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STRONG STATIONARITY CONDITIONS FOR A CLASS OF
OPTIMIZATION PROBLEMS GOVERNED BY VARIATIONAL

INEQUALITIES OF THE 2ND KIND

J. C. DE LOS REYES‡ AND C. MEYER§

Abstract. We investigate optimality conditions for optimization problems constrained by a class
of variational inequalities of the second kind. Based on a nonsmooth primal-dual reformulation of the
governing inequality, the differentiability of the solution map is studied. Directional differentiability
is proved both for finite-dimensional and function space problems, under suitable assumptions on the
active set. A characterization of B- and strong stationary optimal solutions is obtained thereafter.
Finally, based on the obtained first-order information, a trust-region algorithm is proposed for the
solution of the optimization problems.

Key words. Variational inequalities, optimality conditions, mathematical programs with equi-
librium constraints.

1. Introduction. Optimization problems with variational inequality constraints
have been intensively investigated in the last years with many important applications
in focus. Problems in contact mechanics, phase separation or elastoplasticity are some
of the most relevant application examples. Special analytical and numerical techniques
have been developed for characterizing and finding optima of such problems, mainly
in the finite-dimensional case (see [18] and references therein).

In the function space framework much of the work has been devoted to optimization
problems constrained by variational inequalities of the first kind:

min j(y, u) (1.1a)
subject to: (Ay, v − y) ≥ (u, v − y), for all v ∈ K, (1.1b)

where A : V 7→ V ∗ is an elliptic operator and K ⊂ V is closed convex set. Such
obstacle type structure has allowed to develop an analytical machinery for such kind
of problems. In addition, different type of stationarity concepts have been investi-
gated in that framework (C-, B-, M- and strong stationary points). The utilized
proof techniques include regularization approaches as well as differentiability prop-
erties (directional, conic) of the solution map or elements of set valued analysis (see
e.g. [1, 2, 10–12,16,17,19,20,22,23]).

For problems involving variational inequalities of the second kind:

min j(y, u) (1.2a)
subject to: (Ay, v − y) + ϕ(v)− ϕ(y) ≥ (u, v − y), for all v ∈ V, (1.2b)

with ϕ continuous and convex, only weak results have been obtained in the past, due
to the very general structure (see e.g. [1–3, 21]). In [4] a special class of problems
were investigated, where a richer structure of the nondifferentiability was exploited.
Nonsmooth terms of the type ϕ(y) =

∫
S
|By| ds were considered there and, by using

a tailored regularization approach, a more detailed optimality system was obtained.

‡Research Center on Mathematical Modelling (MODEMAT), Escuela Politécnica Nacional,
Quito-Ecuador

§Faculty of Mathematics, Technische Universität Dortmund, Dortmund-Germany.

1



The results were then extended to problems in fluid mechanics [5], image processing [7]
and elastoplasticity [6]. Thanks to the availability of primal and dual formulations
in elastoplasticity, the kind of optimality systems obtained in [4] were proved to be
equivalent to C-stationary optimality systems in optimization problems constrained
by variational inequalities of the first kind, see [6].

In this paper we aim to characterize further stationary points by investigating differ-
entiability properties of the solution map. In that spirit B- and strong stationarity
conditions are in focus. To avoid problems related to the regularity of the variables,
we start by considering the finite-dimensional case. A reformulation of the variational
inequality as a nonsmooth system of primal dual equations enables us to take differ-
ence quotients and prove directional differentiability of the finite-dimensional solution
operator.

The technique is then extended to the function space setting. Since in this context the
regularity of the functions as well as the structure of the active set play a crucial role,
special functional analysis and measure theoretical methods have to be considered.
As a preparatory step, the Lipschitz continuity of the solution operator from Lp(Ω)→
L∞(Ω) is proved by using Stampacchia’s technique. The directional differentiability of
the solution map is then proved by assuming that the active set has a special structure,
namely that it consists of the union of a regular subdomain of positive measure and a
set of zero capacity (see Assumption 3.16 below). With the directional differentiability
at hand, the characterization of B-stationarity points is carried out thereafter. The
theoretical part of the paper ends with the derivation of strong stationarity conditions
by an adaptation of the method of proof introduced by [20] for optimal control of the
obstacle problem.

In the last part of the paper the first order information related to the directional
derivative is utilized within a trust-region algorithm for the solution of the VI-constrai-
ned optimization problem. The computed derivative information is treated as an inex-
act descent direction, which is inserted into the trust-region framework to get robust
iterates. The performance of the resulting algorithm is tested on a representative test
problem, showing the suitability of the approach.

2. Differentiability for a finite dimensional VI of second kind. We start
by considering the following prototypical VI in Rn:

〈Ay, v − y〉+ |v|1 − |y|1 ≥ 〈u, v − y〉 ∀ v ∈ Rn. (2.1)

Throughout this section 〈., .〉 = 〈., .〉Rn denotes the Euclidean scalar product. More-
over, A ∈ Rn×n is positive definite and |v|1 =

∑n
i=1 |vi|. Existence and uniqueness

for (2.1) for arbitrary right hand sides u ∈ Rn follows by classical arguments due to
the maximal monotonicity of A+ ∂| . |1.

Definition 2.1. We denote the solution mapping associated to (2.1) by S : Rn 3
u 7→ y ∈ Rn.

By Introducing a slack variable q := u−Ay ∈ Rn, we see that (2.1) is equivalent to

q ∈ ∂| · |1(y), (2.2)

where ∂| · |1 denotes the convex subdifferential of Rn 3 v 7→ |v|1 ∈ R. Evaluating the
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subdifferential in (2.2) leads to the following system of nonsmooth equations
Ay + q = u

qiyi = |yi|, i = 1, 2, ..., n

max{|qi|, 1} = 1, i = 1, 2, ..., n.

(2.3)

In order to derive a directional derivative for S, consider a perturbed version of (2.1),
given by

Ayt + qt = u+ t h

qtiy
t
i = |yti |, i = 1, 2, ..., n

max{|qti |, 1} = 1, i = 1, 2, ..., n,

(2.4)

which leads to the following nonsmooth system for the difference quotient:

A
yt − y
t

+
qt − q
t

= h

qtiy
t
i − qiyi − (|yti | − |yi|)

t
= 0, i = 1, 2, ..., n

max{|qti |, 1} −max{|qi|, 1}
t

= 0, i = 1, 2, ..., n.

(2.5)

In the sequel, we will pass to the limit in (2.5) to obtain the relations determining
the directional derivative of S. For this purpose we test the VI associated with (2.4),
given by

〈Ayt, v − yt〉+ |v|1 − |yt|1 ≥ 〈u+ th, v − yt〉 ∀ v ∈ Rn, (2.6)

with v = y. If we test (2.1) with v = yt and add both inequalities, we arrive at

λmin(A)
∣∣∣yt − y

t

∣∣∣2 ≤ 〈yt − y
t

, A
yt − y
t

〉
≤
〈
h,

yt − y
t

〉
,

where | . | = | . |Rn denotes the euclidian norm and λmin(A) > 0 is the smallest eigen-
value of A. Thus ∣∣∣yt − y

t

∣∣∣ ≤ 1

λmin(A)
|h| <∞,

and so there exists a converging subsequence, w.l.o.g.
{
yt−y
t

}
t>0

itself, such that

yt − y
t

t↘0−→ η. (2.7)

In Theorem 2.6 below we will see that the limit η is unique so that the whole sequence
{(yt−y)/t} converges. This justifies to assume the convergence of the whole sequence
right from the beginning. By definition of q we have

qt − q
t

= h−A yt − y
t

t↘0−→ h−Aη =: λ, (2.8)

which in particular implies qt → q.
3



Lemma 2.2. For all i = 1, 2, ..., n there holds

qtiy
t
i − qiyi − (|yti | − |yi|)

t

t↘0−→ λiyi + qiηi − abs′(yi; ηi) (2.9)

max{|qti |, 1} −max{|qi|, 1}
t

t↘0−→ max′(|qi|; abs′(qi;λi)). (2.10)

Herein abs′ and max′ denote the directional derivatives of R 3 x 7→ |x| ∈ R and
R 3 x 7→ max{x, 1} ∈ R, i.e.,

abs′(a; b) =

{
sign(a)b, a 6= 0,

|b|, a = 0,
and max′(a; b) =


0, a < 1,

b, a > 1,

max{b, 0}, a = 1.

Proof. The mapping g : R2 → R, g(a, b) := a b− |a| is directionally differentiable and
Lipschitz continuous, and thus Hadamard-differentiable, cf. [?]. Moreover, one has

qtiy
t
i − qiyi − (|yti | − |yi|)

t
=
g
(
(yi, qi) + t(ηi, λi) + r(t)

)
− g(yi, qi)

t

with

r(t) := (yti , q
t
i)− (yi, qi)− t(ηi, λi) = o(t)

according to (2.7) and (2.8). Therefore the Hadamard-differentiability yields (2.9).
To prove (2.10) observe that, by the same argument as before, x 7→ max{x, 1} is
also Hadamard-differentiable. Thanks to the chain rule for Hadamard-derivatives the
mapping f : R → R, f(x) = max{|x|, 1} is thus Hadamard-differentiable, too. The
same reasoning as above then yields (2.10).
Remark 2.3. Note that

max′(|a|; abs′(a; b)) =


0, |a| < 1

sign(a)b, |a| > 1

max{0, ab}, |a| = 1.

In view of (2.7), (2.8), and Lemmas 2.2, we can pass to the limit as t ↘ 0 in (2.5)
and obtain in this way:

Aη + λ = h (2.11a)
λiyi + qiηi = abs′(yi; ηi), i = 1, 2, ..., n (2.11b)

max{0, qiλi} = 0 for all i ∈ {1, ..., n} with |qi| = 1. (2.11c)

(Note that the case |qi| > 1 is obsolete.) The system (2.11) will lead to a VI satisfied
by the limit η. To see this, we have to reformulate (2.11) in the following way:
Lemma 2.4. The system (2.11) is equivalent to

Aη + λ = h (2.12a)
λi = 0 for all i ∈ {1, ..., n} with yi 6= 0 (2.12b)
ηi = 0 for all i ∈ {1, ..., n} with |qi| < 1 (2.12c)

ηiqi ≥ 0 for all i ∈ {1, ..., n} with yi = 0, |qi| = 1 (2.12d)
λiqi ≤ 0 for all i ∈ {1, ..., n} with yi = 0, |qi| = 1. (2.12e)
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Proof. (2.11)⇒ (2.12):
It is evident that

max{0, qiλi} = 0 if |qi| = 1 ⇐⇒ qiλi ≤ 0 if |qi| = 1, (2.13)

which implies (2.12e). Next, let i ∈ {1, ..., n} such that yi 6= 0. Then

qi =
yi
|yi|

= sign(yi),

and hence (2.11b) yields λiyi = 0, which in turn gives (2.12b) due to yi 6= 0. Now
take i ∈ {1, ..., n} with |qi| < 1 arbitrary. Then we have yi = 0, and hence (2.11b)
implies qiηi = |ηi|. Because of |qi| < 1 this results in (2.12c). To show (2.12d), let
i ∈ {1, ..., n} with yi = 0 and |qi| = 1 be arbitrary. Then (2.11b) gives qiηi = |ηi| ≥ 0.

(2.12)⇒ (2.11):
Due to (2.12b) and (2.12e) we have λiqi ≤ 0 whenever |qi| = 1, which, in view of
(2.13), implies (2.11c). Because of (2.12b), we have

λiyi + ηiqi = ηiqi ∀ i = 1, ..., n. (2.14)

Now, if yi 6= 0, then qi = sign(yi) and thus ηiqi = sign(yi)ηi. If yi = 0 and |qi| < 1,
then, by (2.12c), we obtain ηiqi = 0 = |ηi|. If finally yi = 0 and |qi| = 1, then
(2.12d) implies ηiqi = |ηi||qi| = |ηi|. In summary (2.11b) is verified, which yields the
assertion.

System (2.12) is not yet complete, since there is still one relation missing to derive
the VI fulfilled by η. The missing part is stated in the following lemma.

Lemma 2.5. There holds

ηiλi = 0 for all i ∈ {1, ..., n} with yi = 0, |qi| = 1.

Proof. Let i ∈ {1, ..., n} with yi = 0 and |qi| = 1 be arbitrary. W.l.o.g. we assume
that qi = 1. The case qi = −1 can be discussed analogously. If ηi = 0, the assertion
is trivially fulfilled. So let ηi 6= 0. By (2.12d) and qi = 1 we then have ηi > 0. Due to
(2.7) this implies

yti − yi
t

> 0 for t > 0 sufficiently small

and thus, due to yi = 0,

yti > 0 for t > 0 sufficiently small.

Consequently, qti = sign(yti) = 1 for t > 0 sufficiently small and hence, since qi = 1 by
assumption,

λi = lim
t↘0

qti − qi
t

= 0,

which gives the assertion.
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Now we have everything at hand to prove the main result of this section, i.e., the
directional differentiability of S : u 7→ y.
Theorem 2.6. The solution mapping S of (2.1) is directionally differentiable at
every point u ∈ Rn and the directional derivative η = S′(u;h) in direction h ∈ Rn
solves the following VI of first kind:

η ∈ K(y), 〈Aη, v − η〉 ≥ 〈h, v − η〉 ∀ v ∈ K(y) (2.15)

where K(y) is the convex cone defined by

K(y) := {v ∈ Rn : vi = 0 if |qi| < 1, viqi ≥ 0 if yi = 0, |qi| = 1}. (2.16)

Proof. Define the biactive set by

B := {i ∈ {1, ..., n} : yi = 0, |qi| = 1}.

First we show that the limit η solves (2.15). We already know that η satisfies (2.12) and
in addition ηiλi = 0 if yi = 0 and |qi| = 1. Thus (2.12c) and (2.12d) imply η ∈ K(y),
i.e., feasibility of η. Now let v ∈ K(y) be arbitrary. Then (2.12b), v ∈ K(y), and
(2.12e) yield

〈λ, v〉 =
∑
i∈B

λivi =
∑
i∈B

λi qiqi︸︷︷︸
=1

vi ≤ 0. (2.17)

Similarly, we infer from (2.12b), η ∈ K(y), and Lemma 2.5 that

〈λ, η〉 =
∑
i∈B

λivi = 0.

Therefore, if we multiply (2.12a) with v − η, then we arrive at

〈h, v − η〉 = 〈Aη, v − η〉+ 〈λ, v〉 − 〈λ, η〉 ≤ 〈Aη, v − η〉,

so that the limit η indeed solves (2.15).
Since A is positive definite and K(y) is convex and closed, the operator A+∂IK(y)(.) :

Rn → 2R
n

is maximal monotone, where IK(y) denotes the indicator function of the
set K(y). Thus there is a unique solution of (2.15). Since every accumulation point
η of the difference quotient (yt − y)/t solves (2.15), the limit is thus unique and
consequently a well-known argument gives the convergence of the whole sequence.
Corollary 2.7. Let the biactive set have zero cardinality, i.e. yi = 0 implies |qi| < 1.
Then S is Gâteaux-differentiable, i.e. S′(u;h) is linear and continuous w.r.t. h, and
η = S′(u)h is given by the unique solution of the following linear system:

ηi = 0 for all i ∈ {1, ..., n} with yi = 0 (2.18)∑
j:yj 6=0

Aijηj = hi for all i ∈ {1, ..., n} with yi 6= 0. (2.19)

Proof. If the biactive set has zero cardinality, then (2.12c) implies (2.18). Moreover,
(2.12b) immediately yields (2.19). Since A is positive definite, the same holds for
AI := (Aij)i,j∈I with I := {i ∈ {1, ..., n} : yi 6= 0}. Thus AI is invertible and
ηA = A−1

I hI . Together with (2.18), i.e. η{1,...,n}\I = 0, this implies that η is uniquely
determined by (2.18) and (2.19). Moreover, due to the invertibility of AI , η depends
continuously on h as claimed.
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3. Weak differentiability for a VI of second kind in function space. Next
we extend the result of the preceding section to a VI of second kind in function space.
For this purpose, let Ω ⊂ Rd, d ≥ 1, be a bounded domain with regular boundary
satisfying the cone condition. We consider the following prototypical VI of second
kind:

〈Ay, v − y〉+

∫
Ω

|v| dx−
∫

Ω

|y| dx ≥ 〈u, v − y〉 ∀ v ∈ V, (VI2)

where we abbreviated V := H1
0 (Ω). From now on 〈., .〉 denotes the dual pairing in

V . Furthermore A : V → V ∗ stands for the following linear second-order elliptic
differential operator:

Ay =

d∑
i=1

( d∑
j=1

∂

∂xi
aij

∂y

∂xj
+ bi

∂y

∂xi

)
+ γ y, (3.1)

where aij , bi, γ ∈ L∞(Ω), i, j = 1, .., d, are such that A is coercive, i.e.

〈Ay, y〉 ≥ α ‖y‖2V , (3.2)

with a constant α > 0. In addition, we require

γ ≥ 0. (3.3)

Moreover, u ∈ V ∗ is given a inhomogeneity.

The plan of this section is as follows. First we state some well known results for
(VI2) concerning existence, uniqueness, and an equivalent reformulation by means of
a complementarity-like system. Then we introduce a perturbed problem, similar to
(2.4), and derive several auxiliary results for the associated difference quotients and
their (weak) limits. In order to show an infinite dimensional analogon to (2.12b), we
unfortunately need to assume some properties of the active set, see Assumption 3.16
below. Based on this assumption, we can derive a weak directional differentiability
result, similar to Theorem 2.6 (see Theorem 3.19 below).

Lemma 3.1. For every u ∈ V ∗ there exists a unique solution y ∈ V of (VI2), which
we denote by y = S(u). The associated solution operator S : V ∗ → V is globally
Lipschitz continuous, i.e., there exists a constant L > 0 such that

‖S(u1)− S(u2)‖V ≤ L ‖u1 − u2‖V ∗ ∀u1, u2 ∈ V ∗. (3.4)

Proof. Existence and uniqueness for (VI2) follows by standard arguments from the
maximal monotonicity of A + ∂‖.‖L1(Ω), see for instance [1]. To prove the Lipschitz
continuity we test the VI for y1 = S(u1) with y2 = S(u2) and vice versa and add the
arising inequalities to obtain

〈A(y1 − y2), y1 − y2〉 ≤ 〈u1 − u2, y1 − y2〉.

The coercivity of A then yields the result.

Remark 3.2. Sometimes we will use S with different domains and ranges, which
may be inferred from the context.
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By standard arguments based on Fenchel duality or the Hahn-Banach theorem, the
VI in (VI2) can be rewritten in terms of a complementarity-like system, see e.g. [4].
In this way the following result is obtained:
Lemma 3.3. For every u ∈ V ∗ there exists a unique function q ∈ L2(Ω) such that the
unique solution y ∈ V of (VI2) fulfills the following complementarity-like system:

〈Ay, v〉+

∫
Ω

q v dx = 〈u, v〉 ∀ v ∈ V (3.5a)

q(x)y(x) = |y(x)|, |q(x)| ≤ 1 a.e. in Ω. (3.5b)

The function q is called slack function in all what follows, and we will refer to (3.5b)
as slackness condition in the sequel.
Next let h ∈ V ∗ be arbitrary and {tn} ⊂ R+ be an arbitrary sequence of positive
numbers tending to 0. We denote the solutions to the VI associated to u+ tnh by yn,
i.e.,

〈Ayn, v − yn〉+

∫
Ω

|v| dx−
∫

Ω

|yn| dx ≥ 〈u+ tnh, v − yn〉 ∀ v ∈ V. (3.6)

The associated slack function is analogously denoted by qn ∈ L2(Ω), i.e.

〈Ayn, v〉+

∫
Ω

qn v dx = 〈u+ tnh, v〉 ∀ v ∈ V,

qn(x)y(x) = |yn(x)|, |qn(x)| ≤ 1 a.e. in Ω.

(3.7)

By Lemma 3.1 it holds ∥∥∥yn − y
tn

∥∥∥
V
≤ ‖h‖V ∗

and thus there is a weakly convergent subsequence, denoted the same, and a limit
point η ∈ V such that

yn − y
tn

⇀ η in V. (3.8)

This simplification of notation will be justified by the uniqueness of the weak limit η,
which implies the weak convergence of the whole sequence by a well-known argument
(see Theorem 3.19 below). For the slack functions we obtain∫

Ω

qn − q
tn

v dx = 〈h, v〉 −
〈
A
yn − y
tn

, v
〉
→ 〈h−Aη, v〉 ∀ v ∈ V,

i.e.,

qn − q
tn

⇀ λ in V ∗,

with λ = h− Aη. Note that it is in general not possible to show the boundedness of
(qn − q)/tn in any Lebesgue space so that one cannot expect λ to be more regular.
Next consider the first equation in the slackness condition (3.5b) for y and yn. By
multiplying these equations with 1/tn and an arbitrary ϕ ∈ C∞0 (Ω), integrating over
Ω, and taking the difference, we arrive at∫

Ω

qn − q
tn

yn ϕdx+

∫
Ω

yn − y
tn

q ϕ dx =

∫
Ω

|yn| − |y|
tn

ϕdx, ∀ϕ ∈ C∞0 (Ω). (3.9)
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In order to pass to the limit in this relation, we have to define the following sets:

Definition 3.4. We define –up to sets of zero measure–

A := {x ∈ Ω : y(x) = 0}, As := {x ∈ Ω : |q(x)| < 1}
I := {x ∈ Ω : y(x) 6= 0}, B := {x ∈ Ω : |q(x)| = 1, y(x) = 0}
I+ := {x ∈ Ω : y(x) > 0}, I− := {x ∈ Ω : y(x) < 0}
B+ := {x ∈ Ω : q(x) = 1, y(x) = 0}, B− := {x ∈ Ω : q(x) = −1, y(x) = 0}.

(3.10)

The set A is called active set, while As is the strongly active set. Moreover, we call
I and B inactive and biactive set, respectively.

Note that

Ω = A ∪ I and A = As ∪ B,

due to (3.5b). The next lemma covers the directional differentiability of the L1-norm.
Its proof is straightforward and therefore postponed to Appendix A.

Lemma 3.5. For every ϕ ∈ L∞(Ω) it holds∫
Ω

|yn(x)| − |y(x)|
tn

ϕ(x) dx→
∫

Ω

abs′
(
y(x); η(x)

)
ϕ(x) dx,

where abs′ again denotes the directional derivative of the absolute value.

Together with Lemma 3.5 the weak convergence of (qn− q)/tn in V ∗ and (yn− y)/tn
in V and the strong convergence of yn to y in V allow to pass to the limit in (3.9),
which results in

〈λ, y ϕ〉+

∫
Ω

η q ϕ dx =

∫
Ω

abs′(y; η)ϕdx ∀ϕ ∈ C∞0 (Ω). (3.11)

Using this relation, we can prove the following result, which is just the infinite dimen-
sional counterpart to (2.12c) and (2.12d):

Lemma 3.6. There holds

η(x) = 0 a.e., where |q(x)| < 1 (3.12)
η(x) q(x) ≥ 0 a.e., where |q(x)| = 1 and y(x) = 0. (3.13)

Proof. Let ϕ ∈ C∞0 (Ω) with ϕ ≥ 0 a.e. in Ω be arbitrary. The slackness condition
(3.5b) implies for all n ∈ N that

qn(x)− q(x)

tn
y(x) ≤ 0 a.e. in Ω. (3.14)

Indeed, if y(x) = 0, then the assertion is trivial. If y(x) > 0, then (3.5b) implies
q(x) = 1 and thus qn(x)− q(x) ≤ 0, since |qn(x)| ≤ 1. Analogously, if y(x) < 0, then
q(x) = −1 and hence qn(x) − q(x) ≥ 0 is obtained. All in all we have thus proven
(3.14). Therefore we have

〈λ, y ϕ〉 = lim
n→∞

∫
Ω

qn − q
tn

y ϕ dx ≤ 0,
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and thus (3.11) yields∫
Ω

η q ϕ dx ≥
∫

Ω

abs′(y; η)ϕdx ∀ϕ ∈ C∞0 (Ω) with ϕ ≥ 0.

The fundamental lemma of the calculus of variations thus yields

η(x) q(x) ≥ abs′(y; η)(x) a.e. in Ω,

which by definition of abs′(y; η) in turn gives

η(x) q(x) ≥ |η(x)| a.e. in A.

Since |q(x)| ≤ 1 a.e. in Ω, this results in

η(x) q(x) = |η(x)| a.e. in A. (3.15)

As the slackness conditions in (3.5b) implies {x ∈ Ω : |q(x)| < 1} ⊂ {x ∈ Ω : y(x) =
0}, the result follows immediately from (3.15).

Lemma 3.7. There holds 〈λ, η〉 ≥ 0.

Proof. By inserting the definition of the slack variable q into (VI2) one obtains∫
Ω

q(v − y) dx ≤
∫

Ω

|v| dx−
∫

Ω

|y| dx ∀ v ∈ V (3.16)

and an analogous inequality for qn and yn. Inserting yn ∈ V in this inequality and y
in the corresponding one for qn and yn, adding both inequalities and dividing by t2n
yields ∫

Ω

qn − q
tn

yn − y
tn

dx ≥ 0.

Since A is elliptic and bounded, the mapping V 3 w 7→ 〈Aw, w〉 ∈ R is convex and
continuous and thus weakly lower semicontinuous. The equations for q and qn and
the weak convergence of (yn − y)/tn in V therefore imply

0 ≤ lim inf
n→∞

∫
Ω

qn − q
tn

yn − y
tn

dx

≤ lim sup
n→∞

∫
Ω

qn − q
tn

yn − y
tn

dx

= lim sup
n→∞

(〈
h,

yn − y
tn

〉
−
〈
A
(yn − y

tn

)
,
yn − y
tn

〉)
≤ lim
n→∞

〈
h,

yn − y
tn

〉
− lim inf

n→∞

〈
A
(yn − y

tn

)
,
yn − y
tn

〉
≤ 〈h, η〉 − 〈Aη, η〉 = 〈λ, η〉.

The most delicate issue, when transferring the finite dimensional findings of Section
2 to the function space setting, is to verify the conditions (2.12a) and (2.12e) on λ.
To do so, we first prove that S is Lipschitz continuous in L∞(Ω), provided that the
right hand sides in (VI2) are more regular. We employ the well-known technique of

10



Stampacchia based on the following lemma, whose proof is presented in Appendix B
for convenience of the reader.

Lemma 3.8 (Stampacchia). For every function w ∈ V and every k ≥ 0, the function
wk defined by

wk(x) :=


w(x)− k, w(x) ≥ k
0, |w(x)| < k

w(x) + k, w(x) ≤ −k
(3.17)

is an element of V . Furthermore, if there is a constant α > 0 such that

α‖wk‖2H1(Ω) ≤
∫

Ω

f wk dx ∀ k ≥ 0 (3.18)

with a function f ∈ Lp(Ω), p > max{d/2, 1}, then w is essentially bounded and there
exists a constant c > 0 so that

‖w‖L∞(Ω) ≤ c ‖f‖Lp(Ω). (3.19)

Lemma 3.9. There exists a constant K > 0 such that

‖S(u1)− S(u2)‖L∞(Ω) ≤ K ‖u1 − u2‖Lp(Ω)

for all u1, u2 ∈ Lp(Ω) with p > max{d/2, 1}. Here we identified u ∈ Lp(Ω) with an
element of V ∗.

Proof. We apply Lemma 3.8 to w := y1 − y2 with yi = S(ui), i = 1, 2. To this end
we shall verify (3.18) with f = u1 − u2. For this purpose let v ∈ V be arbitrary and
test the VI for y1 with y1 − v and the one for y2 with y2 + v and add the arising
inequalities to obtain:

〈A(y1−y2), v〉+
∫

Ω

(
|y1|+|y2|−|y1−v|−|y2+v|

)
dx ≤

∫
Ω

(u1−u2)v dx ∀ v ∈ V. (3.20)

Next let k ≥ 0 be arbitrary and define wk = (y1 − y2)k as in (3.17). In the following
we will prove that

I(x) := |y1(x)|+ |y2(x)| − |y1(x)− wk(x)| − |y2(x) + wk(x)| ≥ 0 a.e. in Ω, (3.21)

by a simple distinction of cases.

1st case: |y1(x)− y2(x)| < k:
In this case we have wk(x) = 0 and thus (3.21) is trivially fulfilled with equality.

2nd case: y1(x)− y2(x) ≥ k:
Now we obtain wk(x) = y1(x)− y2(x)− k and consequently

I(x) = |y1(x)|+ |y2(x)| − |y2(x) + k| − |y1(x)− k|.

If y1(x) ≥ k and y2(x) ≤ −k, then

I(x) = |y1(x)|+ |y2(x)|+ y2(x) + k − y1(x) + k ≥ 2k ≥ 0.

11



If y1(x) ≤ k and y2(x) ≥ −k, then

I(x) = |y1(x)|+ |y2(x)| − y2(x)− k + y1(x)− k ≥ 2
(
y1(x)− y2(x)− k

)
≥ 0,

where we used y1(x)− y2(x) ≥ k for the last estimate.
If y1(x) ≥ k and y2(x) ≥ −k, then

I(x) = |y1(x)|+ |y2(x)| − y2(x)− y1(x) ≥ 0.

If finally y1(x) ≤ k and y2(x) ≤ −k, then

I(x) = |y1(x)|+ |y2(x)|+ y2(x) + y1(x) ≥ 0,

which gives the assertion of (3.21) for this case.

3rd case: y1(x)− y2(x) ≤ −k:
In this case we get that y2(x)− y1(x) ≥ k and thus I(x) = |y1(x)|+ |y2(x)| − |y2(x)−
k|−|y1(x)+k|. Interchanging the roles of y1(x) and y2(x) and repeating the arguments
for the second case immediately yields (3.21) in the third case.

Let us now define Ak := {x ∈ Ω : |w(x)| ≥ k}. From the first part of Lemma 3.8 we
get that wk ∈ V and so we are allowed to insert wk as test function in (3.20). Owing
to the coercivity of A, the definition of wk in (3.17), (3.3), and (3.21), we then obtain

α ‖wk‖2H1(Ω) ≤ 〈Awk, wk〉

=

∫
Ak

[ d∑
i=1

( d∑
j=1

aij
∂wk
∂xj

∂wk
∂xj

dx+ bi
∂wk
∂xi

wk + γ w2
k

]
dx

≤
∫

Ω

[ d∑
i=1

( d∑
j=1

aij
∂w

∂xj

∂wk
∂xj

dx+ bi
∂w

∂xi
wk + γ wwk

]
dx

= 〈Aw, wk〉 = 〈A(y1 − y2), wk〉 ≤
∫

Ω

(u1 − u2)wk dx,

which is (3.18) with f = u1 − u2. Since k ≥ 0 was arbitrary, all conditions of Lemma
3.8 are satisfied so that it can be applied and gives the desired result.

Remark 3.10. Since S(0) = 0, it immediately follows from Lemma 3.9 that

‖S(u)‖L∞(Ω) ≤ c‖u‖Lp(Ω).

Corollary 3.11. If u, h ∈ Lp(Ω) with p > max{d/2, 1}, then

yn − y
tn

⇀∗ η in L∞(Ω),

which implies η ∈ L∞(Ω).

Proof. By Lemma 3.9 (yn−y)/tn is bounded in L∞(Ω). Thus, there is a subsequence
converging weakly-∗ to a element η̃ ∈ L∞(Ω). This subsequence therefore converges
weakly in L2(Ω) and in view of (3.8) we find∫

Ω

η v dx =

∫
Ω

η̃ v dx, ∀ v ∈ L2(Ω).

12



The fundamental lemma of the calculus of variations implies η̃ = η a.e. in Ω. Since
the subsequential weak limit is therefore independent of the subsequence, a standard
argument implies weak-∗ convergence of the whole sequence as claimed.

Based on the Lipschitz continuity of S in Lemma 3.9, we can prove a first result
towards an infinite dimensional counterpart to (2.12a).

Lemma 3.12. Assume that u, h ∈ Lp(Ω) with p > max{d/2, 1}. Let moreover ρ > 0
be arbitrary and define –up to sets of measure zero–

Aρ := {x ∈ Ω : y(x) ∈ [−ρ, ρ]}.

Then for all v ∈ V with v(x) = 0 a.e. in Aρ there holds

〈λ, v〉 = 0.

Proof. Let ρ > 0 and v ∈ V with v(x) = 0 a.e. in Aρ be arbitrary. Thanks to Lemma
3.9 we have

‖yn − y‖L∞(Ω) ≤ K tn ‖h‖Lp(Ω) → 0. (3.22)

Therefore, for almost all x ∈ Ω with y(x) > ρ, it follows that

yn(x) ≥ y(x)− |y(x)− yn(x)| ≥ ρ− ‖y − yn‖L∞(Ω) ≥
ρ

2
> 0, ∀n ≥ N1,

with N1 ∈ N depending on ρ but not on x. Therefore, thanks to (3.5b), we have for
all n ≥ N1 that

qn(x) =
yn(x)

|yn(x)|
= 1 ⇒ qn(x)− q(x)

tn
= 0 f.a.a. x ∈ Ω with y(x) > ρ, (3.23)

where we used that q(x) = 1 due to y(x) > ρ > 0. Completely analogously one can
show the existence of N2 ∈ N, only depending on ρ, such that

qn(x)− q(x)

tn
= 0 f.a.a. x ∈ Ω with y(x) < −ρ

for all n ≥ N2. Therefore, since v(x) = 0 a.e., where y(x) ∈ [−ρ, ρ], we obtain∫
Ω

qn − q
tn

v dx = 0 ∀n ≥ max{N1, N2}.

The convergence (qn − q)/tn ⇀ λ in V ∗ thus implies the assertion.

The aim is now to drive ρ in Lemma 3.12 to zero. This however requires several
additional assumptions. The first one covers the regularity of y and q.

Assumption 3.13.

1. We assume that the solution y = S(u) is continuous.
2. The slack function is continuous, i.e. q ∈ C(Ω̄).

Remark 3.14. Let us point out that Assumption 3.13(1) is not restrictive at all. In-
deed, Lemma 3.3 implies that y solves Ay = u−q and, if u ∈ L2(Ω), then y thus solves
a second-order elliptic equation with right hand side in L2(Ω). For problems of this
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type, standard regularity theory yields continuity of the solution under mild assump-
tions on the data, see for instance [8]. In contrast to this, Assumption 3.13(2) cannot
be guaranteed in general. Nevertheless, multiple numerical observations indicate that
q is often continuous.

If Assumption 3.13 is satisfied, i.e. if y and q have continuous representatives, then
we can define the sets in Definition 3.4 in a pointwise manner, i.e., not only up to sets
of zero measure. The sets arising in this way are denoted by the same symbols, and
we always mean these sets in all what follows when writing A, I, B etc.

Lemma 3.15. Under Assumption 3.13 the sets I+ and I− are strictly separated, i.e.,
there exists δ > 0 such that

dist(I+, I−) := min
{
|x− z|Rd : x ∈ I+, z ∈ I−

}
> δ.

Proof. Since Ω̄ is compact, Assumption 3.13(2) implies that q is uniformly continuous.
From the slackness condition (3.5b) we infer q = 1 in I+ so that the uniform continuity
of q yields the existence of δ > 0 with

q(x) ≥ 1/2 for all x ∈ I+ +B(0, δ). (3.24)

Hence, due to q = −1 on I− by (3.5b), this gives the assertion.

In addition to Assumption 3.13, we need the following rather restrictive assumption
on the active set.

Assumption 3.16. The active set A = {x ∈ Ω : y(x) = 0} satisfies the following
conditions:

1. A = A1 ∪ A0, where A1 has positive measure and A0 has zero capacity.
2. A1 is closed and possesses non-empty interior. Moreover, it holds A1 =

int(A1).
3. For the set J := Ω \ A1 it holds

∂J \ (∂J ∩ ∂Ω) = ∂A1 \ (∂A1 ∩ ∂Ω), (3.25)

and both A1 and J are supposed to have regular boundaries. That is the
connected components of J and A1 have positive distance from each other
and the boundaries of each of them satisfies the cone condition.

Figures 3.1 and 3.2 illustrate Assumption 3.16 in the two-dimensional case.

With the help of Assumption 3.13 and 3.16 we can now prove the following infinite
dimensional counterpart to (2.12a):

Lemma 3.17. Let u, h ∈ Lp(Ω), p > max{d/2, 1}, be given. Assume that u is such
that Assumptions 3.13 and 3.16 are fulfilled. Then

〈λ, v〉 = 0 for all v ∈ V with v(x) = 0 a.e. in A

holds true.

Proof. Let v ∈ V with v(x) = 0 a.e. in A be arbitrary. By Assumption 3.16(3) there
are linear and continuous trace operators τj : H1(Ω) → L2(∂J ) and τa : H1(Ω) →
L2(∂A1). Due to v = 0 a.e. in A1, we have τav = 0 and, by (3.25) and v ∈ V , thus

14



Ω

A1 A0

Fig. 3.1. Active set satisfying Assumption
3.16

Ω
A

Fig. 3.2. Active set not feasible for As-
sumption 3.16

τjv = 0. Since ∂J is regular, there exists a sequence {ϕk}k∈N ⊂ C∞0 (J ) with ϕk → v
in H1(J ), see e.g. [9, Lemma 1.33]. In particular it holds

ωk := supp(ϕk) ⊂⊂ J .

We extend ϕk by zero outside J to obtain a function in C∞0 (Ω), which we denote by
the same symbol for simplicity. Because of v = 0 a.e. in A1 it follows that

ϕk
k→∞−→ v in V. (3.26)

By construction we have J ⊂ I ∪A0. Since A0 has zero capacity, there is a sequence
{wm}m∈N ⊂ V and a sequence of open neighborhoods of A0, denoted by {Um}m∈N ⊂
Ω, such that

wm ≥ 0 a.e. in Ω, wm = 1 a.e. in Um, wm
m→∞−→ 0 in H1(Ω).

Now let k,m ∈ N be fixed but arbitrary and define

I+
m := (ωk \ Um) ∩ I+, I−m := (ωk \ Um) ∩ I−.

Since Um is open, ωk \ Um is closed. Moreover, in view of J = I ∪ A0, it holds
ωk \ Um ⊂ I. Thus, Lemma 3.15 and the boundedness of Ω yield that I+

m and I−m are
compact. The continuity of y therefore implies that there is ξ ∈ I+

m such that

y(ξ) = min
x∈I+m

y(x)

and, due to ξ ∈ I+, one obtains ρ+
m := y(ξ) > 0. Analogously one derives ρ−m :=

maxx∈I−m y(x) < 0. As in the proof of Lemma 3.12 one proves the existence of N+
m ∈ N

such that for all n ≥ N+
m there holds

qn(x)− q(x)

tn
= 0 f.a.a. x ∈ Ω with y(x) ≥ ρ+

m,

see (3.23). Clearly, there is N−m ∈ N so that the same equation holds for every n ≥ N−m
and almost all x ∈ Ω with y(x) ≤ ρ−m. Consequently, we obtain

qn − q
tn

= 0 a.e. in ωk \ Um = I+
m ∪ I−m, (3.27)
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provided that n ≥ Nm := max{N+
m, N

−
m}.

Thanks to (3.27) and wm = 1 a.e. in Um, it follows∫
Ω

qn − q
tn

ϕk wm dx =

∫
ωk\Um

qn − q
tn

ϕk wm dx+

∫
Um

qn − q
tn

ϕk wmdx

=

∫
Um

qn − q
tn

ϕk dx ∀n ≥ Nm.
(3.28)

On the other hand ϕkwm ∈ V is a feasible test function for (3.5a) and (3.7). If we
insert this test function and subtract the arising equation, then (3.28) together with
Hölder’s inequality and Sobolev embeddings yield∫

Um

qn − q
tn

ϕk dx =

∫
Ω

qn − q
tn

ϕk wm dx

= −
∫

Ω

∇
(yn − y

tn

)
· ∇(ϕkwm) dx+

∫
Ω

hϕk wm dx

≤ 2
∥∥∥yn − y

tn

∥∥∥
H1(Ω)

‖wm‖H1(Ω)‖ϕk‖W 1,∞(Ω) + c ‖h‖L2(Ω)‖wm‖H1(Ω)‖ϕk‖H1(Ω)

for all n ≥ Nm. Therefore, in view of (3.27), the weak convergence (and thus bound-
edness) of (yn − y)/tn gives∫

Ω

qn − q
tn

ϕk dx =

∫
Um

qn − q
tn

ϕk dx ≤ c ‖wm‖H1(Ω)‖ϕk‖W 1,∞(Ω)

for all n ≥ Nm and thus

〈λ, ϕk〉 = lim
n→∞

∫
Ω

qn − q
tn

ϕk dx ≤ c ‖wm‖H1(Ω)‖ϕk‖W 1,∞(Ω).

Due to wm → 0 in H1(Ω), passing to the limit m → ∞ yields 〈λ, ϕk〉 ≤ 0. The
above arguments also apply to −ϕk so that 〈λ, ϕk〉 = 0. Since k ∈ N was arbitary,
this equation holds for every k ∈ N and thus we can pass to the limit k → ∞. The
convergence in (3.26) then gives the assertion.

Similarly to (2.16), we define

K(y) := {v ∈ V : v(x) = 0 a.e. in As, v(x)q(x) ≥ 0 a.e. in B}
= {v ∈ V : v(x) = 0 a.e., where |q(x)| < 1,

v(x)q(x) ≥ 0 a.e., where |q(x)| = 1 and y(x) = 0}
(3.29)

This set will be the feasible set of the VI belonging to the directional derivative of
S (see Theorem 3.19 below). As seen in the proof of Theorem 2.6, in the finite
dimensional setting, there holds λ>v ≤ 0 for all v ∈ K(y), see (2.17). The infinite
dimensional analogon is also true, provided that Assumptions 3.13 and 3.16 hold, as
the following lemma shows.

Lemma 3.18. Let u, h ∈ Lp(Ω) with p > max{d/2, 1} be given, and assume that u is
such that Assumptions 3.13 and 3.16 are fulfilled. Then there holds

〈λ, v〉 ≤ 0 for all v ∈ K(y).
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Proof. Let v ∈ K(y) be fixed but arbitrary. Due to As ∪ B ∪ I = Ω and v(x) = 0 a.e.
in As, we obtain∫

Ω

qn − q
tn

v dx =

∫
B+

qn − 1

tn
v dx+

∫
B−

qn + 1

tn
v dx+

∫
I

qn − q
tn

v dx, (3.30)

Since qn ∈ [−1, 1] a.e. in Ω and q v ≥ 0 a.e. in B, which implies v ≥ 0 a.e. in B+ and
v ≤ 0 a.e. in B−, we can further estimate∫

Ω

qn − q
tn

v dx ≤
∫
I

qn − q
tn

v dx =

∫
J

qn − q
tn

v dx,

where J is the set from Assumption 3.16(3). For the last equality we used that
J = I ∪ A0 and A0 has zero capacity, thus zero Lebesgue-measure.

We now prove that J = J + ∪ J−, where J + and J− possess regular boundaries
and coincide with I+ and I− up to sets of zero capacity. For this purpose, we show
J = I. Due to I ⊂ J , we clearly have I ⊆ J . Let ξ ∈ J be arbitrary. Then there
is a sequence {xk}k∈N ⊂ J so that xk → ξ. If {xk} contains a subsequence in I,
we immediately obtain ξ ∈ I. So assume the contrary, i.e., in view of J = I ∪ A0,
xk ∈ A0 for all k ∈ N sufficiently large. W.l.o.g. we assume {xk} ⊂ A0 for the whole
sequence. Since A0 has zero capacity, thus zero measure, there is, for each xk, a
sequence {x(m)

k }m∈N ⊂ Ω \ A0 with x
(m)
k → xk for m → ∞. Since x(m)

k /∈ A0, we
have either x(m)

k ∈ A1 or x(m)
k ∈ I. If {x(m)

k } would contain a subsequence in A1,
then the closedness of A1 would imply xk ∈ A1 in contradiction to xk ∈ A0. Thus
we may w.l.o.g. assume that {x(m)

k } ⊂ I. Therefore, there is a diagonal sequence
{x(m(k))

k } ⊂ I converging to ξ, which gives ξ ∈ I. Hence we have shown

J = I = I+ ∪ I−

with I+ and I− as defined in (3.10). Since I+ and I− have positive distance from
each other by Lemma 3.15, there exist sets J +,J− such that J + ∪ J− = J and
dist(J +,J−) > δ. Moreover, thanks to Lemma 3.15 and J = I ∪A0 with cap(A0) =
0, J + differs from I+ only by a set of zero capacity and the same holds for J−
and I−. Finally, because of dist(J +,J−) > δ, Assumption 3.16(3) yields that J +,
J−, Ω \ J +, and Ω \ J− possess regular boundaries. (This actually implies that
J± = int(I±).)

Since J + differs from I+ only on a set of zero measure, the definition of I+ and the
slackness condition (3.5b) imply q = 1 a.e. in J +, and analogously q = −1 a.e. in
J−. Thus (3.30) can be further estimated by∫

Ω

qn − q
tn

v dx ≤
∫
J+

qn − 1

tn︸ ︷︷ ︸
≤0

max{0, v}︸ ︷︷ ︸
≥0

dx+

∫
J+

qn − q
tn

min{0, v} dx

+

∫
J−

qn + 1

tn︸ ︷︷ ︸
≥0

min{0, v}︸ ︷︷ ︸
≥0

dx+

∫
J−

qn − q
tn

max{0, v} dx

≤
∫
J+

qn − q
tn

min{0, v} dx+

∫
J−

qn − q
tn

max{0, v} dx. (3.31)
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Next we show that min{0, v} ∈ H1
0 (J +) and max{0, v} ∈ H1

0 (J−). The proof of
Lemma 3.15 shows(

I+ +B(0, ε)
)
\ I+ ⊂ {x ∈ Ω : q(x) ≥ 1/2, y(x) = 0} ⊂ As ∪ B+, (3.32)

see (3.24). Because of v ∈ K(y) we have q v ≥ 0 a.e. in As ∪B+ and thus (3.32) gives
v ≥ 0 a.e. in (I+ + B(0, ε)

)
\ I+. Since I+ and J + differ only up to a set of zero

measure, we thus get

min{0, v} = 0 a.e. in (J + +B(0, ε)) \ J +.

The regularity of ∂J + and ∂(Ω \ J +) therefore gives

min{0, v(x)} = 0 a.e. on ∂J +,

and thus min{0, v} ∈ H1
0 (J +). An analogous argument shows that max{0, v} ∈

H1
0 (J−). Due to the zero trace and the regularity of ∂J + by Assumption 3.16(3), we

can extend min{0, v} by zero outside J + to obtain a function in V , i.e., χJ+ min{0, v} ∈
V , where χJ+ denotes the characteristic function of J +. Thus the weak convergence
(qn − q)/tn ⇀ λ in V ∗ gives∫

J+

qn − q
tn

min{0, v} dx =

∫
Ω

qn − q
tn

χJ+ min{0, v} dx→ 〈λ, χJ+ min{0, v}〉.

Since χJ+ min{0, v} = 0 a.e. in A ⊂ Ω\J +, Lemma 3.17 yields 〈λ, χJ+ min{0, v}〉 =
0. Analogously ∫

J−

qn − q
tn

max{0, v} dx→ 〈λ, χJ− max{0, v}〉 = 0

is obtained. Therefore, in view of (3.31), we finally arrive at 〈λ, v〉 ≤ 0 and, since
v ∈ K(y) was arbitrary, this proves the assertion.

Now we are finally in the position to prove the main result of this section covering the
”weak directional differentiability“ of the solution operator associated with the VI in
(VI2).

Theorem 3.19. Let u, h ∈ Lp(Ω) with p > max{d/2, 1} be given. Suppose further
that Assumptions 3.13 and 3.16 are fulfilled by y = S(u) and the associated slack
variable q. Then there holds

S(u+ t h)− S(u)

t
⇀ η in V, as t↘ 0, (3.33)

where η ∈ V solves the following VI of first kind:

η ∈ K(y), 〈Aη, v − η〉 ≥ 〈h, v − η〉 ∀ v ∈ K(y) (3.34)

with K(y) as defined in (3.29).

Proof. Lemma 3.6 yields η ∈ K(y). Furthermore, since Aη + λ = h, Lemmas 3.7 and
3.18 give

〈Aη, v − η〉 − 〈h, v − η〉 = 〈λ, η〉 − 〈λ, v〉 ≥ 0

for all v ∈ K(y), which is just the VI in (3.34).
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Since K(y) is nonempty, convex, and closed and A is bounded and coercive, standard
arguments yields existence and uniqueness for this VI of first kind. Thus the weak
limit η is unique, which implies the weak convergence of the whole sequence.

Definition 3.20. With a little abuse of notation we call the weak limit η in (3.33)
weak directional derivative and denote it by η = S′w(u;h).

Remark 3.21. If B has zero measure, then K(y) turns into

K(y) = {v ∈ V : v(x) = 0 a.e. in As},

i.e., a linear and closed subspace of V . Thus, in this case, (3.34) becomes an equation.
If As possesses a regular boundary, then this equation is equivalent to

Aη = h in I and η = 0 a.e. in A = As.

Remark 3.22. It is very likely that Theorem 3.19 could be proven without the re-
strictive Assumption 3.16, if the weak limit η would satisfy the conditions in (3.12)
and (3.13) not only almost everywhere, but quasi-everywhere in Ω. In this case, the
feasible set of (3.34) would read

K := {v ∈ V : v(x) = 0 q.e., where |q(x)| < 1,

v(x)q(x) ≥ 0 q.e., where |q(x)| = 1 and y(x) = 0}.

However, unfortunately, so far we have neither been able to show that (3.15) holds
quasi everywhere, nor to establish a counterexample which demonstrates that this is
wrong in general. This question gives rise to future research.

4. Bouligand stationarity. With the differentiability result of Theorem 3.19 at
hand, it is now straightforward to establish first-order optimality conditions in purely
primal form for optimization problems governed by (VI2). To be more precise, we
consider an optimization problem of the form

min J(y, u)

s.t. 〈Ay, v − y〉+

∫
Ω

|v| dx−
∫

Ω

|y| dx ≥ 〈u, v − y〉 ∀ v ∈ V

and u ∈ Uad,

 (4.1)

where Uad ⊂ Lp(Ω), p > max{d/2, 1}, is nonempty, closed, and convex.

As shown in [10, Lemma 3.9], weak convergence of the difference quotient associated
with the control-to-state mapping S : u 7→ y is sufficient to prove that the reduced
objective, defined by

j : Lp(Ω)→ R, j(u) := J(S(u), u),

is directionally differentiable. This allows us to formulate the following purely primal
optimality conditions, which, in case of optimal control of VIs of first kind, are known
as Bouligand stationarity conditions.

Theorem 4.1. Let p > max{d/2, 1} and assume that J is Fréchet-differentiable from
V × Lp(Ω) to R. Suppose moreover that ū ∈ Uad is a local optimal solution of (4.1),
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such that ȳ = S(ū) and the associated slack variable q̄ satisfy Assumptions 3.13 and
3.16. Then the following primal stationarity conditions are fulfilled:

∂yJ(ȳ, ū)η + ∂uJ(ȳ, ū)(u− ū) ≥ 0 ∀u ∈ Uad, (4.2)

where η ∈ V solves (3.34) with K(y) = K(ȳ) and h = u− ū.
Proof. As mentioned above, [10, Lemma 3.9] and Theorem 3.19 imply that u 7→ j(u)
is directionally differentiable in every direction h ∈ Lp(Ω) with directional derivative
j′(ū;h) = ∂yJ(ȳ, ū)S′w(ū;h)+∂uJ(ȳ, ū)h. Local optimality of ū yields j′(ū;u−ū) ≥ 0,
which is the assertion.

Next we derive a variant of the above optimality condition based on the cone tangent to
the admissible set of (4.1). As a result, we obtain an optimality condition which can be
interpreted as the counterpart of the implicit programming approach in the discussion
of finite dimensional MPECs, see [18, Section 3.3]. Note that such similarities have
already been observed in [10].

Lemma 4.2. Assume that ū ∈ Lp(Ω), p > max{d/2, 1}, is such that Assumptions
3.13 and 3.16 are fulfilled. Suppose moreover that the sequences {un} ⊂ Lp(Ω) and
{tn} ⊂ R+ satisfy

tn ↘ 0,
un − ū
tn

⇀ h in Lp(Ω).

Then

S(un)− S(ū)

tn
⇀ S′w(ū;h) in V.

Proof. By adding a zero we obtain

S(un)− S(ū)

tn
=
S(un)− S(ū+ tn h)

tn
+
S(ū+ tn h)− S(ū)

tn
.

While the latter addend converges weakly to S′w(ū;h) by Theorem 3.19, the Lipschitz
continuity of S by Lemma 3.1 yields for the first addend that∥∥∥S(un)− S(ū+ tn h)

tn

∥∥∥
V
≤ L

∥∥∥un − ū
tn

− h
∥∥∥
V ∗
→ 0,

where we used the compactness of the embedding Lp(Ω) ↪→ V ∗.

We define the tangent cone to the admissible set of (4.1) as follows:

Definition 4.3 (Tangent cone). For given u ∈ Uad we define the tangent cone at u
by

T (u) :=
{

(η, h) ⊂ V × Lp(Ω) : ∃ {un}n∈N ⊂ Uad, {tn} ⊂ R+ such that

un − u
tn

⇀ h in Lp(Ω) and
S(un)− S(u)

tn
⇀ η in V

}
.

Since the VI in (4.1) is uniquely solvable such that y is determined by u, this cone
coincides with the standard tangent cone in finite dimensions, except that we replace
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strong by weak convergence. Next consider the VI in (3.34) associated with the
directional derivative of S at ū. Due to the coercivity of A, this VI does clearly not
only admit a unique solution for right hand sides in Lp(Ω), but also for inhomogeneities
in V ∗. We denote the associated solution operator by G : V ∗ → V , i.e.

η = G(h) :⇐⇒ η ∈ K(ȳ), 〈Aη, v − η〉 ≥ 〈h, v − η〉 ∀ v ∈ K(ȳ). (4.3)

Furthermore, owing again to the coercivity of A this operator is Lipschitz continuous,
i.e.

‖G(h1)−G(h2)‖V ≤
1

α
‖h1 − h2‖V ∗ ∀h1, h2 ∈ V ∗, (4.4)

where α is the coercivity constant of A. This enables us to show the following

Theorem 4.4. Suppose that the assumptions of Theorem 4.1 are fulfilled with a local
optimum ū ∈ Uad of (4.1). Then there holds

∂yJ(ȳ, ū)η + ∂uJ(ȳ, ū)h ≥ 0 ∀ (η, h) ∈ T (ū). (4.5)

Proof. If hn ⇀ h in Lp(Ω) and consequently hn → h in V ∗, then (4.4) gives G(hn)→
G(h) in V . Since G(h) = S′w(ū;h) for h ∈ Lp(Ω), this implies that Lp(Ω) 3 h 7→
S′w(ū;h) ∈ V is completely continuous. Now let (η, h) ∈ T (ū) be arbitrary. Hence
there is {un} ∈ Uad so that (un − ū)/tn ⇀ h in Lp(Ω). As seen above, S′w(ū; .) is
the solution operator of a VI of first kind with the cone K(ȳ) as feasible set. Hence,
S′w(ū; .) is positively homogeneous such that Theorem 4.1 yields

∂yJ(ȳ, ū)S′w

(
ū;
un − ū
tn

)
+ ∂uJ(ȳ, ū)

(un − ū
tn

)
≥ 0. (4.6)

The complete continuity of S′w(ū; .) together with Lemma 4.2 implies

S′w

(
ū;
un − ū
tn

)
→ S′w(ū;h) = η in V.

Due to the weak continuity of ∂uJ(ȳ, ū) the second addend in (4.6) converges to
∂uJ(ȳ, ū)h, which completes the proof.

5. Strong stationarity. In this section we aim at deriving optimality conditions
which, in contrast to the ones presented in Section 4, also involve dual variables. Given
the differentiability result and the Bouligand stationarity conditions in Theorem 4.1,
we can follow the lines of [20]. For this purpose we have to require the following
assumptions concerning the quantities in the optimal control problem 4.1:

Assumption 5.1. We suppose that Uad = L2(Ω). Moreover, J is continously Fréchet-
differentiable from V × L2(Ω) to R.
In order to be able to utilize our differentiability result we furthermore assume the
following:

Assumption 5.2. Assume that ū is a local optimum such that the associated state ȳ
and the associated slack variable q̄ satisfy Assumptions 3.13 and 3.16.

Lemma 5.3. Under Assumptions 5.1 and 5.2 there exists a p̄ ∈ V such that

∂yJ(ȳ, ū)G(h)− 〈p̄, h〉 ≥ 0 ∀h ∈ V ∗
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with G as defined in (4.3).

Proof. By Theorem 4.1 and S′w(ū;h) = G(h) for h ∈ L2(Ω), there holds

∂yJ(ȳ, ū)G(h) + ∂uJ(ȳ, ū)h ≥ 0 ∀h ∈ L2(Ω). (5.1)

which, together with (4.4), gives in turn

∂uJ(ȳ, ū)h ≤ ‖∂yJ(ȳ, ū)‖V ∗
1

α
‖h‖V ∗ ∀h ∈ L2(Ω).

Therefore, by the Hahn-Banach theorem, the linear functional ∂uJ(ȳ, ū) : L2(Ω)→ R
can be extended to a linear and bounded functional on V ∗, which we identify with a
function p̄ ∈ V , i.e.

〈p̄, h〉 = −∂uJ(ȳ, ū)h ∀h ∈ L2(Ω).

The density of L2(Ω) ↪→ V ∗ in combination with (5.1) then gives the assertion.

Next define q ∈ V as solution of

〈A∗q, v〉 = 〈∂yJ(ȳ, ū), v〉 ∀ v ∈ V,

which is well defined because of the coercivity of A. Furthermore, we introduce the
operator Π : V → K(ȳ) by

Π := G ◦A.

Note that Π can be interpreted as A-projection on K(ȳ). It is straightforward to see
the following properties of Π:

Π as well as I −Π are idempotent,
Π ◦ (I −Π) = (I −Π) ◦Π = 0,

(5.2)

and, as K(ȳ) is a convex cone,

〈A(I −Π)ξ, Π(ξ)〉 = 0 ∀ ξ ∈ V. (5.3)

Moreover by construction, we find G = Π ◦ A−1. Thus Lemma 5.3 implies for every
h ∈ V ∗ that

0 ≤ ∂yJ(ȳ, ū)G(h)− 〈p̄, h〉
= 〈G(h), A∗q〉 − 〈AA−1h, p̄〉
= 〈AΠ(A−1h), q − p̄〉 − 〈A(I −Π)(A−1h), p̄〉
= 〈Π(A−1h), A∗(q − p̄)〉
− 〈A(I −Π)(A−1h), Π(p̄)〉 − 〈A(I −Π)(A−1h), (I −Π)(p̄)〉.

(5.4)

If we insert h = A(I −Π)p̄ ∈ V ∗, then (5.2) and (5.3) yield

〈A(I −Π)p̄, (I −Π)p̄〉 ≤ 0.

The coercivity of A then implies p̄ = Π(p̄) and thus p̄ ∈ K(ȳ), i.e.

p̄(x) = 0 a.e., where |q̄(x)| < 1,

p̄(x)q̄(x) ≥ 0 a.e., where |q̄(x)| = 1 and ȳ(x) = 0.
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Next we define z ∈ V by

〈Az, v〉 = 〈v, A∗(p̄− q)〉 ∀ v ∈ V (5.5)

and insert h = AΠ(z) ∈ V in (5.4). Together with (5.2), (5.5), and (5.3), we obtain
in this way

0 ≤ 〈Π(z), A∗(q − p̄)〉 = −〈Az, Π(z)〉 = −〈AΠ(z), Π(z)〉

so that Π(z) = G(Az) = 0 by the coercivity of A. Consequently the definition of G
in (4.3) leads to

〈Az, v〉 ≤ 0 ∀ v ∈ K(ȳ) =⇒ 〈A∗p̄, v〉 ≤ 〈A∗q, v〉 = 〈∂yJ(ȳ, ū), v〉 ∀ v ∈ K(ȳ).

By defining µ̄ := g′(ȳ)−A∗p̄ ∈ V ∗ we therefore arrive at

A∗p̄ = ∂yJ(ȳ, ū)− µ in V ∗

〈µ̄, v〉 ≥ 0 ∀ v ∈ K(ȳ).

All in all we have thus proven the following:

Theorem 5.4. Assume that Assumption 5.1 holds. Suppose moreover that ū is a local
optimum which satisfies Assumption 5.2. Then there exists an adjoint state p̄ ∈ V
and a multiplier µ ∈ V ∗ such that the following strong stationarity system is fulfilled:

Aȳ + q̄ = ū in V ∗ (5.6a)
q̄(x) ȳ(x) = |ȳ(x)|, |q̄(x)| ≤ 1 a.e. in Ω (5.6b)

A∗p̄ = ∂yJ(ȳ, ū)− µ in V ∗ (5.6c)
p̄ ∈ K(ȳ), 〈µ̄, v〉 ≥ 0 ∀ v ∈ K(ȳ) (5.6d)

p̄+ ∂uJ(ȳ, ū) = 0 (5.6e)

with K(ȳ) as defined in (3.29).

Remark 5.5. A comparable result for optimal control problems governed by VIs of
the first kind is known as strong stationarity conditions, see [11]. This is why we have
chosen the same terminology here.

Remark 5.6. We compare the optimality system (5.6) with results from [4] obtained
via regularization and subsequent limit analysis. The optimality system obtained in [4]
coincides with (5.6) except that (5.6d) is replaced by

〈µ̄, p̄〉 ≥ 0, 〈µ̄, ȳ〉 = 0. (5.7)

However, thanks to the definition of K(ȳ) and ±ȳ ∈ K(ȳ), these relations are an im-
mediate consequence of (5.6d). The optimality system in (5.6) is therefore sharper
compared to the one obtained via regularization. We point out however that the anal-
ysis in [4] does not require the restrictive Assumptions 3.16 and 3.13 and in addition
applies to more general VIs of the second kind.
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6. An inexact trust-region algorithm. In this section we propose an inexact
trust-region algorithm for the solution of the finite-dimensional optimization problem:

min J(y, u) (6.1)
subject to: 〈Ay, v − y〉+ g|v|1 − g|y|1 ≥ 〈u, v − y〉, for all v ∈ Rn, (6.2)

with g > 0. The main difficulty of the method consists in computing a descent
direction along which the algorithm has to perform the next step. In the case of an
empty biactive set, the derivative information is given by (2.18)-(2.19). From the
latter, existence of an adjoint state can be proved and an adjoint calculus may be
performed.
Since the information so obtained does not necessarily correspond to an element of
the subdifferential, in case of a non-empty biactive set, we apply a trust-region scheme
to provide robust iterates. In this context the adjoint related gradient is considered
as an inexact version of a descent direction. Since in the applications we focus on,
the biactive set is either empty or very small, such an approach is justified from the
numerical point of view.
Indeed, by assuming that the biactive set

B = {i : yi = 0, |qi| = 1},

is empty, the solution operator is Gâteaux differentiable and the directional derivative
η = S′(u)h corresponds to the solution of the following system of equations:

ηi = 0 for i : yi = 0,∑
j:yj 6=0

Ai,jηj = hi for i : yi 6= 0.

To simplify the description of the algorithm, we confine ourselves to a quadratic cost
functional of the form J(y, u) = 1/2 ‖y − z‖2 + α/2 ‖u‖2, where ‖ . ‖ denotes the
Euclidian norm and z ∈ Rn is a given desired state. Considering the reduced cost
functional

j(u) =
1

2
‖S(u)− z‖2 +

α

2
‖u‖2,

the directional derivative is given by

j′(u)h = (S(u)− z, S′(u)h) + α(u, h) =
∑
i

(yi − zi)ηi + α
∑
i

uihi.

Let us recall that the inactive set is given by I := {i ∈ {1, . . . , n} : yi 6= 0}. By
reordering the indices such that the active and inactive ones occur in consecutive
order, and defining the adjoint state p ∈ Rn as the solution to the system:(

I 0
0 ATI

)
p = y − z,

where AI corresponds to the block of A with indexes i, j such that yi 6= 0, yj 6= 0, we
obtain that

j′(u)h =
∑
i∈I

pihi + α
∑
i

uihi
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or, equivalently, j′(u) =

{
αui if i 6∈ I
pi + αui if i ∈ I.

Before stating the trust-region algorithm, let us introduce some notation to be used.
The quadratic model of the reduced cost function is given by

qk(s) = j(uk) + gTk s+
1

2
sTHks,

where gk = j′(uk) and Hk is a matrix with second order information, obtained with
the BFGS method. The trust region radius is denoted by ∆k and the actual and
predicted reductions are given by

aredk(sk) := j(uk)− j(uk + sk) and predk(sk) = j(uk)− qk(sk), respectively.

The quality indicator is computed by

ρk(sk) =
aredk(sk)

predk(sk)
.

The resulting trust region algorithm (of dogleg type) is given through the following
steps:

Trust region algorithm.
1. Choose the parameter values 0 < η1 < η2 < 1, 0 < γ0 < γ1 < 1 < γ2,

∆min ≥ 0.
2. Choose the initial iterate x0 ∈ Rn and the trust region radius ∆0 > 0, ∆0 ≥

∆min ≥ 0.
3. Compute the Cauchy step skc = −t∗gk, where

t∗ =


∆k

||gk||
, if g>k Hkgk ≤ 0

min

(
||gk||2

g>k Hkgk
,

∆k

||gk||

)
, if g>k Hkgk > 0

and the Newton step skn = −H−1
k gk. If skn satisfies the fraction of Cauchy

decrease:

∃δ ∈ (0, 1] and β ≥ 1 such that ‖sk‖ ≤ β∆k and predk(sk) ≥ δ predk(skc ).

then sk = skn, else sk = skc .
4. If %k(sk) > η2, then

uk+1 = uk + sk, ∆k+1 ∈ [∆k, γ2∆k]

Else if %k(sk) ∈ (η1, η2), then

uk+1 = uk + sk, ∆k+1 ∈ [max(∆min, γ1∆k),∆k]

Else if %k(sk) ≤ η1, then

uk+1 = uk, ∆k+1 ∈ [γ0∆k, γ1∆k]

Repeat until stopping criteria.
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6.1. Example. We consider as test example the following finite-dimensional op-
timization problem:

min J(y, u) =
1

2
‖y − z‖2 +

α

2
‖u‖2 (6.3)

subject to: 〈Ay, v − y〉+ g|v|1 − g|y|1 ≥ 〈u, v − y〉, for all v ∈ Rn, (6.4)

where A corresponds to the finite differences discretization matrix of the negative
Laplace operator in the two dimensional domain Ω =]0, 1[2, z = 10 sin(5x1) cos(4x2)
stands for the desired state and α and g are positive constants. It is expected that as
g becomes larger the solution becomes sparser.
For solving (6.4) within the trust region algorithm a semismooth Newton method is
used. The method is built upon a Huber-type regularization of the l1-norm, cf. [14, eq.
(7.14)], and the use of dual information. Specifically, we consider the solution of the
regularized inequality:

Ay + q = u (6.5)
q − hγ(y) = 0, (6.6)

where (hγ(y))i = g γyi
max(g,γ|yi|) . Considering a generalized derivative of the max func-

tion, the following system has to be solved in each semismooth Newton iteration:

Aδy + δq = u−Ay − q (6.7)

δq −
γδy

max(g, γ|y|)
+ diag(χIγ )

γ2yT δy
max(g, γ|y|)2

y

|y|
= −q + hγ(y), (6.8)

where
(
χIγ

)
i

:=

{
1 if γ|yi| ≥ g,
0 if not.

, max(g, γ|y|) := (max(g, γ|y1|), . . . ,max(g, γ|yn|))T

and the division is to be understood componentwise. By using dual information in
the iteration matrix (as in [13], [5]) the following modified version of (6.8) is obtained:

δq −
γδy

max(g, γ|y|)
+ diag(χIγ )

γ2yT δy
max(g, γ|y|)2

q

max(g, |q|)
= −q + hγ(y). (6.9)

This leads to a globally convergent iterative algorithm, which converges locally with
superlinear rate.
The used trust region parameter values are η1 = 0.25, η2 = 0.75, γ1 = 0.5, γ2 = 1.5
and β = 1. For the parameter values α = 0.0001 and g = 15, and the mesh size step
h = 1/80, the algorithm requires a total number of 35 iterations to converge, for a
stopping criteria given by ‖uk+1 − uk‖ ≤ 1e − 4. The optimized state is shown in
Figure 6.1, where a large zone where the state takes value zero can be observed.
The algorithm was also tested for other values of the parameters α and g, yielding
the convergence behaviour registered in Table 6.1. Although the considered derivative
information was inexact, the trust-region approach yields convergence in a relatively
small number of iterations.
Further descent type directions to be used in the context of the trust-region methodol-
ogy, as well as the convergence theory of the combined approach, will be investigated
in future work.

Appendix A. Directional derivative of the L1-norm.
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Fig. 6.1. Optimized state: on the left corner the sparse structure of the solution can be observed.

HHH
HHα
g 1 5 10 15

0,1 20 28 53 -
0,01 23 24 27 32
0,001 33 48 54 31
0,0001 69 70 62 34

Table 6.1
Number of trust-region iterations for different α and g values. Mesh size step h = 1/40.

Proof of Lemma 3.5. We consider the mapping

g : L1(Ω) 3 y 7→
∫

Ω

|y(x)|ϕ(x) dx ∈ R.

It is easily seen that g is Lipschitz continuous. Moreover, for arbitrary y, η ∈ L1(Ω),
the directional differentiability of R 3 r 7→ |r| ∈ R yields

|y(x) + tnη(x)| − |y(x)|
tn

→ abs′
(
y(x); η(x)

)
,

and, since almost all points in Ω are common Lebesgue points of y and η, this pointwise
convergence holds almost everywhere in Ω. Due to

−2|η(x)| ≤ |y(x) + tnη(x)| − |y(x)|
tn

− abs′
(
y(x); η(x)

)
≤ 2|η(x)| a.e. in Ω,

Lebesgue dominated convergence theorem thus gives

|y + tnη| − |y|
tn

→ abs′(y; η) in L1(Ω),

which in turn implies the directional differentiability of g with

g′(y; η) =

∫
Ω

abs′(y(x); η(x))ϕ(x) dx.
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Consequently g is Hadamard-differentiable and hence∫
Ω

( |yn| − |y|
tn

− abs′(y; η)
)
ϕdx =

g(y + tnη + r(tn))− g(y)

tn
− g′(y; η)→ 0,

since

r(tn) := yn − y − tnη

so that ‖r(tn)‖L1(Ω) = o(tn) thanks to (3.8) and the compact embedding V ↪→ L1(Ω).

Appendix B. Boundedness for functions in H1(Ω).

For convenience of the reader, we prove Lemma 3.8. The arguments are classical and
go back to [15].

Proof of Lemma 3.8. The truncated function defined in (3.17) is equivalent to

wk(x) = w(x)−min
(
(max(w(x),−k), k

)
and therefore [15, Theorem A.1] implies wk ∈ V .

It remains to verify the L∞-bound in (3.19). If d = 1, then the assertion follows
directly from (3.18) and the Sobolev embedding H1(Ω) ↪→ L∞(Ω).

So assume that d ≥ 2. Then let k ≥ 0 be given and set A(k) := {x ∈ Ω | |w(x)| ≥ k}.
Note that wk(x) = 0 a.e. in Ω\A(k). Next let h ≥ k be arbitrary so that w(x) ≥ h ≥ k
a.e. in A(h). Then Sobolev embeddings give that

‖wk‖2H1(Ω) ≥ c ‖wk‖
2
Lm(Ω) = c

(∫
A(k)

∣∣|w| − k∣∣mdx)2/m

≥ c
∫
A(h)

(h− k)mdx2/m = c (h− k)2|A(h)|2/m,
(B.1)

where m = 2d/(d− 2), see e.g. ... On the other hand, (3.18) implies

α ‖wk‖2 ≤
∫
A(k)

f wk dx ≤ ‖f‖Lm′ (A(k)) ‖wk‖Lm(A(k)) ≤ c ‖f‖Lm′ (A(k)) ‖wk‖H1(Ω),

where m′ is the conjugate exponent to m, i.e. 1/m+ 1/m′ = 1. Note that

m′ =
m

m− 1
=

d

d/2 + 1
≤ d

2
< p, if d ≥ 2,

and thus f ∈ Lm′(Ω) by the assumption on f in Lemma 3.8. Together with Young’s
inequality, then Hölder’s inequality yields

‖wk‖2 ≤ c
(∫

A(k)

|f |m
′
dx
)2/m′

≤ c ‖f‖2Lp(Ω) |A(k)|2r/m
′

(B.2)

with r = p/(p−m′) ≥ 1 so that r′ = r/(r − 1) = p/m′. By setting

s =
m

m′
r =

p

(m′ − 1)(p−m′)
(B.3)
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we infer from (B.1) and (B.2) that

|A(h)|2/m ≤ c ‖f‖2Lp(Ω)

1

(h− k)2

(
|A(h)|2/m

)s for all h > k ≥ 0. (B.4)

Since m > 2, we have m′ < 2 and therefore (m′ − 1)(p − m′) < p − m′ < p such
that (B.3) gives in turn s > 1. In this case, according to [15, Lemma B.1], it follows
from (B.4) that the nonnegative and non-increasing function R 3 h 7→ |A(h)|2/m ∈ R
admits a zero at

h∗ = 2s/(s−1)
√
c |Ω|2(s−1)/m ‖f‖Lp(Ω).

By definition, |A(h∗)| = 0 is equivalent to |w(x)| ≤ h∗ a.e. in Ω, which yields the
assertion.
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