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Optimal control problems without control costs in general do not possess solu-
tions due to the lack of coercivity. However, unilateral constraints together with
the assumption of existence of strictly positive solutions of a pre-adjoint state equa-
tion, are su�cient to obtain existence of optimal solutions in the space of Radon
measures. Optimality conditions for these generalized minimizers can be obtained
using Fenchel duality, which requires a non-standard perturbation approach if the
control-to-observation mapping is not continuous (e.g., for Neumann boundary
control in three dimensions). Combining a conforming discretization of the measure
space with a semismooth Newton method allows the numerical solution of the
optimal control problem.

1. Introduction

This work is concerned with the following optimal control problem, stated formally as

(1.1) inf
y,u

1
2 ‖Ey − yd ‖

2
L2 (ωo )

s. t. Ay − Bu = 0, u ≥ 0,

where A is a second-order elliptic di�erential operator and yd is a given target. Furthermore,
ωo ⊂ Ω ⊂ Rd is the observation domain with corresponding restriction operator E, and the
control is de�ned on a control domain ωc ⊂ Ω with corresponding extension operator B. (This
setting includes boundary control and observation; for details we refer to Section 22.)

Problem (1.11.1) di�ers from standard control-constrained optimal control problems by the fact
that no control cost term, e.g., of the form α ‖u‖2U or ‖u‖U with α > 0 and a suitable Banach space
U , appears in the functional. This term is usually necessary to guarantee existence of an optimal
solution (ȳ, ū), since it provides us with coercivity of the objective functional in the appropriate
topology. Consequently, one of the major issues in this work will be the discussion of existence
of minimizers of this problem. As we will show, the non-negativity together with the tracking
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term is su�cient (under an appropriate assumption on the operator A) to obtain coercivity
with respect to u, albeit only in the space of measures. Intuitively, boundedness of y = A−1Bu
in L2 implies boundedness of Bu only in H−2, which is all one can expect in general without
control constraints. It is thus surprising that in many cases optimal controls exist in the more
regular spaceM of Radon measures if merely unilateral constraints are present, thus allowing
to formulate, analyze and numerically solve the limit problem as α → 0 in the above-mentioned
standard problems with unilateral constraints, which is the main motivation of this work.

Once existence of optimal controls is established, �rst-order optimality conditions can be
derived via Fenchel duality. This is relatively straightforward in those cases where the control-
to-observation mapping u → Ey is continuous as a mappingM (ωc ) → L2 (ωo ). However, due
to the low regularity of the control, this assumption is not satis�ed for all relevant applications
(e.g., Neumann-control in three dimensions; similar di�culties are to expected for parabolic
problems). These cases require special care since they involve unbounded operators. A second
motivation of this work is therefore to extend the Fenchel duality theorem to this setting.

Let us remark on some related problems. Recently, a class of elliptic problems came into
the focus of interest, where control costs of the form α ‖u‖L1 were used and which possess
generalized solutions u ∈ M; see [66, 77, 44, 55]. In particular, we rely on the �rst three works for
the numerical computation of our optimal measure space controls using a semismooth Newton
method and a conforming �nite element discretization ofM. Often such functionals are still
augmented by an additional L2-type control cost as well as bilateral control constraints, and the
limit β → 0 is considered; see, e.g., [1818, 2323]. A second related problem class is that of so-called
bang-bang-problems [88], where no control costs are present, but the control constraints are
bilateral, so that optimal solutions exist in L∞. Finally, due to the presence of measure-valued
controls, we will have to de�ne the operator A in a way that Ay = µ has a unique solution for
each µ ∈ M. This requires an extension of the usual variational setting in H 1. In this respect, our
paper draws from results in the literature; see [1515] and the references therein. It also provides
a link to the study of state-constrained problems [33], where measure-valued right-hand sides
appear in �rst-order optimality conditions.

This work is organized as follows. Section 22 discusses well-posedness of the state equation
for measure-valued right-hand sides. In Section 33, we give a rigorous statement of Problem
(1.11.1) and show that under a strict positivity assumption on the adjoint control-to-observation
mapping, a minimizer to (1.11.1) exists in the space of Radon measures; we discuss the validity
of this assumption in the context of second-order elliptic equations in Section 3.13.1. Section 3.23.2
gives some examples as well as a counterexample that shows the necessity of our assumption.
Optimality conditions for these minimizers are derived in Section 44 based on a Fenchel duality
theorem for an unbounded operator. In Section 55, we remark on the relation of Problem (1.11.1)
to the corresponding problems including additional L2 or measure-space control costs. The
numerical solution based on a variational discretization and a semismooth Newton method is
discussed in Section 66. Finally, numerical examples are presented in Section 77.
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2. State equation

We �rst discuss well-posedness of the control-to-observation mapping u 7→ Ey. Since u is only
a Radon measure and E need not be continuous, this requires some technicalities. In particular,
due to the presense of the non-re�exive spaces C andM it will be useful to start with de�ning
the pre-adjoint operators of A and B.

Elliptic di�erential operatorA Consider a bounded domain (i.e., an open connected subset)
Ω ⊂ Rd with Lipschitz boundary ∂Ω, so that the trace operatorH 1 (Ω) → L2 (∂Ω) is well-de�ned.
Let a(·, ·) : H 1 (Ω) × H 1 (Ω) → R be a continuous and elliptic bilinear form, de�ned by

(2.1) a(y,p) :=
∫
Ω



d∑
i, j=1

ai j (x )yxipx j + c (x )yp


dx +

∫
∂Ω

r (x )yp ds .

where subsequently we assume that the coe�cients are symmetric (i.e.,ai j = aji ) and bounded on
Ω, and that c and r are non-negative bounded functions in Ω and ∂Ω, respectively. Furthermore,
assume that there exists a0 > 0 such that

d∑
i, j=1

ai j (x )ξiξ j ≥ a0 |ξ |2 for all ξ ∈ Rd and almost all x ∈ Ω.

We assume further that not both c and r are identically 0. As usual, it follows by the Poincaré
inequality that a is coercive, i.e., there exists c1 > 0 such that

a(y,y) ≥ c1‖y‖2H 1 (Ω)
for all y ∈ H 1 (Ω).

Alternatively, we could impose Dirichlet boundary conditions on (part of) ∂Ω to obtain coercivity.
However, in the following discussion we stick to the case H 1 (Ω), mainly for simplicity of
presentation.

It then follows from the Lax–Milgram theorem that for each ` ∈ H 1 (Ω)∗, there is a unique
y ∈ H 1 (Ω), such that a(y,p) = `(p) for all p ∈ H 1 (Ω). In this way, the well-known isomorphism
AH 1 : H 1 (Ω) → H 1 (Ω)∗ is constructed via (AH 1y) (p) := a(y,p).

Extension to measure-valued right-hand sides Our next aim is to de�ne a version of this
operator that covers elliptic PDEs with measure-valued right-hand sides. For d ≥ 2, this does
not �t into the classical variational framework. Following the method of Stampacchia [1919], we
will therefore �rst construct an unbounded pre-dual operator ∗A with domain C (Ω), and then
consider its adjointA := (∗A)∗ whose co-domain is then – by de�nition – the dual ofC (Ω), which
can be identi�ed by the Riesz representation theorem with the space of Radon measuresM (Ω).
The following construction is similar to the one given in [1515]; our main reference concerning
unbounded operators is [1111].

Consider an index q > d (the spatial dimension), so thatW 1,q (Ω) ↪→ C (Ω), and its dual index
q′ which satis�es q−1 + q′−1 = 1. By Hölder’s inequality applied to the derivatives, a(·, ·) is still
well-de�ned and continuous as a bilinear form

(2.2) a(·, ·) : W 1,q′ (Ω) ×W 1,q (Ω) → R.
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Let us de�ne a domain dom ∗A ⊂ H 1 (Ω) (often called “maximal domain of de�nition”) and a
bijective mapping ∗A : dom ∗A→W 1,q′ (Ω)∗ in the following way:

(2.3) dom ∗A :=
{
p ∈ H 1 (Ω) : ∃ cp ∈ R with a(y,p) ≤ cp ‖y‖W 1,q′ (Ω) ∀y ∈ H 1 (Ω)

}
.

Let us stress that here (and in similar occasions) the bound cp may depend on p but not on y.
By (2.22.2), we conclude that H 1 (Ω) ⊃ dom ∗A ⊃W 1,q (Ω), and under relatively mild assumptions

on the smoothness of the coe�cients and on the domain, regularity theory even yields dom ∗A =
W 1,q (Ω) ↪→ C (Ω) if q is su�ciently close to d ; see, e.g., [2020, Theorem 3.16]. This is called the
case of “maximal regularity”. In fact, for d = 2, it is always possible to �nd an appropriate q. In
this case we can de�ne ∗A as follows:

∗A : C (Ω) ⊃W 1,q (Ω) →W 1,q′ (Ω)∗,

p 7→ ∗Ap : (∗Ap) (y) := a(y,p) for all y ∈W 1,q′ (Ω).

Otherwise, if dom ∗A is a proper superset ofW 1,q (Ω), the bilinear form a(y,p) is not de�ned
anymore for all y ∈ W 1,q′ (Ω) and p ∈ dom ∗A due to lack of integrability of the principal
part. However, by the de�nition of dom ∗A in (2.32.3), we can extend a(·, ·) to a bilinear form
a(·, ·) : W 1,q′ (Ω) × dom ∗A via the unique continuous extension

a(y,p) := lim
n→∞a(yn ,p) for all (y,p) ∈W 1,q′ (Ω) × dom ∗A,

where {yn}n∈N is a sequence in H 1 (Ω) such that yn → y inW 1,q′ (Ω). By density of H 1 (Ω) in
W 1,q′ (Ω), such a sequence always exists, and by de�nition of dom ∗A in (2.32.3), the limit of a(yn ,p)
always exists and depends only on the limit y.

Under very mild assumptions, it is still possible to show dom ∗A ⊂ C (Ω) (see, e.g., [1212, Theo-
rem 3.3, Corollary 3.5, Corollary 3.6]), so that we obtain:

∗A : C (Ω) ⊃ dom ∗A→W 1,q′ (Ω)∗,

p 7→ ∗Ap : (∗Ap) (y) := a(y,p) for all y ∈W 1,q′ (Ω).

In both cases ∗A is a bijective, closed, unbounded operator (cf. [1515]) and thus has continuous
inverse ∗A−1 by the open mapping theorem for closed operators; see, e.g., [1111, II.1.8]. In what
follows only this – more general – setting is required, keeping in mind, however, that ∗A (and
thus also its adjoint, de�ned next) corresponds to a(·, ·), which only coincides with a(·, ·) if
dom ∗A =W 1,q (Ω), cf. [1515].

Since dom ∗A ⊃W 1,q (Ω) is dense in C (Ω), the Banach space adjoint (also called conjugate)
A := (∗A)∗ of ∗A is well-de�ned as a linear operator (cf., e.g., [1111, Def. II.2.2])

A : W 1,q′ (Ω) ⊃ domA→M (Ω),

where domA is canonically de�ned as

domA :=
{
y ∈W 1,q′ (Ω) : ∃ cy ∈ R with (∗Ap) (y) = a(y,p) ≤ cy ‖p‖C (Ω) ∀p ∈ dom ∗A

}
.

Then for any y ∈ domA, the mapping p 7→ a(y,p) de�nes a continuous linear functional on the
dense subspace dom ∗A ⊂ C (Ω). It can thus be extended uniquely to a continuous functional Ay
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on C (Ω) satisfying (Ay) (p) = a(y,p) for all p ∈ dom ∗A. By the Riesz representation theorem,
Ay can be identi�ed with an element ofM (Ω). We stress that this is the standard construction
of the Banach space adjoint of an unbounded, densely de�ned operator. By [1111, Theorem II.2.6,
Theorem II.4.4], the operator A is also closed and continuously invertible, because ∗A is.

We even obtain the following compactness property:

Lemma 2.1 ([1515, Lemma 2.15]). Consider a sequence {µn}n∈N that converges weakly-∗ inM (Ω)
to µ. Then the sequence {A−1µn}n∈N converges strongly inW 1,q′ (Ω) to A−1µ.

Control operator B Next, consider a compact set ωc ⊂ Ω such that there exists a continuous
trace or embedding operator ∗BH 1 : H 1 (Ω) → L2 (ωc ). Here L2 (ωc ) is de�ned with respect to an
appropriate positive and bounded measure ν on ωc ; e.g., ωc = Ω with the Lebesgue measure for
distributed control, and ωc = ∂Ω with the boundary measure for boundary control. Technically,
we will require in the following that ν (ωc ∩ O ) > 0 for any open subset O ⊂ Rd such that
ωc ∩O is non-empty. This guarantees applicability of Theorem A.3A.3 (see Appendix).

We introduce the linear and continuous restriction operator

∗B : C(Ω) → C(ωc ), (∗Bv ) (x ) = v (x ) ∀x ∈ ωc ,

which coincides with the above mentioned restriction operator ∗BH 1 on C(Ω) ∩ H 1 (Ω), this
space being dense in both C (Ω) and H 1 (Ω).

Its adjoint B := (∗B)∗ can be interpreted (via the Riesz representation theorem) as a mapping

B :M (ωc ) →M (Ω)

acting as the extension by 0 of a measure on ωc to a measure on Ω. On L2 (ωc ) it coincides with
the operator BH 1 := (∗BH 1 )∗ : L2 (ωc ) → H 1 (Ω)∗. Moreover, by Theorem A.3A.3 the space L2 (ωc ) is
weakly-∗ sequentially dense inM (ωc ).

Observation operator E For the operator E, which will be de�ned on re�exive spaces, it
is most convenient to start with the primal operator. Let ωo ⊂ Ω, equipped with a suitable
measure, and assume that there exists a closed (possibly unbounded) operator

E : W 1,q′ (Ω) ⊃ domE → L2 (ωo ),

where domE ⊃ H 1 (Ω) is dense inW 1,q′ (Ω). By this assumption, the restriction of E to H 1 (Ω),
i.e.,

EH 1 := E |H 1 : (H 1 (Ω), ‖ · ‖H 1 ) → L2 (ωo ),

is de�ned on all of H 1 (Ω). It is readily veri�ed that EH 1 is closed as well. Thus, by the closed
graph theorem (see, e.g., [1111, II.1.9]), EH 1 is even a continuous operator.

In many cases E is continuous for suitable q′, and domE =W 1,q′ (Ω) holds, but there are also
important cases where E lacks continuity. Typical examples (e.g., embedding or trace operators)
are discussed in detail below.
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By re�exivity, we can de�ne its adjoint ∗E := E∗ as a closed operator

∗E : L2 (ωo ) ⊃ dom ∗E →W 1,q′ (Ω)∗,

since in this case (∗E)∗ = E∗∗ = E. Like all adjoints of closed operators in re�exive spaces, ∗E
has a dense domain; see, e.g., [1111, Theorem II.2.14]. Comparison with ∗EH 1 := E∗H 1 yields that
∗EH 1h = ∗Eh for every h for which the latter is de�ned, i.e., for h ∈ dom ∗E. Thus, the continuous
operator ∗EH 1 can be considered as the unique continuous extension of ∗E after the co-domain
space has been extended fromW 1,q′ (Ω)∗ to H 1 (Ω)∗ (and renormed).

Control-to-observation mapping S Finally, we de�ne

∗S : L2 (ωo ) ⊃ dom ∗S → C(ωc ), h 7→ ∗B ∗A−1 ∗Eh,

where dom ∗S := dom ∗E is dense in L2 (ωo ) by our above assumptions. This mapping is well-
de�ned, since ∗B ∗A−1 : W 1,q′ (Ω)∗ → C (ωc ) is a continuous operator, de�ned on all ofW 1,q′ (Ω)∗.
Since the adjoint of a densely de�ned (unbounded) linear operator is closed, see, e.g., [1111, Theorem
II.2.6], S := (∗S )∗ is a closed operator

S :M (ωc ) ⊃ dom S → L2 (ωo ).

Since E may be unbounded, the following assertion is not obvious.

Lemma 2.2. It holds that

(2.4) domEA−1B :=
{
u ∈ M (ωc ) : A−1Bu ∈ domE

}
= dom S ⊃ L2 (ωc ).

and S = EA−1B. Furthermore, S is weakly-∗ closed, i.e., if un ⇀∗ u inM (ωc ) and hn ⇀ h in
L2 (ωo ) with Sun = hn , then Su = h.

Proof. By purely algebraic arguments we have for u ∈ dom S ∩ domEA−1B that Su = EA−1Bu
since then both sides of the equality are well-de�ned. Thus, we have to prove the equality of
their domains, using the de�nition of domEA−1B in (2.42.4). By continuity of ∗B ∗A−1 we conclude

(2.5) 〈u, ∗Sh〉M (ωc ),C(ωc ) = 〈A−1Bu, ∗Eh〉W 1,q′ (Ω),W 1,q′ (Ω)∗ for all h ∈ dom ∗S, u ∈ M (ωc ).

By de�nition of domains of adjoints, u ∈ dom S i� 〈u, ∗Sh〉M (ωc ),C(ωc ) ≤ cu ‖h‖L2 (ωo ) , and
A−1Bu ∈ domE i� 〈A−1Bu, ∗Eh〉W 1,q′ (Ω),W 1,q′ (Ω)∗ ≤ cA−1Bu ‖h‖L2 (ωo ) . By (2.52.5), cu = cA−1Bu , and
hence the domains coincide.

The last inclusion in (2.42.4) follows from the fact that foru ∈ L2 (ωc ), we haveA−1Bu ∈ H 1 (Ω) ⊂
domE. This in turn is a consequence ofBu ∈ H 1 (Ω)∗, so thatA−1Bu coincides with the variational
solution of the state equation.

By Lemma 2.12.1, weak-∗ convergence of un implies strong convergence of A−1Bun inW 1,q′ (Ω).
Since E is closed, it is also weakly closed (since its graph is a convex closed set, thus weakly
closed). Hence, A−1Bun → A−1Bu and hn ⇀ h with Sun = hn imply Su = EA−1Bu = h. �
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We remark for later reference that by de�nition of adjoints, we have that

〈Su,h〉L2 (ωo ) = 〈u, ∗Sh〉M,C for all u ∈ dom S, h ∈ dom ∗S,

where here and in the following, we have omitted the domains from the spaces appearing in
duality pairings if they are clear from the context. Also, by de�nition of dom S , for u < dom S
there exists a bounded sequence hn in dom ∗S such that 〈u, ∗Shn〉M,C → ∞.

Finally, we remark that dom S is weak-∗ sequentially dense in M (ωc ). This follows via
dom S ⊃ L2 (ωc ), using Theorem A.3A.3, which states that L2 (ωc ) is weakly-∗ sequentially dense in
M (ωc ). In particular, 〈u,φ〉M,C = 0 for all u ∈ dom S implies 〈u,φ〉M,C = 0 for all u ∈ M (ωc )
and thus φ = 0 as an element of C (ωc ).

Using BH 1 and EH 1 , we complement the measure-space operators S and ∗S by their “standard”
counterparts, i.e., the continuous mappings

SH 1 := EH 1A−1
H 1BH 1 : L2 (ωc ) → L2 (ωo ) and ∗SH 1 := S∗H 1 : L2 (ωo ) → L2 (ωc ).

The operator SH 1 is a restriction of S and coincides with it on L2 (ωc ). In contrast, ∗SH 1 is an
extension of ∗S and is de�ned on all of L2 (ωo ) and not only on dom ∗S . This is possible because
∗SH 1 has a larger co-domain L2 (ωc ) ⊃ C(ωc ).

3. Existence of minimizers

Using the control-to-observation operator, we can state Problem (1.11.1) in reduced form as

(P) min
u ∈M (ωc )

1
2 ‖Su − yd ‖L2 (ωo ) + δM (ωc )+ (u),

where δM (ωc )+ denotes the indicator function of the positive cone inM (ωc ), i.e.,

M (ωc )
+ := {

u ∈ M (ωc ) : 〈u,φ〉M,C ≥ 0 for all φ ∈ C(ωc ),φ ≥ 0} .
We now address existence of minimizers to (PP), which requires an assumption on the control-to-
observation operator which we call a pre-dual Slater condition. Since this operator is de�ned via
duality, it will be seen that it is natural to formulate this assumption in terms of the pre-adjoint ∗S .

Assumption 3.1 (Pre-dual Slater condition). There exists a function h ∈ dom ∗S ⊂ L2 (ωo ) such
that ∗Sh ∈ C(ωc ) is strictly positive, i.e., there is ε > 0 such that

(3.1) (∗Sh) (x ) ≥ ε > 0 for all x ∈ ωc .

Since ∗S = ∗B ∗A−1 ∗E, Assumption 3.13.1 claims the existence of a function h ∈ L2 (ωo ) such that
the solution p of the equation ∗Ap = ∗Eh is a continuous function and satis�es ∗Bp ≥ ε > 0.
We are thus looking for solutions of elliptic equations that are strictly positive (on parts of the
domain).

Using this assumption, we can show that a minimizing sequence is bounded in a su�ciently
strong topology.
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Lemma 3.2. If Assumption 3.13.1 holds, then any minimizing sequence {un}n∈N ⊂ M (ωc ) for (PP) is
bounded inM (ωc ) with {Sun}n∈N bounded in L2 (ωo ).

Proof. First, note that the non-negativity constraint and coercivity of the tracking term imply,
respectively, that un ≥ 0 for all n ∈ N and that {Sun}n∈N is bounded in L2 (ωo ) (and in particular,
that {un}n∈N ⊂ dom S). Using Assumption 3.13.1 and identifying ε > 0 with the constant function
ε1(x ) ∈ C(ωc ), we thus deduce from the de�nition of the total variation norm of a non-negative
measure that

ε ‖un ‖M (ωc ) = ε

∫
ωc

dun = 〈un , ε〉M,C ≤ 〈un , ∗Sh〉M,C = 〈Sun ,h〉L2 (ωo )

≤ ‖Sun ‖L2 (ωo ) ‖h‖L2 (ωo ) ≤ C,

and hence the claimed boundedness follows. �

With this, we obtain existence of a minimizer by Tonelli’s direct method.

Theorem 3.3. Under the above assumptions, there exists a minimizer ū ∈ M (ωc ) of (PP) such that
Sū ∈ L2 (ωo ). If S is injective, ū is unique.

Proof. Let {un}n∈N ⊂ M (ωc ) be a minimizing sequence for (PP), which is bounded inM (ωc )
by Lemma 3.23.2. Since C(ωc ) is separable, the Banach–Alaoglu theorem yields existence of a
subsequence converging weakly-∗ to some ū ∈ M (ωc ). By boundedness of Sun , we may then
extract another subsequence such that Sun converges weakly to some z ∈ L2 (ωo ). By Lemma 2.22.2
we obtain z = Sū. From weak-∗ sequential closedness of the non-negative cone inM, we deduce
that ū is feasible and thus a minimizer of (PP). Finally, strict convexity of the tracking term implies
that any pair of minimizers u1,u2 satis�es Su1 = Su2 and hence, if S is injective, u1 = u2. �

3.1. Verification of the pre-dual Slater condition

We now discuss situations in which Assumption 3.13.1 can be veri�ed. Recall that we have to show
for some h ∈ dom ∗E the existence of a solution p ∈ dom ∗A to the equation

a(y,p) = 〈h,Ey〉L2 (ωo ) for all y ∈ domE

such that ∗Bp is strictly positive on ωc . Although it is well-known that elliptic PDEs have
non-negative solutions for non-negative right-hand sides and boundary data, existence of a
strictly positive solution is not a trivial matter and of course not satis�ed in general (consider
the homogenous Dirichlet problem and ωc = Ω). Moreover, the literature – although quite
exhaustive for the Dirichlet problem – is much scarcer in the case of Neumann, Robin or even
mixed boundary conditions.

We �rst remark that under the stated assumptions, a(·, ·) given by (2.12.1) is uniformly elliptic
and hence de�nes a positive operator, i.e., for all p ∈ H 1 (Ω),

a(y,p) ≥ 0 for all y ∈ H 1 (Ω),y ≥ 0 ⇒ p ≥ 0.

This already implies strict positivity on compact subsets of Ω.

8



Lemma 3.4. Let Ω ⊂ Rd be a domain. Assume that p ≥ 0 ∈ H 1 (Ω) ∩C (Ω) satis�es p . 0 and

a(y,p) ≥ 0 for all y ∈ H 1
0 (Ω),y ≥ 0.

If K ⊂ Ω is compact, there is a δ > 0 such that p ≥ δ on K , and in particular, p > 0 on Ω.

Note the discrepancy between p ∈ H 1 (Ω) and y ∈ H 1
0 (Ω); we choose this setting because it

�ts to the setting in [1010, Chapter 8], from which we cite a crucial result: the Harnack inequality.
Unfortunately, a Harnack inequality for the setting y ∈ H 1 (Ω) (covering Robin, Neumann, or
mixed boundary conditions explicitly) is hard to �nd in the literature.

Proof. The result is a consequence of the weak Harnack inequality (cf. [1010, Theorem 8.18]),
which holds for non-negative supersolutions of a(p, ·) = 0. Let x ∈ Ω be given and denote by
Br (x ) a ball around x of radius r . If B4R (x ) ⊂ Ω, then there exists a C > 0 such that

(3.2) C inf
BR (x )

p ≥ R−d ‖p‖L1 (B2R (x )) .

With this result, we will show that either p ≡ 0 or p > 0 on Ω for any supersolution
p ≥ 0. Since Ω is a domain, and thus open and connected, we merely have to assert that
Ω0 := {x ∈ Ω : p (x ) = 0} is open and closed, because then either Ω0 = Ω (i.e., p ≡ 0) or Ω0 = ∅
(i.e. p > 0). Indeed, by continuity of p, Ω0 is (relatively) closed in Ω and by (3.23.2), every x ∈ Ω0 is
contained in a ball B2R (x ) ⊂ Ω0 as long as B4R (x ) ⊂ Ω. Hence, Ω0 is open. Thus, if p . 0 on Ω,
we have Ω0 = ∅ and so p > 0 on Ω.

Finally, if K ⊂ Ω is compact, then p > 0 has a minimizer x on K , i.e., p (x ) ≥ δ := p (x ) > 0
for all x ∈ K . �

In what follows we denote Ls (Ω) := Ls (Ω) × Ls (∂Ω), where the �rst factor is equipped with
the Lebesgue measure, and the second with the boundary measure; we denote the corresponding
product measure by dν := dx × ds . If M is any subset of Ω, the space Ls (M ) is taken relatively
to Ls (Ω).

Lemma 3.43.4 already yields a �rst result. In the following, χM denotes the characteristic function
of M , which is identically 1 on M ⊂ Ω and 0 on Ω \M .

Corollary 3.5. If ωc is a compact subset of Ω and ωo ⊂ Ω has positive measure (i.e., ν (ωo ) > 0),
then Assumption 3.13.1 is satis�ed.

Proof. Set h := χωo > 0 in (3.13.1). Since h ∈ L∞ (Ω × ∂Ω) ⊂W 1,q′ (Ω)∗, we have ∗A−1h ∈ C (Ω) and
thus h ∈ dom ∗S ⊂ L2 (ωo ). Hence, Lemma 3.43.4 can be applied and yields the desired result. �

Next, we want to cover the general case ωc ⊆ Ω.

Lemma 3.6. Assume that p ∈ H 1 (Ω) satis�es p . 0 as well as

(3.3) a(y,p) =

∫
Ω
χωoy dν for all y ∈ H 1 (Ω),
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and assume moreover that there is δ > 0 such that for (c, r ) ∈ L∞ (Ω) × L∞ (∂Ω) it holds that




c = 0 on (Ω \ ωo ) ∩ {x ∈ Ω : p (x ) < δ}
r = 0 on (∂Ω \ ωo ) ∩ {x ∈ ∂Ω : p (x ) < δ}.

Then p ≥ ε := min
{
δ , ‖r ‖−1

L∞ (Ω)
, ‖c ‖−1

L∞ (Ω)

}
.

Proof. We inserty := p− := min{p, ε}−ε ≤ 0, which is in H 1 (Ω), into (2.12.1) and show that p− = 0
and thus p ≥ ε . Observe that p ≤ ε implies p = p− + ε and that p > ε implies p− = 0 and p−xi = 0
for i = 1 . . .d . With this we compute:∫

Ω
χωop

− dν = a(p−,p) =
∫
Ω

d∑
i, j=1

ai jp
−
xivx j + cp

−p dx +
∫
∂Ω

rp−p ds

=

∫
Ω

d∑
i, j=1

ai jp
−
xip
−
x j + cp

− (p− + ε ) dx +
∫
∂Ω

rp− (p− + ε ) ds

= a(p−,p−) + ε
(∫

Ω
cp− dx +

∫
∂Ω

rp− ds
)

and obtain

0 ≤ a(p−,p−) =
∫
Ω
χωop

− dν − ε
(∫

Ω
cp− dx +

∫
∂Ω

rp− ds
)

=

∫
ωo∩Ω

(1 − ε c )p− dx +
∫
ωo∩∂Ω

(1 − ε r )p− ds − ε
(∫

Ω\ωo
cp− dx +

∫
∂Ω\ωo

rp− ds
)
.

Since p ≥ δ ≥ ε implies that p− = 0, the last two integrals vanish by our assumption on c and
r . Moreover, since 1 − ε c ≥ 1 − ε ‖c ‖L∞ (Ω) ≥ 0 and 1 − ε r ≥ 1 − ε ‖r ‖L∞ (∂Ω) ≥ 0, the �rst two
integrals are non-positive (recall that p− ≤ 0). It follows that a(p−,p−) = 0, implying p− = 0. �

From this we can deduce the following su�cient criterion for the pre-dual Slater condition.

Proposition 3.7. If r = 0 on ∂Ω \ ωo , then Assumption 3.13.1 is ful�lled for any compact ωc ⊂ Ω.

Proof. We show that the solution p of (3.33.3) is strictly positive. By Lemma 3.43.4, we already know
that p > 0 on Ω. For δ > 0, let Ωδ := {x ∈ Ω : p (x ) ≤ δ}. Note that |Ωδ | → 0 as δ → 0 since
p > 0 on Ω.

De�ne aδ (·, ·) like a(·, ·) but with c replaced by cδ := (1 − χΩδ )c , and pδ as the solution of

aδ (y,pδ ) =

∫
Ω
χωoy dν for all y ∈ H 1 (Ω).

Then pδ ≥ 0 and

a(y,pδ ) = aδ (y,pδ ) +

∫
Ω
χΩδ cpδ dx =

∫
Ω
χωoy dν +

∫
Ω
χΩδ cpδ dx

= a(y,p) +

∫
Ω
χΩδ cpδ dx

≥ a(y,p).
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Hence, pδ ≥ p, and thus pδ (x ) < δ implies that p (x ) < δ and thus cδ (x ) = 0. Hence, Lemma 3.63.6
yields (after choosing δ ≤ min

{
‖c ‖−1

L∞ (Ω)
, ‖r ‖−1

L∞ (Ω)

}
) that pδ ≥ δ .

Furthermore,

a(y,p − pδ ) =
∫
Ω
χΩδ cpδy dx ,

and for any 1 ≤ s < ∞,

‖χΩδ cpδ ‖Ls (Ω) ≤ |Ωδ |1/s ‖c‖L∞ (Ω) ‖pδ ‖L∞ (Ωδ ),

so that by [1919, Théorème 4.1], there exists a C > 0 such that for any s > d ,

C‖p − pδ ‖L∞ (Ω) ≤ ‖χΩδ cpδ ‖Ls (Ω) ≤ |Ωδ |1/s ‖c ‖L∞ (Ω) ‖pδ ‖L∞ (Ωδ ) .

Since |Ωδ | → 0 for δ → 0, we can choose δ su�ciently small such that for adequately chosen
s ∈ (d,∞), we have

C−1‖c ‖L∞ (Ω) |Ωδ |1/s ≤ 1
4 .

Hence, we can estimate

‖pδ ‖L∞ (Ωδ ) ≤ ‖p‖L∞ (Ωδ ) + ‖p − pδ ‖L∞ (Ω) ≤ δ + 1
4 ‖pδ ‖L∞ (Ωδ ),

i.e., ‖pδ ‖L∞ (Ωδ ) ≤ 4
3δ . We conclude that ‖p − pδ ‖L∞ (Ω) ≤ 1

4
4
3δ =

1
3δ , and therefore

p ≥ pδ − ‖p − pδ ‖L∞ (Ω) ≥ δ − 1
3δ > 0

as claimed. �

3.2. Examples

To illuminate our abstract framework further, let us discuss in the following a couple of examples.
All of them have in common the generic de�nition of

A : W 1,q′ (Ω) ⊃ domA→M (Ω),

where q′ ≤ 2 is chosen appropriately as stated in the beginning of Section 22. However, the
examples will cover di�erent de�nitions of E and B and the corresponding spaces, i.e., di�erent
types of control and observation.

Distributed control for a Neumann problem As a �rst example, consider a homogeneous
Neumann problem with distributed control (i.e., r = 0 and ωc = Ω), such that

B = Id :M (Ω) →M (Ω)

is the control operator with pre-adjoint ∗B = Id : C(Ω) → C(Ω).
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Let us �rst consider boundary observation, i.e., ωo = ∂Ω. We start with recalling that there
exists a continuous trace operator

τq′ : W 1,q′ (Ω) → Ls (∂Ω)

for suitably chosen s depending on q′ and the spatial dimension d of Ω. In particular, for q′ = 2
we may always choose s = 2. In the general case, we may de�ne

domE :=
{
y ∈W 1,q′ (Ω) : τq′y ∈ L2 (∂Ω)

}

(which implies domE ⊃ H 1 (Ω) if q′ ≤ 2), and then

E : W 1,q′ (Ω) ⊃ domE → L2 (∂Ω)

as the restriction of τq′ to domE. Since the norm of the co-domain space has been strengthened,
E is in general not continuous anymore. It is, however, a closed operator: Assume that yn → y
in W 1,q′ (Ω) and Eyn → h in L2 (∂Ω). By continuity of τq′ , we conclude that Eyn → τq′y in
Ls (∂Ω); but from Eyn → h in L2 (∂Ω) we deduce that τq′y = h ∈ L2 (∂Ω) and thus y ∈ domE
and Ey = τq′y = h.

We summarize that E satis�es all our assumptions, and note that for d = 2 we may choose q′
su�ciently close to 2 such that E := τq′ : W 1,q′ (Ω) → L2 (∂Ω) is well-de�ned as a continuous
operator. However, the same is impossible for d = 3, so that we have to work with unbounded
E in this case.

For the case of observation on the whole domain (i.e., ωo = Ω) and d ≤ 3, we may simply
de�ne E : W 1,q′ (Ω) → L2 (Ω) as the Sobolev embedding which exists for suitably chosen q′. In
the “exotic” case d > 3, a similar e�ect as for boundary control with d = 3 appears, and E has to
be de�ned as an unbounded operator.

By Lemma 3.73.7 and by our assumption r = 0, we see that we can choose ωo ⊂ Ω arbitrarily as
long as it has positive measure with respect to the measure dν on Ω.

Robin or Neumann boundary control In this case, our control operator is de�ned as the
extension by zero

B :M (∂Ω) →M (Ω),

i.e., ∗B : C(Ω) → C(∂Ω) denotes the trace operator from Ω to ωc = ∂Ω. Again, we take ∗E as
the identity. To verify the pre-dual Slater condition, we then need to �nd h ∈ L2 (Ω), such that
the solution p ∈W 1,q (Ω) of the problem

a(y,p) = 〈h,Ey〉L2 (ωo ) for all y ∈W 1,q′ (Ω)

has a strictly positive boundary trace, i.e., ∗Bp ≥ ε > 0. According to Proposition 3.73.7 this can be
achieved for Neumann boundary conditions if ωo is arbitrary (of non-zero measure), and for
Robin boundary conditions if ωo ⊃ ∂Ω.
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Distributed control for a Dirichlet problem We close this section with a simple example
for which Assumption 3.13.1 is violated. Consider the problem

(3.4)



min J (y) := ‖y − (1 − x )‖2L2 ([0,1]) s. t. u ≥ 0,

− y ′′ = u, y (0) = y (1) = 0.

Due to the homogemous Dirichlet boundary conditions and by continuity, there cannot be any
solutions of the predual problem which are larger than some ε > 0 on the whole domain, which
coincides with the control domain. So Assumption 3.13.1 is clearly violated.

To show that also the conclusions of Theorem 3.3 do not hold, let us take for n ≥ 2 the
sequence of measures un = nδ1/n , which is contained inM ([0, 1]) but unbounded.

Lemma 3.8. The weak solution yn ∈ H 1
0 (0, 1) of y ′′ = nδ1/n is given by

yn =



(n − 1)x x ≤ 1/n,
1 − x x ≥ 1/n.

Proof. We have to �nd yn such that
∫
Ω y
′
np
′dx = np (1/n) for all p ∈ H 1

0 ((0, 1)) and yn (0) =
yn (1) = 0. By the Lax–Milgram theorem, we know that this solution is unique; moreover, the
special form of the right-hand side leads us to the ansatz y ′n = α on [0, 1/n] and y ′n = β on
[1/n, 1]. Using the homogenous boundary conditions, we �nd that yn = αx on [0, 1/n] and
yn = β (x − 1) on [1/n, 1]. Since yn has to be continuous at x = 1/n, we conclude that α 1

n = β
1

n−1 .
Then, we can obtain using the weak formulation and the fundamental theorem of calculus

that

〈un ,p〉M,C = np (1/n) =
∫ 1/n

0
αp ′dx +

∫ 1

1/n
βp ′dx

= α (p (1/n) − p (0)) + β (p (1) − p (1/n))
= (α − β )p (1/n),

which implies that α − β = n. Solving these two equations for α and β yields our claim. �

Proposition 3.9. Problem (3.43.4) does not possess an optimal solution inM ([0, 1]).

Proof. From Lemma 3.83.8 we conclude that yn → 1 − x in L2 ((0, 1)). Hence, {(yn ,un )}n∈N is a
minimizing sequence, since each pair is feasible and J (yn ) → 0 ≤ J (y) for all y. However, the
limit J = 0 cannot be attained, because the only possible candidate y (x ) = 1 − x does not satisfy
the boundary conditions. �

If we instead consider



min ‖y − (1 − x )‖2L2 ([δ,1−δ ]) s. t. u ≥ 0,

− y ′′ = u, y (0) = y (1) = 0,

for some δ > 0, then the control domain [δ , 1− δ ] is a compact subset of (0, 1). So by Lemma 3.43.4
we can verify Assumption 3.13.1 and thus apply Theorem 3.33.3 to assert existence of an optimal
control inM ([0, 1]). This reasoning works in general for distributed control on a compact subset
ωc of the domain Ω.
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4. Optimality conditions

We apply Fenchel duality to derive optimality conditions for minimizers of (PP). For the reader’s
convenience, we recall duality theory, e.g., from [99, Chapter II.4]. For a functional F : W →
R := R ∪ {∞} de�ned on a Banach spaceW , let F ∗ : W ∗ → R denote the Fenchel conjugate of
F given for w∗ ∈W ∗ by

F ∗ (w∗) = sup
w ∈W

〈w∗,w〉W ∗,W − F (w ).

Furthermore, let

∂F (w ) := {
w∗ ∈W ∗ : 〈w∗, w̃ −w〉W ∗,W ≤ F (w̃ ) − F (w ) for all w̃ ∈W }

denote the subdi�erential of the convex function F atw , which reduces to the Gâteaux-derivative
F ′(w ) if it exists. These de�nitions immediately yield the Fenchel–Young inequality

(4.1) 〈w∗,w〉W ∗,W ≤ F ∗ (w∗) + F (w ) for all w ∈W ,w∗ ∈W ∗,

where equality holds if and only if w∗ ∈ ∂F (w ).
The Fenchel duality theorem states that if F : W → R and G : Z → R are proper, convex, and

lower semicontinuous functionals on the Banach spaces X and Z , Λ : W → Z is a continuous
linear operator, and there exists a w0 ∈ W such that F (w0) < ∞, G (Λw0) < ∞, and G is
continuous at Λw0 (a generalized Slater condition), then

(4.2) inf
w ∈W

F (w ) + G (Λw ) = sup
z∗∈Z ∗

−F ∗ (Λ∗z∗) − G∗ (−z∗),

and the right-hand side of (4.24.2) – the dual problem – has at least one solution. Furthermore, the
equality in (4.24.2) is attained at (w̄, z̄∗) ∈W × Z ∗ if and only if

(4.3)



Λ∗z̄∗ ∈ ∂F (w̄ ),

−z̄∗ ∈ ∂G (Λw̄ ),

holds; see, e.g., [99, Remark III.4.2].
We wish to apply the Fenchel duality theorem to (PP), where Λ would take the role of the

control-to-observation mapping S . SinceM is non-re�exive, the dual problem would be posed
inM∗, which is di�cult to characterize. We therefore follow a pre-dual approach as in [66, 77],
where we introduce the optimization problem

(∗P) inf
h∈dom ∗S

1
2 ‖h + yd ‖

2
L2 (ωo )

− 1
2 ‖yd ‖

2
L2 (ωo )

+ δC(ωc )+ (
∗Sh)

(obtained by formal application of Fenchel duality) and show that its Fenchel dual coincides
with problem (PP).
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Remark 4.1. Before delving into a deeper analysis, let us point out that the pre-dual problem
(∗P∗P) is essentially a state-constrained optimal control problem with control h ∈ dom ∗S ⊂ L2 (ωo )
and state p := ∗Sh ∈ C (Ω), i.e.,

inf
h∈dom ∗S

1
2 ‖h + yd ‖

2
L2 (ωo )

− 1
2 ‖yd ‖

2
L2 (ωo )

s. t. ∗Ap = ∗Eh, ∗Bp ≥ 0, on ωc .

However, it has the slightly unusual characteristics that the state does not appear in the objective
and that the inequality constraint is imposed on a subdomain.

A further complication arises if dom ∗S is a proper subset of L2 (ωo ). This case corresponds to
a state-constrained problem where the control-to-state mapping does not map into the space of
continuous functions. Such problems have been analysed in [1717]. The analysis performed in this
section may o�er an alternative approach to this class of problems.

Problem (∗P∗P) is strictly convex and admits a feasible point by Assumption 3.13.1 and thus is
non-trivial, i.e., admits a �nite in�mum. If dom ∗S is not closed, we cannot expect (∗P∗P) to have
a minimizer. However, any minimizing sequence is bounded in L2 (ωo ) and thus has a weak
cluster point h̄ ∈ L2 (ωo ). In fact, by strict convexity of the term ‖h + yd ‖2L2 (ωo )

, any minimizing
sequence converges even strongly to the unique limit h̄. While h̄ is possibly not contained in
dom ∗S – and hence ∗Sh̄ is not de�ned – we can express the limit using a suitable extension of ∗S
which we will de�ne below.

Although the Fenchel duality theorem is not directly applicable since ∗S may be an unbounded
operator, a modi�cation of the arguments in [99] shows that the statement still holds. In our
argumentation, we can make use of the fact that we have already established existence of
solutions of the dual problem in Theorem 3.33.3. For the sake of completeness, we give here the full
proof, where we closely follow [99, Chapter II.4]. Let us de�ne for problem (∗P∗P) the perturbation
function Φ : L2 (ωo ) × C(ωc ) → R by

Φ(h,v ) := 1
2 ‖h + yd ‖

2
L2 (ωo )

− 1
2 ‖yd ‖

2
L2 (ωo )

+ δC(ωc )+ (
∗Sh −v ) + δdom ∗S (h).

Clearly, Φ(h,v ) is convex but – by the last term – not lower semicontinuous with respect to h
unless dom ∗S = L2 (ωo ). Furthermore, infh Φ(h, 0) coincides with (∗P∗P) and hence is �nite.

Consider now the Fenchel conjugate Φ∗ : L2 (ωo ) ×M (ωc ) → R of Φ with respect to (h,v ).

Lemma 4.2. The dual problem

(4.4) sup
v∗∈M (ωc )

−Φ∗ (0,v∗)

coincides with problem (PP). Furthermore, if Assumption 3.13.1 is satis�ed, the supremum is attained at
v̄∗ = ū.

Proof. By de�nition, the Fenchel conjugate at h∗ = 0 is given by

Φ∗ (0,v∗) = sup
h∈dom ∗S,v ∈C(ωc )

〈v∗,v〉M,C − Φ(h,v )

= sup
S∗h−v ∈C(ωc )+

(
〈v∗,v〉M,C − 1

2 ‖h + yd ‖
2
L2 (ωo )

)
+

1
2 ‖yd ‖

2
L2 (ωo )

.
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Using that dom ∗S is dense in L2 (ωo ) and introducing for h ∈ dom ∗S the function p := ∗Sh −v ∈
C(ωc ) then yields for the case that v∗ ∈ dom S :

Φ∗ (0,v∗) = sup
h∈dom ∗S,p∈C(ωc )+

(
〈v∗, ∗Sh − p〉M,C − 1

2 ‖h + yd ‖
2
L2 (ωo )

)
+

1
2 ‖yd ‖

2
L2 (ωo )

= sup
h∈dom ∗S,p∈C(ωc )+

(
〈Sv∗,h〉L2 (ωo ) − 〈v∗,p〉M,C − 1

2 ‖h + yd ‖
2
L2 (ωo )

)
+

1
2 ‖yd ‖

2
L2 (ωo )

= sup
h∈dom ∗S,p∈C(ωc )+

(
−〈v∗,p〉M,C − 1

2 ‖h‖
2
L2 (ωo )

+ 〈h, Sv∗ − yd 〉L2 (ωo )

)
.

If, in contrast, v∗ < dom S , there exists a sequence {hn}n∈N ⊂ dom ∗S , bounded in L2 (ωo ), such
that 〈v∗, ∗Shn〉M,C → ∞. Hence the �rst term in the �rst line is unbounded, while the opthers
are bounded, and thus Φ∗ (0,v∗) = ∞. We therefore assume that v∗ ∈ dom S and maximize
separately with respect to p and h. Considering the �rst term, we have that 〈v∗,p〉M,C < 0 for
some p ≥ 0 implies that Φ∗ (0,v∗) = ∞. Otherwise, the supremum is attained at p = 0 and is 0.
For the second term, we use that the functional is di�erentiable with respect to h to deduce that
the supremum is attained at h = Sv∗ − yd . Together, we obtain

Φ∗ (0,v∗) = 1
2 ‖Sv

∗ − yd ‖2L2 (ωo )
+ δM (ωc )+ (v

∗) + δdom S (v
∗).

Writing u := v∗, we see that the dual problem (4.44.4) is precisely our original problem (PP),
which by Theorem 3.33.3 has a solution ū ∈ dom S ⊂ M (ωc ). �

To derive optimality conditions, we �rst show that the duality gap between (∗P∗P) and (PP) is
zero.

Proposition 4.3. We have that

(4.5) inf
h∈L2 (ωo )

Φ(h, 0) = sup
v∗∈M (ωc )

−Φ∗ (0,v∗).

Proof. The claim follows from [99, Proposition III.2.1] if Problem (∗P∗P) is normal, i.e., the mapping
v 7→ infh Φ(h,v ) is lower semicontinuous at 0. To verify this, it su�ces to show that for each
feasible point hv ∈ domΦ(h,v ), we can �nd a nearby feasible point h0 ∈ domΦ(h, 0) with
Φ(hv ,v ) close to Φ(h0, 0). This can be achieved by adding a small multiple of the function h
from Assumption 3.13.1, since ∗Sh is strictly positive and the perturbations are measured in the
C(ωc )-norm.

Thus, for given ε > 0 we can �nd δ > 0 such that with ‖v ‖L∞ (ωo ) < δ , h0 := hv +εh is feasible
for the original problem, as long as hv is feasible for the perturbed problem. Moreover, it is easy
to see that Φ(h0, 0) − Φ(hv ,v ) ≤ τ (ε ) with τ → 0 as ε → 0. Taking in�ma, this implies that

inf
h

Φ(h, 0) ≤ inf
h

Φ(h,v ) + τ ,

which in turn yields the desired lower semicontinuity and thus (4.54.5). �

To derive optimality conditions from the equality (4.54.5), we continue as in [99, § III, equation
(4.22)]. We �rst derive a limiting form of the optimality conditions.

16



Proposition 4.4. Let {hn}n∈N ⊂ dom ∗S ⊂ L2 (ωo ) be a minimizing sequence for Problem (∗P∗P)
with hn → h̄ ∈ L2 (ωo ), and let ū ∈ M (ωc ) be the solution to Problem (4.44.4). Then,

(4.6)



h̄ = Sū − yd ,
∗Shn ≥ 0, ū ≥ 0, lim

n→∞〈ū,
∗Shn〉M,C = 0.

Proof. By de�nition of Φ∗, Proposition 4.34.3 implies that if {hn}n∈N is a minimizing sequence of
Φ(·, 0) and ū is a minimizer of Φ∗ (0, ·), we have

lim
n→∞Φ(hn , 0) + Φ

∗ (0, ū) = 0.

We now use continuity of ‖ · ‖L2 (ωo ) with respect to hn → h̄ (recall that this limit exists due to
the strict convexity of the �rst term in (∗P∗P)), which yields

0 = lim
n→∞Φ(hn , 0) + Φ

∗ (0, ū)

=
1
2 ‖h̄ + yd ‖

2
L2 (ωo )

− 1
2 ‖yd ‖

2
L2 (ωo )

+ lim
n→∞δC(ωc )+ (S

∗hn )

+
1
2 ‖Sū − yd ‖

2
L2 (ωo )

+ δM (ωc )+ (ū).

Next, we observe that, since ū ∈ dom S and thus Sū ∈ L2 (ωo )
∗, we have the convergence

lim
n→∞〈ū,

∗Shn〉M,C = lim
n→∞〈Sū,hn〉L2 (ωo ) = 〈Sū, h̄〉L2 (ωo ) .

Hence, continuing our last computation, we obtain

0 =
[ 1
2 ‖h̄ + yd ‖

2
L2 (ωo )

− 1
2 ‖yd ‖

2
L2 (ωo )

+
1
2 ‖Sū − yd ‖

2
L2 (ωo )

− 〈Sū, h̄〉L2 (ωo )

]

+

[
lim
n→∞δC(ωc )+ (S

∗hn ) + δM (ωc )+ (ū) + lim
n→∞〈ū,

∗Shn〉M,C

]
.

We now argue that both brackets are non-negative. For the �rst bracket, we use the fact that the
third term is the Fenchel conjugate of the sum of the �rst two terms to apply the Fenchel–Young
inequality (4.14.1). For the second bracket, feasibility of elements of a minimizing sequence (after
passing to a subsequence if necessary) implies that ∗Shn ≥ 0 and ū ≥ 0 and hence that the
�rst two terms vanish. By de�nition of non-negativity of measures, positivity of ū and ∗Shn
implies that 〈ū, ∗Shn〉M,C ≥ 0 for all n ∈ N and hence that the third term is non-negative as
well. Therefore, each bracket has to vanish separately. The �rst one immediately yields equality
in (4.14.1) and hence that

h̄ ∈ ∂
(

1
2 ‖ · −yd ‖2L2 (ωo )

)
(Sū) = {Sū − yd},

i.e., the �rst relation of (4.64.6). From the second bracket, we directly obtain the remaining relations
(i.e., the second line) of (4.64.6). �
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We now wish to pass to the limit n → ∞ in (4.64.6), which is impeded by the fact that the
operators S and ∗S are de�ned in the non-standard setting needed for measure-valued control.
Recall that ∗S – which appears in 〈ū, ∗Shn〉M,C – is a restriction of its classical counter-part
∗SH 1 : L2 (ωo ) → L2 (ωc ). Hence, while ∗Sh̄ may not be well-de�ned, ∗SH 1h̄ is well-de�ned since
h̄ ∈ L2 (ωo ). Moreover, from ū ∈ dom S we can deduce not only that ū ∈ M (ωc ) but also that
Sū ∈ L2 (ωo ).

We thus make use of ∗SH 1 to de�ne a new bilinear form

〈·, ·〉dom S,ran ∗SH 1 : dom S × ran ∗SH 1 → R

that can be used as a replacement of the term 〈ū, ∗Shn〉M,C in (4.64.6) but is well-de�ned also for
the limit h̄. Let u ∈ dom S and λ ∈ ran ∗SH 1 with h ∈ L2 (ωo ) such that λ = ∗SH 1h, then set

〈u, λ〉dom S,ran ∗SH 1 := 〈Su,h〉L2 (ωo ) .

With this de�nition, we obtain the following �rst-order necessary optimality conditions.

Theorem 4.5. Let ū ∈ M (ωc ) be a minimizer of Problem (1.11.1). Then there exist ȳ ∈ W 1,h′ (Ω),
p̄ ∈ H 1 (Ω) and λ̄ ∈ ran ∗SH 1 ⊂ L2 (ωc ) satisfying

(OS)




∗E (Eȳ − yd ) − ∗AH 1p̄ = 0,
λ̄ − ∗Bp̄ = 0,
Aȳ − Bū = 0,

λ̄ ≥ 0, ū ≥ 0, 〈ū, λ̄〉dom S,ran ∗SH 1 = 0.

Proof. First, we note that 〈u, λ〉dom S,ran ∗SH 1 is well-de�ned because u ∈ dom S implies Su ∈
L2 (ωo ), and because h ∈ L2 (ωo ) = dom ∗SH 1 . We now to argue that this bilinear form can indeed
be used in (4.64.6). For h ∈ dom ∗S , we have λ = ∗SH 1h = ∗Sh ∈ C(ωc ) and thus

〈u, λ〉dom S,ran ∗SH 1 = 〈Su,h〉L2 (ωo ) = 〈u, ∗Sh〉M,C = 〈u, λ〉M,C.

Furthermore, if u ∈ dom S and the sequence {hn}n∈N ⊂ dom ∗S converges to h in L2 (ωo ), then

lim
n→∞〈u,

∗Shn〉M,C = lim
n→∞〈u,

∗SH 1hn〉M,C = lim
n→∞〈u,

∗SH 1hn〉dom S,ran ∗SH 1

= lim
n→∞〈Su,hn〉L2 (ωo ) = 〈Su,h〉L2 (ωo )

= 〈u, ∗SH 1h〉dom S,ran ∗SH 1 .

Thus, the limit limn→∞〈ū, ∗Shn〉M,C in (4.64.6) can be replaced by 〈ū, ∗SH 1h̄〉dom S,ran ∗SH 1 as claimed.
Introducing the state ȳ := Sū = A−1Bū, an adjoint state p̄ := ∗A−1

H 1
∗Eh̄ = ∗A−1

H 1
∗E (Sū − yd ) ∈

H 1 (Ω) and a Lagrangian multiplier λ̄ := ∗Bp̄ = ∗SH 1h̄ ∈ ran ∗SH 1 now yields (OSOS). �

If E is continuous, we can directly pass to the limit in the second relation of (4.64.6) and obtain
a Lagrange multiplier λ̄ = ∗Sh̄ ∈ C (ωc ).
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Corollary 4.6. Assume that E is continuous, and let ū ∈ M (ωc ) be a minimizer of Problem (1.11.1).
Then there exist ȳ ∈ domA, p̄ ∈ dom ∗A ⊂ H 1 (Ω) ∩C (Ω), and λ̄ ∈ C (ωc ) satisfying

(4.7)




∗E (Eȳ − yd ) − ∗Ap̄ = 0,
λ̄ − ∗Bp̄ = 0,
Aȳ − Bū = 0,

λ̄ ≥ 0, ū ≥ 0, 〈ū, λ̄〉M,C = 0.

In this case, the optimality conditions can also be obtained by direct application of the Fenchel
duality theorem to problem (∗P∗P), where the last three relations of (4.74.7) are the complementarity
conditions of the second relation of (4.34.3), which here read −ū ∈ ∂δC+ (λ̄).

5. Connection to problems with control costs

In this section, we show that problem (PP) can be interpreted as the limit problem for vanishing
L2 or measure-space control costs.

5.1. L2 control costs

We �rst connect the measure-space problem (PP) with the classical control-constrained linear
quadratic problem

(Pα ) min
u ∈L2 (ωc )

1
2 ‖Su − yd ‖

2
L2 (ωo )

+
α

2 ‖u‖
2
L2 (ωc )

+ δL2 (ωc )+ (u),

which for every α > 0 is known to admit a minimizer uα ∈ L2 (ωc ); see, e.g., [2121, Theorem 2.14].
Arguing as in the proof of Theorem 3.33.3, it can be shown that uα converges weakly-∗ to some
û inM (ωc ) as α → 0 (up to a subsequence if S is not injective). It is, however, not obvious
that the limit û coincides with the global minimizer ū from Theorem 3.33.3. The validity of this
assertion hinges on the question, whether there is a sequence {un}n∈N ⊂ L2 (ωc )

+ such that
un ⇀

∗ ū and Sun ⇀ Sū in L2 (ωo ), i.e., whether optimal control and optimal observation can be
approximated simultaneously by a sequence of positive functions.

Due to Theorem A.3A.3, this is certainly the case if E is continuous, since then un ⇀
∗ ū implies

Sun → Sū by Lemma 2.12.1.

Theorem 5.1. Assume that E is continuous, S is injective, and ωc is equipped with a measure ν
such that ν (ωc ∩O ) > 0 for every open set O ⊂ Rd , such that ωc ∩O is non-empty. Then

uα ⇀
∗ ū and Suα → Sū .

Proof. By Theorem A.3A.3, there exists a sequence {vn}n∈N ⊂ L2 (ωc )
+ such thatvn ⇀∗ ū. Since E is

continuous, this implies via Lemma 2.12.1 that Svn → Sū strongly and thus that ‖Svn−yd ‖L2 (ωo ) →
‖Sū−yd ‖L2 (ωo ) . Denoting by Jα the functional in (PαPα ) and by J the functional in (PP), we conclude
that for each ε > 0 there are vn and αn such that

Jαn (uαn ) = inf
u ∈L2 (ωc )

Jαn (u) ≤ Jαn (vn ) ≤ J (ū) + ε .
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Hence, {uαn}n∈N is a minimizing sequence for J , which satis�es – like any minimizing sequence
– the properties stated in the proof of Theorem 3.33.3. This yields our assertions. �

On the other hand, if E and thus S is unbounded, the graph norm on dom S , de�ned by
‖u‖S := ‖u‖M (ωc )+ ‖Su‖L2 (ωo ) , is strictly stronger than ‖u‖M (ωc ) . Thus, there may be sequences
in L2 (ωc ) that converge weakly-∗ in (M (ωc ), ‖u‖M (ωc ) ) but are unbounded in (dom S, ‖u‖S )
and thus cannot converge weakly-∗ with respect to this norm. Hence if S is unbounded, the
weak-∗ sequential closure of L2 (ωc ) may be a proper subset of dom S , and thus we cannot expect
in general that our global minimizer ū can be approximated by a minimizing sequence in L2 (ωc ).

Although the necessary optimality conditions for Problem (PαPα ) are standard (see, e.g., [2121,
Theorem 2.22]), it is instructive to derive them using the convex analysis framework employed
for (PP). Since Problem (PαPα ) is posed in the Hilbert space L2 (ωc ) and we have assumed E to be
continuous, we can apply the Fenchel duality theorem directly, where we denote by F ∗ the
tracking term and by G∗α the two remaining terms in (PαPα ). To derive an explicit characterization
of the second relation of (4.34.3), we set λα := S∗hα ∈ L2 (ωo ) and use the fact that due to the
Hilbert space setting, Gα coincides with the Moreau envelope of δL2 (ωc )+ , i.e.,

Gα (λ) =
(α

2 ‖ · ‖
2
L2 (ωc )

+ δL2 (ωc )+

)∗
(λ) =

(
δL2 (ωc )+

)
α
(λ) := min

w ∈L2 (ωc )+

1
2α ‖w − λ‖

2
L2 (ωc )

,

see, e.g., [11, Proposition 13.12]. Hence, ∂Gα coincides with the Yoshida regularization of ∂δL2 (ωc )+ ,
i.e.,

∂(Gα ) (λ) =
(
∂δL2 (ωc )+

)
α
(λ) := 1

α

(
λ − proxαδL2 (ωc )+

(λ)
)
=

1
α

(
λ − projL2 (ωc )+

(λ)
)
,

since the proximal mapping of an indicator function of a convex set C is given by the metric
projection onto C; see, e.g., [11, Proposition 12.29]. After some algebraic manipulations, we thus
obtain the the optimality system

(OSα )



λα = S∗ (Suα − yd ),
uα =

1
α

max (0,−λα ) ,

where max is to be understood pointwise almost everywhere in ωc . Note that the system
(OSαOSα ) coincides with the well-known projection formulation of the optimality condition for the
control-constrained linear-quadratic problem (PαPα ); see, e.g., [2121, Theorem 2.28].

5.2. Measure-space control costs

We now connect problem (PP) with the non-negative “sparse control problem”

(Pβ ) min
u ∈M (ωc )

1
2 ‖Su − yd ‖

2
L2 (ωo )

+ β ‖u‖M (ωc ) + δM (ωc )+ (u)

considered in [77]. Existence of an optimal control uβ ∈ M (ωc )
+ can be shown as in Theorem

3.33.3, using the fact that a minimizing sequence is necessarily bounded inM (ωc ) by virtue of the
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additional (weak-∗ lower semi-continuous) term. Similarly, by the minimizing property of uβ ,
the family {Suβ}β>0 is bounded in L2 (ωo ) and hence uβ converges weakly-∗ to ū inM (ωc ) as
β → 0 (up to a subsequence if S is not injective) if Assumption 3.13.1 holds and E is continuous. If
on the other hand E is unbounded, the discussion in Section 5.15.1 shows that dom S is in general
not weakly-∗ closed, and we cannot expect weak-∗ convergence of uβ to a minimizer ū.

Optimality conditions for (PβPβ ) with a bounded control-to-observation mapping S can be
derived by application of the Fenchel duality theorem, making use of the fact that the Fenchel
conjugate of

Gβ : C(ωc ) → R, Gβ (λ) = δ{v≥−β} (λ) =



0 λ(x ) ≥ −β for all x ∈ ωc ,

∞ else,

is given by

G∗β :M (ωc ) → R, G∗β (u) = β ‖u‖M (ωc ) + δM (ωc )− (u),

see [77, Remark 2.5]. (Recall that by (4.24.2) the dual problem involves G∗β (−u).) Fenchel duality
now leads to the necessary optimality conditions

(5.1)




∗E (Eyβ − yd ) − ∗Apβ = 0,
λβ − ∗Bpβ = 0,
Ayβ − Buβ = 0,

λβ ≥ −β, uβ ≥ 0, 〈uβ , λβ + β〉M,C = 0,

see again [77, Remark 2.5], where the last relation was equivalently expressed as a variational
inequality. Setting β = 0, we recover (4.64.6).

The optimality conditions (5.15.1) are frequently used as a justi�cation for calling uβ a sparse
control: From the last relations, we see that uβ must be zero on all subsets of ωc where ∗Bpβ is
strictly greater than−β . Hence, the support ofuβ is contained in the set {x ∈ ωc : ∗Bpβ (x ) = −β},
which in many situation (e.g., if pβ is harmonic) can be argued to be a set of zero Lebesgue
measure. Furthermore, increasing β will decrease the size of this set. The same argument is
possible for (4.64.6): the optimal control ū must be zero on all subsets with ∗Bpβ > 0, and hence
the support of ū is contained in {x ∈ ωc : ∗Bp̄ (x ) = 0} (which has Lebesgue measure zero in
similar situations as in the case β > 0). This implies that optimal measure-space controls have
an inherent sparsity independent of the sparsity-promoting control cost, whose role is solely to
control the size of the support.

We can also apply our framework from Section 44 to derive optimality conditions for un-
bounded observation operators (which cannot be treated using the standard approach as in, e.g.,
[77]). Proceeding exactly as before with δC(ωc )+ replaced by δ{v≥−β} and δM (ωc )+ replaced by
β ‖·‖M (ωc ) + δM (ωc )+ , we obtain the modi�ed optimality conditions

(OSβ )




∗E (Eyβ − yd ) − ∗AH 1pβ = 0,
λβ − ∗Bpβ = 0,
Ayβ − Buβ = 0,

λβ ≥ −β, uβ ≥ 0, β ‖uβ ‖M (ωc ) + 〈uβ , λβ 〉dom S,ran ∗SH 1 = 0.
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Again setting β = 0, we recover (OSOS). However, since the last relation can no longer be interpreted
pointwise, a sparsity property of uβ does not follow directly.

6. Numerical solution

The numerical solution is based on the conforming discretization ofM (ωc ) introduced in [44],
which we brie�y recall. The starting point is to replace S :M (ωc ) → L2 (ωo ) by its �nite element
semidiscretization Sh :M (ωc ) → Yh , where Yh ⊂ L2 (ωo ) is a �nite-dimensional space spanned
by the usual continuous piecewise linear nodal basis (“hat”) functions attached to the vertices{x j}Nj=1 of a triangulation of Ω. We then consider the semidiscrete optimal control problem

(Ph ) min
u ∈M (ωc )

1
2 ‖Shu − yd ‖

2
L2 (ωo )

+ δM (ωc )+ (u).

Existence of an optimal control ū can be shown as in Section 33. Although the optimal state
ȳh = Shū is unique, this is no longer the case for the control due to the �nite number of
observations. However, there is a unique ūh ∈ M (ωc ) with ȳh = Sh (ūh ) that can be represented
as a linear combination of Dirac measures concentrated on the vertices x j contained in ωc ;
see [44, Theorem 3.2]. We can thus restrict the minimization in (PhPh ) over the set Uh of such
linear combinations. In this sense, this approach is related to the variational discretization
method introduced in [2424] for unconstrained linear-quadratic problems and in [1313] for control-
constrained problems.

This allows expressing Problem (PhPh ) purely in terms of the expansion coe�cients ~u of ūh and
~y of ȳh . Using that ūh ∈ M (ωc )

+ if and only if ~u ≥ 0 componentwise and applying the Fenchel
duality theorem as in Corollary 4.64.6 (all �nite-dimensional operators being bounded) yields the
fully discrete optimality conditions

(OSh )



ATh~p = Mh (~y − ~yd ),
Ah~y = Bh~u,

−~u ∈ ∂δ (RN )+ (B
T
h ~p),

where Ah denotes the sti�ness matrix corresponding to the di�erential operator A, Mh the
restricted mass matrix on the observation domain ωo , and BTh the discrete restriction operator
to the components of ~p corresponding to vertices contained in ωc . (Note the lack of mass matrix
for the discrete state equation.) Since RN is a Hilbert space, we can reformulate the last relation
in (OShOSh ) using resolvent calculus similarly as in Section 55 as

−~u = 1
α

(
BTh ~p − α~u − proj(RN )+ (B

T
h ~p − α~u)

)
for any α > 0; see also [1414, Theorem 4.41]. (Comparing this relation with the last relation
in (OSαOSα ), we remark that the only di�erence is the presence of ~u on the right-hand side.) In
particular, for α = 1 we obtain

~u = max
(
0, ~u − BTh ~p

)
,
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where the max is to be understood componentwise.
It is well-known that the max operator is semismooth on RN with Newton derivative at ~v in

direction ~h is given componentwise by

[
DN max(0, ~v )~h

]
j
=




hj if vj > 0,
0 if vj ≤ 0,

and that system (OShOSh ) therefore can be solved by a superlinearly convergent semismooth Newton
method; see [1414, 2222]. To account for the local convergence of Newton methods, we compute a
starting point by solving a sequence of discrete regularized problems analogous to Section 55.
Speci�cally, we add for α > 0 the `2 penalty α

2 |~u |22 and proceed as in Section 55 to obtain

(OSh,α )




ATh~p = Mh (~y − ~yd ),
Ah~y = Bh~u,

~u =
1
α

max
(
0,−BTh ~p

)
.

Since the last relation is explicit, we can eliminate ~u and apply a semismooth Newton method
to the reduced system, starting with α = 1 and successively reducing α , taking for each α the
previous solution as starting point.

7. Numerical examples

We illustrate the nature of the generalized measure-space controls with numerical examples for
the Laplace equation on the unit square with homogeneous Dirichlet conditions, i.e., we take Ω =
[−1, 1]2 ⊂ R2 and A = −∆. The domain is discretized using the standard uniform triangulation
arising from 256 × 256 equidistributed nodes. The optimal controls for the discretized problem
are computed using a matlab implementation of the approach described in Section 66, which
can be downloaded from https://github.com/clason/positivecontrolhttps://github.com/clason/positivecontrol.

For the �rst example, we choose the desired state as

(7.1) yd (x1,x2) = χ{t : |t−0.5 |<0.25} (x1)χ{t : |t−0.5 |<0.25} (x2)

+
1
2 χ{t : |t+0.5 |<0.25} (x1)χ{t : |t+0.5 |<0.25} (x2),

see Figure 1a1a. According to the discussion at the end of Section 3.23.2, the control domain has to
be chosen as a proper subset of Ω for Problem (1.11.1) to be well-posed; here we set

ωc =
{
x ∈ Ω : |x |∞ ≤ 3

4

}
.

The observation domain is chosen as ωo = Ω. The expansion coe�cients of the optimal control
are shown in Figure 1b1b, where the boundary of the control domain is also marked by a yellow
line; the corresponding optimal state is shown in Figure 1c1c. It can be observed that the optimal
control is sparse, which is in accordance with the discussion in Section 5.25.2. This is further
illustrated in Figure 1d1d where the nodes with non-zero control coe�cients are marked with a
small circle.
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(a) desired state yd (b) optimal control ūh

(c) optimal state ȳh

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x1

x
2

(d) sparsity pattern

Figure 1: First desired state and resulting optimal control and state

The situation is di�erent if the adjoint state satis�es p̄ = 0 on an open set, which can happen
if the desired state is (locally) attainable. We demonstrate this using

yd (x1,x2) = (1 − x2
1 ) (1 − x2

2 ),

see Figure 2a2a. The control domain is set to

ωc =
{
x ∈ Ω : |x |2 ≤ 3

4

}
,

while the observation domain is again chosen as ωo = Ω. The corresponding optimal control ūh ,
control domain, optimal state ȳh and locations of non-zero components of ~u are shown in Figure
2b2b–dd. Here, the control consists of the sum of a line measure concentrated on the boundary
∂ωc of the control domain and a distributed function (of small magnitude compared to the line
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(a) desired state yd (b) optimal control ūh

(c) optimal state ȳh
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(d) sparsity pattern

Figure 2: Second desired state and resulting optimal control and state

measures in bb) in the interior of ωc . (We remark that a similar behavior can be observed in the
case ofM-norm penalties for attainable targets.)

We close this section with an example of Neumann boundary control, i.e., ωc = ∂Ω, for the
operator A = −∆ + c0 Id with c0 = 10−2, desired state (7.17.1) and ωo = Ω. The corresponding
optimal control ūh is shown in Figure 33, where we again observe a sparse solution.

8. Conclusion

Optimal control problems with non-negativity constraints are coercive even without control
costs, albeit only in the space of Radon measures. Existence of a strictly positive solution of the
pre-adjoint equation veri�es a pre-dual Slater condition, which yields existence of and optimality
conditions for a minimizing control. These results con�rm the previously only numerically
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x1 = −1 x2 = −1 x1 = 1 x2 = 10

2
·10−3

Figure 3: Optimal Neumann boundary control ūh for desired state in Figure 1a1a

observed stability of the non-negative sparse control problem in [77] as α → 0. This approach is
also applicable if the control-to-observation mapping is not continuous, using Fenchel duality
for an unbounded operator. A conforming discretization of the space of Radon measures yields a
discrete measure-space control problem that is amenable to the e�cient numerical solution by a
semismooth Newton method. The numerical examples demonstrate that optimal measure-space
controls have an inherent sparsity property which does not require the presence of sparsity-
promoting penalties. Rather, the measure-space setting allows the minimizing sequence to
concentrate on lower-dimensional manifolds, which is prevented by Lp control costs enforcing
higher regularity. (Of course, an additional sparsity penalty can lead to even smaller support
of the optimal control.) This is another illustration of the fact that optimization problems in
function spaces have a much more delicate structure than their �nite-dimensional counterparts
due to the richer topological properties of in�nite-dimensional spaces.

This work can be extended in several directions. Although outside the scope of the current
paper, an analysis of the conforming �nite element discretization – including convergence
rates – along the lines of [44] is certainly possible. One could also apply techniques developed
for the Moreau–Yosida regularization of state constraints to obtain convergence rates for the
regularization in Section 55. Finally, it would be worthwhile to investigate whether well-posedness
in weak spaces can also hold for nonlinear or time-dependent problems without control costs.
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A. Density in the cone of positive measures

In this appendix we will prove Theorem A.3A.3, needed in Sections 33 and 55. We will need some
notation. For a normed space X , let BX its closed unit ball, and for S ⊂ X , de�ne its polar set

S◦ := {
x∗ ∈ X ∗ : 〈x∗,x〉X ∗,X ≤ 1 for all x ∈ S} .

By switching the roles of X and X ∗ one de�nes the polar of a subset of X ∗. Basic results on polar
sets can be found in, e.g., [1616, § IV.1]. We also need the following density result.

Lemma A.1. Let X be a separable Banach space,U a linear subspace of X ∗, and S ⊂ X . Assume
that

co (BX ∪ S ) ⊃ (BU ∩ S◦)◦.

Then BU ∩ S◦ is weakly-∗ sequentially dense in BX ∗ ∩ S◦, i.e., for all f ∈ X ∗ there exists a sequence{fn}n∈N ⊂ (BU ∩ S◦) such that 〈fn ,x〉X ∗,X → 〈f ,x〉X ∗,X for all x ∈ X .

Proof. We compute

BX ∗ ∩ S◦ = B◦X ∩ S◦ = (BX ∪ S )◦ = (co (BX ∪ S ))◦

⊂ (BU ∩ S◦)◦◦ = coσ (X ∗,X ) (BU ∩ S◦ ∪ {0}) = BU ∩ S◦σ (X
∗,X )
.

Here we used the following rules of polar calculus: BX ∗ = B◦X ,M◦∩N ◦ = (M∪N )◦,M◦ = (co M )◦,
M ⊃ N ⇒ M◦ ⊂ N ◦, and the bi-polar theorem M◦◦ = co (M ∪ {0}). The last equality follows
from 0 ∈ BU ∩ S◦ and from convexity of BU ∩ S◦. Now equality follows from BU ⊂ BX ∗ and the
fact that BX ∗ ∩ S◦ is closed in the σ (X ∗,X ) topology since polar sets are always weakly-∗ closed.

Hence, the bounded set BU ∩S◦ is weakly-∗ dense in the bounded set BX ∗ ∩S◦. By separability
ofX , this implies weak-∗ sequential density becauseBX ∗ is metrizable; see, e.g., [22, Corollary 3.30].

�

Lemma A.2. If S ⊂ X is a cone, then

S◦ =
{
x∗ ∈ X ∗ : 〈x∗,x〉X ∗,X ≤ 0 for all x ∈ S}

and

co (BX ∪ S ) ⊃ BX + S := {
φ ∈ X : φ = φ1 + φ2 : φ1 ∈ BX ,φ2 ∈ S} .

In particular, the conclusions of Lemma A.1A.1 hold if BX + S ⊃ (BU ∩ S◦)◦.
Proof. For the �rst assertion, we note that if 〈x∗,x〉X ∗,X > 0, then there exists an α > 0 such
that 〈αx ,x∗〉X ,X ∗ > 1. For the second assertion, observe that for ρ ∈ [0, 1) we have that

ρ (φ1 + φ2) = ρφ1 + (1 − ρ) (ρ/(1 − ρ)φ2) ∈ co(BX ∪ S ).

Hence, letting ρ → 1, we obtain φ1 + φ2 ∈ co (BX ∪ S ). �
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Theorem A.3. Let Q be a compact subset of Rd , equipped with a positive measure ν such that
ν (ω) > 0 for each relatively open, non-empty subset ω ⊂ Q .

(i) Let µ ∈ M (Q )+ be a positive measure. Then there exists a sequence of positive functions
0 ≤ fn in L∞ (Q ) with fn ⇀

∗ µ and ‖ fn ‖L1 (Q ) ≤ ‖µ‖M (Q ) .

(ii) Let µ ∈ M (Q ) be a signed measure. Then there exists a sequence fn in L∞ (Q ) with fn ⇀
∗ µ

and ‖ fn ‖L1 (Q ) ≤ ‖µ‖M (Q ) .

Proof. We �rst consider assertion (i) and note that for S = {
φ ∈ C (Q ) : φ ≤ 0}, we have that

S◦ =
{
µ ∈ M (Q ) : 〈µ,φ〉M (Q ),C(Q ) ≤ 0 for all φ ∈ S

}
=M (Q )+.

This follows by the fact that S is a cone and from the Riesz representation theorem for positive
linear functionals. Let furtherX = C(Q ) andU = L∞ (Q ), which can be interpreted as a subspace
of X ∗ =M (Q ). Application of Lemma A.1A.1 will then yield our result (possibly after scaling of µ
to ‖µ‖M (Q ) = 1). Thus, we have to check the condition co (BX ∪ S ) ⊃ (BU ∩ S◦)◦.

By Lemma A.2A.2, we merely have to show BX + S ⊃ (BU ∩ S◦)◦. Let φ ∈ C (Q ) \ (BX + S ). Since
max{φ, 0} and min{φ, 0} are also continuous functions, this implies that there exists x ∈ Q
such that φ (x ) > 1. We now show that φ < (BU ∩ S◦)◦, i.e., there exists f ∈ BU ∩ S◦ such
that 〈f ,φ〉M (Q ),C(Q ) > 1. Let α := φ (x ) − 1 > 0. Then, by continuity of φ, there exists an open
neighborhood ω of x such that φ |ω ≥ 1 + α/2. By assumption, ν (ω) , 0. Set f := ν (ω)−1χω (i.e.,
a scaled characteristic function), which yields ‖ f ‖L1 (Q ) = 1 and f ≥ 0. Thus, f ∈ BU ∩ S◦, and

〈f ,φ〉M (Q ),C(Q ) = ν (ω)
−1
∫
ω
φ dν ≥ 1 + α/2 > 1.

This shows that φ < (BU ∩ S◦)◦, which allows application of Lemma A.1A.1.
Assertion (ii) now follows from assertion (i) by splitting µ into a positive and negative part

and approximating these separately via (i) by positive and negative functions, respectively. �
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