0 ∀ t ∈ [0, T ](6.3a)

∂e

∂y
(y∗, u∗)∗

(

π
̺

)

− ∂J
∂y

(r∗, u∗) −
(

g′(r∗)∗λ
0

)

= 0 in Y ∗(6.3b)

∂J
∂u

(r∗, u∗) +
∂e

∂u
(y∗, u∗)∗

(

π
̺

)

= 0 in L2(Γ)(6.3c)

gi(r
∗(t)) ≤ 0 ∀ t ∈ [0, T ],

λi ≥ 0, 〈λi, gi(r
∗)〉C([0,T ])∗,C([0,T ]) = 0, i = 1, ...m.

(6.3d)

Herein the inequality λi ≥ 0 is to be understood in a distributional sense, i.e., 〈λi, v〉 ≥
0 for all v ∈ C([0, T ]) with v(t) ≥ 0 for all t ∈ [0, T ]. Moreover, we set g := (g1, ..., gm)
and denote by g′ the associated Jacobian.

For the rest of this section, we aim to transfer (6.3b) to an adjoint system and to
evaluate the gradient equation in (6.3c). We start with (6.3b), which in variational
form reads as follows

(6.4)

∫ T

0

[

π(t) ·
(∂e1
∂y

(y∗, u∗)φ
)

(t) + ̺(t) ·
(∂e2
∂y

(y∗, u∗)φ
)

(t)
]

dt

−
〈

∂J
∂r

(r∗, u∗), φr

〉

Y ∗,Y

− 〈λ, g′(r∗)φr〉C([0,T ];Rm)∗,C([0,T ];Rm) = 0

∀φ ∈ Y.

18



By employing Lemma 6.2 we find for the first term in (6.4)

∫ T

0

π(t) ·
(∂e1
∂y

(y∗, u∗)φ
)

(t) dt

=

∫ T

0

φ̇p(t) · π(t) dt − q IL(π, y∗, φ)

+ q

∫ T

0

φr(t) ·
(

∫

Ω

[

FL(r∗, p∗)(t) · π(t)
]

∇ϕ(x − r∗(t)) dx

+

∫

Ω

(

(−∆∗)−1Ru∗
)

[

β(p∗(t)) ×∇2ϕ(x− r∗(t))π(t)
]

dx

−
∫

Γ

u∗
[

∇ϕ(x − r∗(t)) · π(t)
](

n× β(p∗(t))
)

dς

)

dt

− q

∫ T

0

φp(t) ·
(

∫

Ω

(

(−∆∗)−1Ru∗
)

[

β′(p∗(t))π(t) ×∇ϕ(x − r∗(t))
]

dx

−
∫

Γ

u∗ ϕ(x− r∗(t))
(

n× β′(p∗(t))π(t)
)

dς

)

dt,

where IL(π, y∗, φ) is defined by

IL(π, y∗, φ) :=

∫ T

0

π(t) ·
∫

Ω

ϕ(x− r∗(t))
(

∂yFL(r∗, p∗)φ
)

(t) dx dt.

In view of Lemma 6.2, applying Fubini’s theorem to this expression leads to

IL(π, y∗, φ)

=

∫ T

0

∫ t

0

∫

Ω

[

E(t− τ)
(

j′(r∗, p∗)(τ)φ(τ)
)

+ β(p∗(t)) × B(t− τ)
(

j′(r∗, p∗)(τ)φ(τ)
)

]

· ϕ(x− r∗(t))π(t)dx dτ dt

+

∫ T

0

∫

Ω

ϕ(x− r∗(t))β′(p(t))φp(t) ×B∗(t) · π(t) dx dt

=

∫ T

0

φ(t) ·
∫

Ω

j′(r∗, p∗)(t)⊤
∫ T

t

G(τ − t)∗κ(r∗, p∗, π)(τ) dτ dx dt

+

∫ T

0

φp(t) ·
∫

Ω

B∗(t) × ϕ(x − r∗(t))β′(p∗(t))π(t) dx dt,

where we abbreviated

B∗(t) := B(t)

(

E0

B0

)

+

∫ t

0

B(t− τ)j(r, p)(τ) dτ

and set

κ : R3 × R
3 × R

3 → R
3 × R

3

κ(r, p, π) :=

(

ϕ(x− r)π
π × ϕ(x− r)β(p)

)

.
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Moreover let us define

(6.5)

(

Φ(t)
Ψ(t)

)

:=

∫ T

t

G(τ − t)∗κ(r∗, p∗, π)(τ) dτ

Since −iA is self-adjoint, the theorem of Stone implies that G(t)∗ is the semigroup
generated by the adjoint operator

A∗ : X ×X → X ×X, A∗ =

(

0 curl
− curl 0

)

with domain D(A∗) = D(A) = HΓ
curl. Thus (Φ,Ψ) ∈ C([0, T ];X)2 is the mild solution

of the following backward-in-time problem:

(6.6)
− ∂

∂t

(

Φ(t)
Ψ(t)

)

+ A∗

(

Φ(t)
Ψ(t)

)

=

(

ϕ( . − r∗(t))π(t)

π(t) × ϕ( . − r∗(t))β(p∗(t))

)

Φ(T ) = Ψ(T ) = 0.

By setting ω := (̺, π) and summarizing the above transformations, we obtain for the
first two addends in (6.4)

∫ T

0

[

π(t) ·
(∂e1
∂y

(y∗, u∗)φ
)

(t) + ̺(t) ·
(∂e2
∂y

(y∗, u∗)φ
)

(t)
]

dt

=

∫ T

0

φ̇(t) · ω(t) dt +

∫ T

0

φ(t) · A(y∗, u∗, ω)(t) dt

with

(6.7)

A(y∗, u∗, ω)(t) =

(

Ar(y∗, u∗, ω)(t)
Ap(y∗, u∗, ω)(t)

)

:= q

( ∫

Ω

[

FL(r∗, p∗)(t) · π(t)
]

∇ϕ(x − r∗(t)) dx

−
∫

Ω
B∗(t) × ϕ(x − r∗(t))β′(p∗(t))π(t) dx

)

+ q





∫

Ω
η∗
[

β(p∗(t)) ×∇2ϕ(x − r∗(t))π(t)
]

dx

−
∫

Ω
η∗
[

β′(p∗(t))π(t) ×∇ϕ(x − r∗(t))
]

dx





+ q

(

−
∫

Γ
u∗
[

∇ϕ(x − r∗(t)) · π(t)
](

n× β(p∗(t))
)

dς
∫

Γ u∗ ϕ(x − r∗(t))
(

n× β′(p∗(t))π(t)
)

dς

)

+ q2

(

−
∫

Ω v(p∗(t))
[

∇ϕ(x− r∗(t)) · Φ(t)
]

dx
∫

Ω ϕ(x − r∗(t)) v′(p∗(t))Φ(t) dx

)

−
(

0
v′(p∗(t))̺(t)

)

,

where η∗ = (−∆∗)−1 Ru∗. Thus the adjoint equation (6.4) becomes

(6.8)

∫ T

0

φ̇(t) · ω(t) dt +

∫ T

0

φ(t) · A(y∗, u∗, ω)(t) dt−
〈

∂J
∂r

(r∗, u∗), φr

〉

Y ∗,Y

−〈λ, g′(r∗)φr〉C([0,T ];Rm)∗,C([0,T ];Rm) = 0 ∀φ ∈Y.

20



By the Riesz representation theorem λ ∈ C([0, T ];Rm)∗ can be identified with a
function of bounded variations. This leads to the following result, whose detailed
proof is given in Appendix B.

Lemma 6.5. The adjoint particle position ̺ and the adjoint momentum π sat-
isfy ̺ ∈ BV([0, T ];R3) and π ∈ W 1,∞(]0, T [;R3). Together with a function µ ∈
NBV([0, T ];Rm) they fulfill the following ODEs backward in time:

−π̇(t) = −Ap(y∗, u∗, ̺, π)(t) a.e. in ]0, T [(6.9)

π(T ) = 0(6.10)

− ˙̺(t) = −Ar(y
∗, u∗, ̺, π)(t) + ∇J1(r∗(t)) − g′(r∗(t))⊤µ̇(t) a.e. in ]0, T [(6.11)

̺(T ) = ∇J2(r∗(T )).(6.12)

In addition, µ is monotone increasing and satisfies
∫ T

0

g(r∗(t)) · dµ(t) = 0.

Moreover, ̺ only admits finitely many points of discontinuity t1, ..., tℓ in ]0, T [, at each
of which

(6.13) ̺(ti) − lim
εց0

̺(ti − ε) = g′(r∗(ti))
⊤
(

lim
εց0

µ(ti − ε) − µ(ti)
)

, i = 1, ..., ℓ,

holds true.
Next we turn to the gradient equation (6.3c). Focusing on the second addend in

(6.3c), we obtain by means of Lemma 6.2 that
∫

Γ

( ∂e

∂u
(y∗, u∗)∗ω

)

φu dς

=

∫ T

0

(

π(t)
̺(t)

)

·
( ∂e

∂u
(y∗, u∗)φu

)

(t) dt

= q

∫ T

0

π(t) ·
∫

Ω

(

(−∆∗)−1Rφu

)[

∇ϕ(x− r∗(t)) × β(p∗(t))
]

dx dt

− q

∫ T

0

π(t) ·
∫

Γ

φuϕ(x − r∗(t))β(t, p∗(t)) × n dς dt

=

∫

Γ

φu q

∫ T

0

(

R∗(−∆)−1
[

(

∇ϕ(x − r∗(t)) × β(p∗(t))
)

· π(t)
]

−
[

ϕ(x− r∗(t))β(p∗(t)) × n
]

· π(t)
)

dt dς.

Let us define the adjoint Poisson solution by

χ(t) := −∆−1
[

(

∇ϕ( . − r∗(t)) × β(p∗(t))
)

· π(t)
]

∈ H.

Note that the regularity w.r.t. time carries over from π to χ so that

χ ∈ W 1,∞(]0, T [;H).

Then, in view of ∂uJ (r∗, u∗) = αu∗ ∈ L2(Γ) and R∗ = −∂n : H →  L2(Γ), the gradient
equation (6.3c) becomes

∫

Γ

(

q

∫ T

0

[

− ∂nχ(t) −
[

ϕ(x − r∗(t))β(p∗(t)) × n
]

· π(t)
]

dt + αu∗
)

φu dς = 0

∀φu ∈ L2(Γ)
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and the fundamental lemma of calculus of variations yields

u∗(x) =
q

α

∫ T

0

[

∂nχ(x, t) +
[

ϕ(x− r∗(t))β(p∗(t)) × n
]

· π(t)
]

dt a.e. on Γ.

Summarizing the results we have, thus, derived the following first-order necessary
optimality conditions for (P):

Theorem 6.6 (KKT conditions). Let u∗ ∈ L2(Γ) be a locally optimal boundary
control with associated states (E∗, B∗, η∗, r∗, p∗) ∈ C([0, T ];X)2×L2(Ω)×C1([0, T ];R3)2.
Assume further that the linearized Slater condition in Assumption 6.4 is fulfilled. Then
there exist adjoint states

(Φ,Ψ, χ, ̺, π) ∈ C([0, T ];X)2 ×W 1,∞(]0, T [;H) × BV([0, T ];R3) ×W 1,∞([0, T ];R3)

and a Lagrange multiplier µ ∈ NBV([0, T ];Rm) so that following optimality system is
fulfilled:

State equations:

Maxwell equations:

∂

∂t

(

E∗(t)
B∗(t)

)

+ A
(

E∗(t)
B∗(t)

)

=

(

−q ϕ( . − r∗(t)) v(p∗(t))
0

)

a.e. in [0, T ]

E∗(0) = E0, B∗(0) = B0

Newton-Lorenz equation:

ṗ∗(t) = q
(

∫

Ω

ϕ(x − r∗(t))
(

E∗(t) + β(p∗(t)) ×B∗(t)
)

dx

+

∫

Γ

u∗ ϕ(x − r∗(t))β(p∗(t)) × n dς

−
∫

Ω

η∗
[

∇ϕ(x − r∗(t)) × β(p∗(t))
]

dx
)

∀ t ∈ [0, T ]

p∗(0) = 0

ṙ∗(t) = v(p∗(t)) ∀ t ∈ [0, T ]

r∗(0) = 0

Poisson’s equation in very weak form:

∫

Ω

η∗∆v dx =

∫

Γ

u∗ ∂nv dς ∀ v ∈ H

Adjoint equations:

Adjoint Maxwell equations:

− ∂

∂t

(

Φ(t)
Ψ(t)

)

+ A∗

(

Φ(t)
Ψ(t)

)

=

(

ϕ( . − r∗(t))π(t)

π(t) × ϕ( . − r∗(t))β(p∗(t))

)

Φ(T ) = Ψ(T ) = 0
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Adjoint ODE system:

(6.14)

−π̇(t) = q

∫

Ω

B∗(t) × ϕ(x − r∗(t))β′(p∗(t))π(t) dx

+ q

∫

Ω

η∗
[

β′(p∗(t))π(t) ×∇ϕ(x − r∗(t))
]

dx

− q

∫

Γ

u∗ ϕ(x− r∗(t))
(

n× β′(p∗(t))π(t)
)

dς

− q2
∫

Ω

ϕ(x− r∗(t)) v′(p∗(t))Φ(t) dx + v′(p∗(t))̺(t)

a.e. in ]0, T [

π(T ) = 0

(6.15)

− ˙̺(t) = −q

∫

Ω

η∗
[

β(p∗(t)) ×∇2ϕ(x− r∗(t))π(t)
]

dx

+ q

∫

Γ

u∗
[

∇ϕ(x − r∗(t)) · π(t)
](

n× β(p∗(t))
)

dς

− q

∫

Ω

[(

E∗(t) + β(p∗(t)) ×B∗(t)
)

· π(t)
]

∇ϕ(x − r∗(t)) dx

+ q2
∫

Ω

v(p∗(t))
[

∇ϕ(x − r∗(t)) · Φ(t)
]

dx

+ ∇J1(r∗(t)) − g′(r∗(t))⊤µ̇(t) a.e. in ]0, T [

̺(T ) = ∇J2(r∗(T ))

Jump conditions:

(6.16) ̺(ti) − lim
εց0

̺(ti − ε) = g′(r∗(ti))
⊤
(

lim
εց0

µ(ti − ε) − µ(ti)
)

, i = 1, ..., ℓ,

Adjoint Poisson equation:

−∆χ(x, t) =
(

∇ϕ(x− r∗(t)) × β(p∗(t))
)

· π(t) f.a.a. (x, t) ∈ ]0, T [×Ω

χ(x, t) = 0 f.a.a. (x, t) ∈ ]0, T [×Γ

Gradient equation:

u∗(x) =
q

α

∫ T

0

[

∂nχ(x, t) +
[

ϕ(x − r∗(t))β(p∗(t)) × n
]

· π(t)
]

dt a.e. on Γ

Complementary relations:

µj monotone increasing,

∫ T

0

gj(r
∗(t)) dµj(t) = 0, gj(r

∗(t)) ≤ 0 ∀ t ∈ [0, T ]

for all j = 1, ..,m

Remark 6.7. As a function of bounded variation, µ can be decomposed as

µ = µa + µd + µs,
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where µa ∈ AC([0, T ];Rm) is absolutely continuous and µd ∈ L∞(]0, T [;Rm) is a
step function covering the discontinuities of µ. Moreover, µs ∈ C([0, T ];Rm) is the
singular part, which is non-constant and whose derivative vanishes almost everywhere.
Consequently, µ̇ in (6.15) can be replaced by µ̇a, while (6.16) holds also with µd instead
of µ.

Remark 6.8. By integration by parts one can formally derive a strong formula-
tion of the adjoint Maxwell equations in Theorem 6.6:

− ∂

∂t
Φ(x, t) + curl Ψ(x, t) = ϕ(x− r∗(t))π(t) in Ω × [0, T ]

(6.17)

− ∂

∂t
Ψ(x, t) − curl Φ(x, t) = π(t) × ϕ(x − r∗(t))β(p∗(t)) in Ω × [0, T ]

(6.18)

div
( ∂

∂t
Φ(x, t)

)

= − div
(

ϕ(x− r∗(t))π(t)
)

in Ω × [0, T ]

(6.19)

div
( ∂

∂t
Ψ(x, t)

)

= − div
(

π(t) × ϕ(x− r∗(t))β(p∗(t))
)

in Ω × [0, T ]

(6.20)

Φ(ς, t) × n = 0,
∂

∂t
Ψ(ς, t) · n = −π(t) × ϕ(ς − r∗(t)β(p∗(t))) · n in Γ × [0, T ]

(6.21)

Φ(x, T ) = 0, Ψ(x, T ) = 0 in Ω.
(6.22)

Note that the right hand side in (6.17)–(6.18) does, in general, not satisfy a conser-
vation of charge, which gives rise to non-standard equations in (6.19) and (6.20) and
the unusual boundary condition in (6.21).

7. Numerical investigations. In the following we illustrate by means of a rep-
resentative example that the optimal control problem (P) can be treated numerically.
We follow the analytical approach and use the reduced state system of Definition 3.12
for our numerical investigations. After a brief description of the numerical method
we will present some exemplary results.

7.1. Discretization of the state system. We start the description of the nu-
merical method with the discretization of the state system. Inspired from the analyt-
ical treatment of Maxwell’s equations by means of semigroup theory, we approximate
the solution of Maxwell’s equations with the help of their fundamental solution, i.e.,
the semigroup arising if Ω = R

3. We thus neglect the influence of any boundary condi-
tions. In case of a single point charge, i.e., charge and current as in (2.2) and (2.3), this
fundamental solution allows an explicit representation of the arising electromagnetic
fields, the so called Liénard-Wiechert fields, cf. e.g. [27, 42]:

E(x, t) =
q

4πǫ

(

1 − |β(p(tret))|22
)

|Rv(tret, p(tret))|32
Rv(tret, p(tret))

+
q

4πǫc2|Rv(tret, p(tret))|32
R(tret) × (Rv(tret, p(tret)) × v̇(p(tret)))

(7.1)

B(x, t) = c ǫ µ
R(tret)

|R(tret)|2
× E(x, t)(7.2)
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with

R(t) := x− r(t), tret := tret(x, t) = t− R(tret)

c
,

Rv(t, p) := (R(t) − β(p)R(t)) .

For the numerical realization these expressions are further simplified. Firstly, we
neglect the difference between t and tret. Moreover, we leave out the terms arising
from an acceleration of the charge, i.e., the second addend on the right hand side of
(7.1). In contrast to the first addend which is of order 1/R2, this term grows with
1/R and thus models the far field, whose influence on the movement of the particles
can be neglected, see [28].

The Poisson equation in (3.17) is discretized by means of finite elements. We use
a uniform hexahedral mesh and piecewise trilinear and continuous ansatz functions
for both, solution and test function, which represents a variational crime due to the
low regularity of the very weak solution. A priori error analysis for this procedure
can be found in [4]. The linear system of equations arising by this discretization is
solved by the CG method preconditioned via an incomplete LU decomposition of the
stiffness matrix.

Finally, the relativistic Newton-Lorentz equations (3.7) are solved numerically by
the so called Boris scheme, a second-order time stepping scheme especially tailored to
this type of equations of motions, described in [5, 7]. It is frequently used in plasma
physics and especially for particle accelerators (as part of particle-in-cell methods),
since it is an explicit and energy conserving scheme. The physical quantities and
constants involved in (3.7) differ by several orders of magnitude, cf. Table 3 below. In
order to avoid numerical cancellation effects, we introduce a nondimensionalization
factor in the Newton-Lorentz equations. In addition, cancellation also occurs in the
numerical evaluation of the integrals involving ϕ in (3.7a). This is due to the small
support of ϕ, whose diameter amounts 10−6 and causes larger slopes of ϕ due to the
normalization in (3.1). To circumvent these problems, we use a linear transformation
to enlarge the support. The transformed integrals are approximated by the Simpson
rule weighted with ϕ(.− r) and ∇ϕ(.− r) × β(p), respectively.

7.2. Optimization algorithm. To keep the model physically meaningful it is
of major importance to fulfill the pointwise state constraint in (3.9), see Remark 3.1.
This is guaranteed by a purely primal interior point approach in form of a log-barrier
method, see e.g. [36, Chapter 19]. In [40, 41] this method has been proven to work in
function space for one dimensional problems, i.e., problems involving ODEs as in our
case. The reduction of the homotopy parameter associated with the primal interior
point method follows an update strategy by [36, Section 19.3].

For the optimization algorithm we reduce the optimal control problem to an
optimization problem in the control variable u only, which is justified by Theorem
4.3. The major advantage of this procedure is a significant reduction of the number of
optimization variables, since the control u is only one dimensional. It does not depend
on time, and has its support on Γ instead of the whole domain Ω. The dimension
of the optimization problem reduced to the control variable, thus, amounts to the
number of nodes on the boundary only. This allows to employ optimization methods,
which require large memory demand like the BFGS method, see e.g. [36, Section
6.1]. Thanks to the reduction of the dimension the BFGS method can be run for
a moderate number of degrees of freedom on a computer with 4GB RAM without
any limited memory modification. In order to globalize the method, we perform a
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curvature test to switch from the BFGS direction to the negative gradient of the
objective, if necessary, and apply a line-search according to the Armijo rule.

As a consequence of this reduction approach the mapping u 7→ J (r(u), u) as well
as its derivative have to be evaluated in every iteration of the optimization algorithm.
Here r(u) denotes the r-component of the solution of state system associated with u.
The derivative of u 7→ J (r(u), u) is computed numerically by means of the automatic
differentiation tool ADiMat [6]. As the number of control variables is much higher
than the number of output variables, which is just a real number, we use the reverse
mode. Moreover, we exclude the linear parts of the solution mapping of the state
system from automatic differentiation to differentiate them by hand. This especially
concerns the iterative solver of Poisson’s equation. To summarize we thus follow a
first-discretize-then optimize approach. It is not clear whether the discrete adjoint
equation arising in this way can be interpreted as a suitable discretization of the
adjoint system in Theorem 6.6. In particular, the adjoint Boris scheme gives rise to
future research with regard to its stability and consistency.

7.3. Test setting. For the numerical realization we chose an electron as par-
ticle. The mass at rest and the charge are chosen appropriately, see Table 3. The
computational domain Ω is a cube of size length 2 · 10−3 m. For the subdomain Ω̃
arising in the state constraint (3.9) we chose an inner cube of size length 2 · 10−4 m.
As the electron is almost moving with the speed of light, the end time was set to
T = 2 · 10−10 s.

Quantity Symbol Value (in SI units)

speed of light (in vacuum) c 2.9979 · 108 m s−1

permittivity of free space ǫ 8.8541 · 10−12 F m−1

permeability of free space µ 4π · 10−7 H m−1

electron rest mass mq
0 9.1093 · 10−31 kg

electric charge q 1.6021 · 10−19 C

Table 3
Physical constants.

For the numerical computations we focus on optimizing the particle position at
end time, i.e., we choose

J1(r) ≡ 0, J2(r) =
1

2
|r − rd|22

for the contributions to the objective in (P̃) and (P), respectively. Furthermore, the
Tikhonov parameter α in the objective is set to α = 10−9 to compensate for the
comparatively large values of the control. Consequently we are mainly interested in
steering the particle beam at a given end time to a fixed position rd. As a stopping
criterion for the overall algorithm we check if the relative error between the desired
particle position rd and the computed one is below a given tolerance.

For the computations presented in the following section, we used an equidistant
mesh with 17,576 nodes. This amounts to 7,504 nodes on the boundary, i.e., the
number of unknown control variables, which corresponds to the dimension of the op-
timization problem. For the numerical integration of the ODE we used an equidistant
time step of 10−12 s.
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7.4. Numerical results. The particle trajectories for selected iterations of the
optimization algorithms are shown in Figures 2 to 6. While the particle is colored in
black, we marked the desired end position in the upper left corner in grey. It is to be
noted that the control u only influences the magnetic field, which in turn cannot slow
down or accelerate this particle beam since its contribution to the Lorentz force only
acts perpendicular to the direction of motion, cf. (2.6a). This causes spiral shaped
trajectories such as the ones depicted in figures 1 to 6. The desired end position has
been reached after 47 iterations of the optimization algorithm with an accuracy of
3.5 · 10−8 m.

Fig. 1. Particle trajectory in iteration 0. Fig. 2. Particle trajectory in iteration 1.

Fig. 3. Particle trajectory in iteration 5. Fig. 4. Particle trajectory in iteration 20.

The optimal external magnetic field on the boundary of Ω generated by the op-
timal control u∗ is shown in Figures 7 and 8.

Table 4 shows the convergence history of the globalized BFGS interior point
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Fig. 5. Particle trajectory in iteration 40. Fig. 6. Particle trajectory in iteration 47.

Fig. 7. Front view of external magnetic field. Fig. 8. Back view of external magnetic field.

method. Beside the objective value and Euclidean norm of the gradient, Table 4
shows the used descent direction for selected iterations, where “BFGS” refers to the
BFGS direction and “Grad” is the negative gradient.

Appendix A. Proof of Theorem 4.3.

Clearly, y solves (4.1) if and only if it is a fixed point of

G : C([0, T ];R3)2 → C([0, T ];R3)2, G(y)(t) :=

∫ t

0

f(y)(τ)dτ.

We show that G is contractive, if we equip the set of continuous functions with the
following equivalent norm

‖y‖G := max
t∈[0,T ]

e−Lt|y(t)|2.

To this end, observe that for every v ∈ C([0, t];R3)2 and every τ ∈ [0, T ] there holds

‖v‖C([0,τ ];R3)2 ≤ max
s∈[0,τ ]

eLs max
s∈[0,τ ]

e−Ls|v(s)|2 ≤ eLτ ‖v‖G.

28



Iteration f-value gradient step Iteration f-value gradient step

0 0.3835 - - 35 0.0060 1.7E-5 BFGS
1 0.1509 0.0024 Grad 40 1.6E-5 1.7E-5 Grad
5 0.0748 6.0E-4 BFGS 42 9.9E-8 6.0E-6 BFGS
10 0.0091 2.6E-4 BFGS 44 4.0E-8 2.7E-7 BFGS
20 0.0086 2.3E-4 Grad 46 2.5E-9 1.4E-8 BFGS
25 0.0064 6.0E-5 BFGS 47 6.1E-10 5.4E-9 BFGS
30 0.0061 3.9E-5 BFGS

Table 4
Convergence history of the optimization algorithm.

Then we obtain by means of Lemma 4.1

‖G(y) −G(v)‖G ≤ max
t∈[0,T ]

e−Lt

∫ t

0

|f(y)(τ) − f(v)(τ)|dτ

≤ L max
t∈[0,T ]

e−Lt

∫ t

0

‖y − v‖C([0,τ ];R3)2dτ

≤ L max
t∈[0,T ]

e−Lt

∫ t

0

eLτ dτ ‖y − v‖G ≤
(

1 − e−LT
)

‖y − v‖G,

i.e., the desired contractivity of G. Thus Banach’s fixed point theorem gives the
existence of a unique solution to (4.1) as claimed.

To prove the a priori estimate we again abbreviate (r, p) := y + (r0, p0). Then
(4.3) implies for an arbitrary t ∈ [0, T ] that

|f2(y)(t)| ≤ c.

Beside (4.4), the conditions on ϕ in (3.1) clearly give that for every r ∈ R
3

‖∇ϕ(x− r)‖X ≤
√

|Ω|max
x∈R3

|∇ϕ(x)| < ∞, ‖ϕ(x− r)‖L2(Γ) ≤ Cϕ

√

|Γ| < ∞.

Thus, (3.15), (4.3), (4.4), and the definition of β in (2.5) give

|f1(y)(t)| ≤ q
(

‖ϕ(.− r(t))‖L2(Ω)‖FL(r, p)(t)‖X
+ ‖(−∆∗)−1R‖L(L2(Γ),L2(Ω))‖u‖L2(Γ)‖∇ϕ(.− r(t)‖L2(Ω)|β(p(t))|2
+ ‖u‖L2(Γ)‖ϕ(.− r(t))‖L2(Γ)|β(p(t))|2

)

≤ C1 ‖u‖L2(Γ) + C ‖FL(r, p)(t)‖X .

In view of |β(p)|2 ≤ 1 for all p ∈ R
3, cf. again (2.5) and (4.3), FL can be estimated by

‖FL(r, p)(t)‖X ≤ 2MeωT
(

‖(E0, B0)‖X×X + ‖j(r, p)‖L1([0,T ];X)

)

with

‖j(r, p)‖L1([0,T ];X) ≤ q T
√

Cϕ c,
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see (4.5). Therefore, we arrive at

|ẏ(t)| = |f(y)(t)| ≤ C1 ‖u‖L2(Γ) + C2 ∀ t ∈ [0, T ]

with constants C1, C2 > 0 independent of t, u, and y. As y(0) = 0, this gives the
desired estimate.

Appendix B. Proof of Lemma 6.5.

By the Riesz representation theorem there exists a unique function µ ∈ NBV([0, T ];Rm)
such that

(B.1) 〈λ, g′(r∗)φr〉C([0,T ];Rm)∗,C([0,T ];Rm) =

∫ T

0

(

g′(r∗(t))φr(t)
)

· dµ(t)

∀φr ∈ C([0, T ];R3).

Moreover, λ ≥ 0 implies that µ is monotonically increasing as claimed. Taking the
definition of J into account we find

〈

∂J
∂r

(r∗, u∗), φr

〉

Y ∗,Y

=

∫ T

0

J ′
1(r∗(t))φr(t) dt + J ′

2(r∗(T ))φr(T ).

By inserting this together with (B.1) in (6.8) we arrive at

∫ T

0

φ̇(t) · ω(t) dt +

∫ T

0

φ(t) ·
[

A(y∗, u∗, ω)(t) −
(

∇J1(r∗(t))
0

)

]

dt

−
∫ T

0

(

g′(r∗(t))φr(t)
)

· dµ(t) = 0 ∀φ ∈ C∞
0 ([0, T ];R3)2.

In view of (6.7), the continuity of B∗, E∗, and y∗ w.r.t. time and ω ∈ L2(]0, T [;R3)2

implies A(y∗, u∗, ω) ∈ L2(]0, T [;R3)2. Thus, according to the Du Bois Raymond
theorem for Stieltjes integrals, see e.g. [19, Lemma 3.1.9], the equivalence class ω
admits a representation as BV-function, denoted by the same symbol for simplicity,
which fulfills for all t ∈ [0, T ]

̺(t) = ̺(T ) −
∫ T

t

[

Ar(y∗, u∗, ω)(τ) −∇J1(r∗(τ))
]

dτ

+

∫ T

t

g′(r∗(τ))⊤dµ(τ)

(B.2)

π(t) = π(T ) −
∫ T

t

Ap(y∗, u∗, ω)(τ) dτ.(B.3)

The later equation immediately implies (6.9) and, since π, ̺ ∈ BV([0, T ];R3) →֒
L∞(]0, T [;R3), this ODE gives the desired regularity of π.

As a function of bounded variation µ has at most countably many discontinuities
and is differentiable almost everywhere in ]0, T [. Moreover, since µ is in addition
monotonically increasing, there holds

d

dt

∫ T

t

g′(r∗(τ))⊤dµ(τ) = −g′(r∗(t))⊤µ̇(t) f.a.a. t ∈]0, T [

30



see e.g. [19, Lemma 2.1.26]. Thus (B.2) gives (6.11).
Integrating the last integral in (B.2) by parts leads to

̺(t) + g′(r∗(t)) · µ(t)

= ̺(T ) + g′(r∗(T )) · µ(T )

−
∫ T

t

[

Ar(y∗, u∗, ω)(τ) −∇J1(r∗(τ)) +

m
∑

j=1

µj(τ) g′′j (r∗(τ))ṙ∗(τ)
]

dτ.

As the right hand side is continuous, the discontinuities of ̺ are therefore located at
the same points as the ones of µ. Moreover, as µ is of bounded variation, one has

∫ T

t

g′(r∗(τ))⊤dµ(τ) − lim
εց0

∫ T

t−ε

g′(r∗(τ))⊤dµ(τ) = g′(r∗(t))⊤
(

lim
εց0

µ(t− ε) − µ(t)
)

for every t ∈]0, T ], cf. e.g. [19, p. 66]. Since Ar(y∗, u∗, ω)(.)−∇J1(r∗(.)) ∈ L2(]0, T [;R3),
(B.2) therefore implies (6.13).

Integrating the first integral in (6.8) by parts yields

(B.4)

−
∫ T

0

φ(t) · dω(t) +

∫ T

0

φ(t) ·
[

A(y∗, u∗, ω)(t) −
(

∇J1(r∗(t))
0

)

]

dt

−
∫ T

0

(

g′(r∗(t))φr(t)
)

· dµ(t) = J ′
2(r∗(T ))φr(T ) − φ(T ) · ω(T ) ∀φ ∈ Y.

The continuity of g′(r∗( . )) gives that

ν(t) =

∫ T

t

g′(r∗(τ))⊤dµ(τ)

is of bounded variation. Since φr also continuous, we arrive at

∫ T

0

(

g′(r∗(t))φr(t)
)

· dµ(t) = −
∫ T

0

φr(t)⊤dν(t),

cf. e.g. [19, p. 67]. Hence, thanks to (B.2) and (B.3), (B.4) gives ω(T ) · φ(T ) =
J ′
2(r∗(T ))φr(T ) for all φ ∈ Y , which in turn yields the desired final time conditions

in (6.10) and (6.12).
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