ruhr.paD
UA Ruhr Zentrum für partielle Differentialgleichungen

On a Stochastic Evolution Equation with Random Growth Conditions

G. Vallet, P. Wittbold and A. Zimmermann

ON A STOCHASTIC EVOLUTION EQUATION WITH RANDOM GROWTH CONDITIONS

By Guy Vallet, Petra Wittbold and Aleksandra Zimmermann*
Université de Pau et des Pays de l'Adour and Universität Duisburg-Essen

Abstract

A stochastic forcing of a non-linear singular/degenerated parabolic problem with random growth conditions is proposed in the framework of Orlicz Lebesgue and Sobolev spaces with variable random exponents. We give a result of existence and uniqueness of the solution, for additive and multiplicative problems.

1. Introduction. Problems in variable exponent Lebesgue and Sobolev spaces (i.e. when the classical Lebesgue exponent p depends on the time-space arguments) have been intensively studied since the years 2000. One can find now in the literature, since the founding work of V. V. Zhikov [24], many references concerning the theoretical mathematical point of view, but also many applications in physics and image restoration.
In addition to the important scientific contribution of Zhikov let us mention the monograph [11] and we invite the reader to consult the references of this book for more information on general Orlicz-type spaces.
The main physical motivation for the study of Lebesgue and Sobolev spaces with variable exponent was induced by the modelling of electrorheological fluids and we refer to [21] and the monograph [20].
Another classical application concerns image restoration, as in [18] for example.
Following the general remarks in [1, 2, 3, 24] for the elliptic case with $p(x)$ and $[4,12]$ in the parabolic one with $p(t, x)$ (and the important literature of these authors), each model is subject to certain variation of the nonlinear terms: parameters that determine a model, that are constant in certain ranges, have to change when some threshold values are reached. This can be done for example by varying the exponents which are describing the growth conditions of the nonlinear terms.
This is e.g. the case in transformations of thermo-rheological fluids, since these fluids strongly depend on the temperature and the temperature can be given by another equation. In this way, one has to consider models given by systems of type $u_{t}+A(u, v)=f, v_{t}+B v=g$ where A and B are nonlinear operators and the growth of A depends on $p(v)$; for example when $A(u, v)=-\operatorname{div}\left[|\nabla u|^{p(v)-2} \nabla u\right]$.
[^0]Since reality is complex, one always considers flawed models and/or data. This is why it is of interest to consider random or stochastic problems.
In the case of random variable exponents, let us mention extensions of [15] and of the properties of the maximal function to the case of a random exponent $p(\omega)$ in [5, 17] for martingales and to $p(x, \omega)$ in [22]. This corresponds for example to the case of a system of type $u_{t}+A(u, v)=f, v_{t}+B(\omega, v)=g(\omega)$ where v gives A a random behavior.
In the case of a stochastic forcing, if the system is of type $d u+A(u, v) d t=f d w, v_{t}+$ $B(v)=g$ where w denotes a Wiener process, one can find in the literature the existence of a solution with values in general Orlicz-spaces [19] that corresponds to the $-\Delta_{p(x)}$ case, and [7] for $-\Delta_{p(t, x)}$ stochastic problems.
Thinking about a system, it seems then more natural to consider a stochastic perturbation acting on both equations, i.e., considering systems of type $d u+A(u, v) d t=$ $f d w, d v+B(v) d t=g d w$. Hence our interest in this paper is the study of problems with growth conditions described by a variable exponent p which may depend on t, x and ω with suitable measurability assumptions with respect to a given filtration. Let us remark that the properties of Itô's integral will be formally compatible with the technical assumptions on p and on the operator used in the sequel: the predictability of the solution to Itô's problem with Hölder-continuous paths. This last property is of importance since one needs, for technical reasons, to consider \log-Hölder continuous ${ }^{1}$ exponents p with respect to the variables t and x.

In this paper, our aim is to study existence and uniqueness of the solution to

$$
(P, h) \begin{cases}d u-\operatorname{div} D j(\omega, t, x, \nabla u)=h(u) d w & \text { in } \Omega \times(0, T) \times D \tag{1}\\ u=0 & \text { on } \Omega \times(0, T) \times \partial D \\ u(0, \cdot)=u_{0} & \text { in } L^{2}(D)\end{cases}
$$

where

- $T>0, D \subset \mathbb{R}^{d}$ is a bounded Lipschitz domain, $Q:=(0, T) \times D$,
- $w=\left\{w_{t}, \mathscr{F}_{t} ; 0 \leq t \leq T\right\}$ is a Wiener process on the classical Wiener space (Ω, \mathscr{F}, P).
- $h:(\omega, t, x, \lambda) \in \Omega \times Q \times \mathbb{R} \mapsto h(\omega, t, x, \lambda) \in \mathbb{R}$ is a Carathéodory function, uniformly Lipschitz continuous with respect to λ, such that the mapping $(\omega, t, x) \mapsto h(\omega, t, x, \lambda)$ is in $N_{W}^{2}\left(0, T ; L^{2}(D)\right)$ for any $\lambda \in \mathbb{R}$.

[^1]- $j:(\omega, t, x, \xi) \in \Omega \times Q \times \mathbb{R}^{d} \mapsto j(\omega, t, x, \xi) \in \mathbb{R}^{+}$is a Carathéodory function (continuous with respect to ξ, measurable with respect to (ω, t, x)) which is convex and Gâteaux differentiable with respect to ξ, for a.e. $(\omega, t, x) . D$ denotes this G-differentiation.
- $p: \Omega \times Q \rightarrow(1, \infty)$ is a variable exponent such that

$$
1<p^{-}:=\operatorname{ess} \inf _{(\omega, t, x)} p(\omega, t, x) \leq p^{+}:=\underset{(\omega, t, x)}{\operatorname{ess} \sup _{\sup ^{2}} p(\omega, t, x)<\infty . . ~}
$$

For the precise assumptions on j and p we refer to Sections 2 and 4.
2. Function spaces. Let us define

$$
N_{W}^{2}\left(0, T ; L^{2}(D)\right):=L^{2}\left(\Omega \times(0, T) ; L^{2}(D)\right)
$$

endowed with $d t \otimes d P$ and the predictable σ-field \mathscr{P}_{T} generated by

$$
] s, t] \times A, \quad 0 \leq s<t \leq T, \quad A \in \mathscr{F}_{s},
$$

which is the natural space of Itô integrable stochastic processes. Let $S_{W}^{2}\left(0, T ; H_{0}^{k}(D)\right)$ be the subset of simple, predictible processes with values in $H_{0}^{k}(D)$ for sufficiently large values of k. Note that $S_{W}^{2}\left(0, T ; H_{0}^{k}(D)\right)$ is densely imbedded into $N_{W}^{2}\left(0, T ; L^{2}(D)\right)$. If (X, \mathscr{A}, μ) is a σ-finite measure space and $p: X \rightarrow \mathbb{R}$ is a measurable function with values in $\left[p^{-}, p^{+}\right] \subset(1,+\infty)$, one denotes by $L^{p(\cdot)}(X, d \mu)$ the variable exponent Lebesgue space of measurable functions f such that $\int_{X}|f(x)|^{p(x)} d \mu(x)<+\infty$. This space is endowed by the Luxemburg norm defined by

$$
\|f\|=\inf \left\{\lambda>\left.0\left|\int_{X}\right| \lambda^{-1} f(x)\right|^{p(x)} d \mu(x) \leq 1\right\}
$$

and we refer to [11] for the basic definitions and properties of variable exponent Lebesgue and Sobolev spaces.
In this paper X is $\Omega \times Q, d \mu=d(t, x) \otimes d P$ and we are interested in measurable variable exponents $p: \Omega \times Q \rightarrow \mathbb{R}$ such that

$$
1<\mathrm{ess} \inf _{(\omega, t, x)} p(\omega, t, x)=: p^{-} \leq p(\omega, t, x) \leq p^{+}:=\underset{(\omega, t, x)}{\operatorname{ess} \sup _{(\omega, x}} p(\omega, t, x)<\infty .
$$

Moreover we assume that ω a.s. in $\Omega,(t, x) \mapsto p(\omega, t, x)$ is log-Hölder continuous ([11, Def. 4.1.1 p.100]) and that for all $t \geq 0,(\omega, s, x) \mapsto p(\omega, s, x)$ is $\mathscr{F}_{t} \times \mathscr{B}(0, t) \times$ $\mathscr{B}(D)$-measurable. For this kind of variable exponents we introduce the spaces

$$
\mathscr{E}_{\omega, t}:=L^{2}(D) \cap W_{0}^{1, p(\omega, t,)}(D)
$$

endowed with the norm $\|u\|=\|u\|_{L^{2}(D)}+\|\nabla u\|_{p(\omega, t,)}$.

The following function space serves as the variable exponent version of the classical Bochner space setting:

$$
X_{\omega}(Q):=\left\{u \in L^{2}(Q) \cap L^{1}\left(0, T ; W_{0}^{1,1}(D)\right) \mid \nabla u \in\left(L^{p(\omega, \cdot)}(Q)\right)^{d}\right\}
$$

which is a reflexive Banach space with respect to the norm

$$
\|u\|_{X_{\omega}(Q)}=\|u\|_{L^{2}(Q)}+\|\nabla u\|_{L^{p(\omega,)}(Q)} .
$$

$X_{\omega}(Q)$ is a generalization of the space

$$
X(Q):=\left\{u \in L^{2}(Q) \cap L^{1}\left(0, T ; W_{0}^{1,1}(D)\right) \mid \nabla u \in\left(L^{p(t, x)}(Q)\right)^{d}\right\}
$$

which has been introduced in [12] for the case of a variable exponent that is not depending on ω. For the basic properties of $X(Q)$, we refer to [12]. For $u \in X_{\omega}(Q)$, it follows directly from the definition that $u(t) \in L^{2}(D) \cap W_{0}^{1,1}(D)$ for almost every $t \in(0, T)$. Moreover, from $\nabla u \in\left(L^{p(\omega,)}(Q)\right)^{d}$ and the theorem of Fubini it follows that $\nabla u(t, \cdot)$ is in $\left(L^{p(\omega, t, \cdot)}(D)\right)^{d}$ a.e. in $\Omega \times(0, T)$.

Let us introduce the space

$$
\mathscr{E}:=\left\{u \in L^{2}(\Omega \times Q) \cap L^{p^{-}}\left(\Omega \times(0, T) ; W_{0}^{1, p^{-}}(D)\right) \mid \nabla u \in\left(L^{p(\cdot)}(\Omega \times Q)\right)^{d}\right\}
$$

which is a reflexive Banach space with respect to the norm

$$
\|u\|_{\mathscr{E}}=\|u\|_{L^{2}(\Omega \times Q)}+\|\nabla u\|_{p(\cdot)}, \quad u \in \mathscr{E} .
$$

Thanks to Fubini's theorem and since the inequality of Poincaré is available with respect to $(t, x), u \in \mathscr{E}$ implies that $u(\omega) \in X_{\omega}(Q)$ a.s. in Ω and $u(\omega, t) \in L^{2}(D) \cap$ $W_{0}^{1, p(\omega, t, \cdot)}(D)$ for almost all $(\omega, t) \in \Omega \times(0, T)$.

3. Main result.

Definition 3.1. A solution to (P, h) is a function $u \in \mathscr{E} \cap L^{2}\left(\Omega ; C\left([0, T] ; L^{2}(D)\right)\right) \cap$ $N_{W}^{2}\left(0, T ; L^{2}(D)\right)$ such that

$$
u(t)-u_{0}-\int_{0}^{t} \operatorname{div} D j(\omega, s, x, \nabla u) d s=\int_{0}^{t} h(u) d w
$$

holds a.e. in $\Omega \times D$ and for all $t \in[0, T]$.
Or, equivalently, such that $u(0, \cdot)=u_{0}$ and

$$
\partial_{t}\left[u(t)-\int_{0}^{t} h(u) d w\right]-\operatorname{div} D j(\omega, t, x, \nabla u)=0
$$

holds a.e. in $X_{\omega}^{\prime}(Q)$.

Remark 3.1. The equivalence pointed out in the definition is argued in Section 6.2.

Our main result is the following:
Theorem 3.1. Under assumptions (J1) to (J3), there exists a unique solution to (P, h). Moreover, if u_{1}, u_{2} are solutions to $\left(P, h_{1}\right)$ and $\left(P, h_{2}\right)$ respectively, then:

$$
\begin{align*}
& E\left(\sup _{t \in[0, T]}\left\|\left(u_{1}-u_{2}\right)(t)\right\|_{L^{2}(D)}^{2}\right) \tag{2}\\
+ & E\left(\int_{Q} D j\left(\omega, s, x, \nabla u_{1}\right)-D j\left(\omega, s, x, \nabla u_{2}\right) \cdot \nabla\left(u_{1}-u_{2}\right) d(s, x)\right) \\
\leq & C E \int_{Q}\left|h_{1}\left(\cdot, u_{1}\right)-h_{2}\left(\cdot, u_{2}\right)\right|^{2} d(s, x) \cdot y
\end{align*}
$$

Remark 3.2. Of course, our result can be immediately extended to the case of a multi dimensional noise given by a linear combination of independent real-valued Brownian motions.

4. Assumptions. Let

$$
j: \Omega \times(0, T) \times D \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{+},(\omega, t, x, \xi) \mapsto j(\omega, t, x, \xi)
$$

be a Carathéodory function (continuous with respect to ξ, measurable with respect to (ω, t, x)) which is convex and Gâteaux differentiable with respect to ξ, for a.e. (ω, t, x). We will denote its Gâteaux derivative by $D j$. Moreover, we assume
(J1) There exist $C_{1}>0, C_{2} \geq 0$ and $g_{1}, g_{2} \in L^{1}(\Omega \times Q)$ such that

$$
\begin{equation*}
j(\omega, t, x, \xi) \geq C_{1}|\xi|^{p(\omega, t, x)}-g_{1}(\omega, t, x), \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
j(\omega, t, x, \xi) \leq C_{2}|\xi|^{p(\omega, t, x)}+g_{2}(\omega, t, x) \tag{4}
\end{equation*}
$$

a.e. in (ω, t, x) for all $\xi \in \mathbb{R}^{d}$.
(J2) For all $t \in[0, T]$

$$
j: \Omega \times(0, t) \times D \times \mathbb{R}^{d} \rightarrow \mathbb{R}, \quad(\omega, s, x, \xi) \mapsto j(\omega, s, x, \xi)
$$

is $\mathscr{F}_{t} \times \mathscr{B}(0, t) \times \mathscr{B}(D) \times \mathscr{L}^{d}$-measurable.
(J3) Almost surely, there exist two continuous functions $d_{\omega}:[0, \infty) \rightarrow(0, \infty)$ and $w_{\omega}:[0, \infty) \rightarrow[0, \infty)$ with $w_{\omega}(r)=0$ if and only if $r=0$ satisfying

$$
\begin{align*}
& d_{\omega}\left(\|\nabla u\|_{L^{p(\omega,)}(Q)}+\|\nabla v\|_{L^{p(\omega,)}(Q)}\right) w_{\omega}\left(\|\nabla u-\nabla v\|_{L^{p(\omega,)}(Q)}\right)-v_{\omega}(u, v) \tag{5}\\
\leq & \int_{0}^{T} \int_{D}(D j(\omega, t, x, \nabla u)-D j(\omega, t, x, \nabla v)) \cdot \nabla(u-v) d x d t
\end{align*}
$$

for all $u, v \in X_{\omega}(Q)$ a.s. in Ω where $v_{\omega}(u, v) \rightarrow 0$ if

$$
\int_{0}^{T} \int_{D}(D j(\omega, t, x, \nabla u)-D j(\omega, t, x, \nabla v)) \cdot \nabla(u-v) d x d t \rightarrow 0
$$

Some additional information and examples are detailed in the appendix of the paper concerning such operators we have called (weak) w-operators.

Remark 4.1. Thanks to (J2), the mapping $(\omega, s, x, \xi) \mapsto D j(\omega, s, x, \xi)$ is $\mathscr{F}_{t} \times$ $\mathscr{B}(0, t) \times \mathscr{B}(D) \times \mathscr{L}_{d}$-measurable for every $t \in[0, T]$.

Lemma 4.1. The convex functional

$$
J: \mathscr{E} \rightarrow \mathbb{R}, u \mapsto \int_{\Omega \times Q} j(\omega, t, x, \nabla u) d(t, x) \otimes d P
$$

is continuous and Gâteaux differentiable with

$$
\langle D J(u), v\rangle=\int_{\Omega \times Q} D j(\omega, t, x, \nabla u) \cdot \nabla v d(t, x) \otimes d P
$$

for all $u, v \in \mathscr{E}$. In particular, DJ is maximal monotone
Proof. J is continuous because of $(J 1)$ and since it is a Nemytskii operator induced by j. For $u, v \in \mathscr{E}$ we have
$\lim _{h \rightarrow 0^{+}} \frac{J(u+h v)-J(u)}{h}=\lim _{h \rightarrow 0^{+}} \int_{\Omega \times Q} \frac{j(\omega, t, x, \nabla u+h \nabla v)-j(\omega, t, x, \nabla u)}{h} d(t, x) \otimes d P$
Thanks to the properties of j we have a.e. in $\Omega \times Q$

$$
\begin{equation*}
\lim _{h \rightarrow 0^{+}} \frac{j(\omega, t, x, \nabla u+h \nabla v)-j(\omega, t, x, \nabla u)}{h}=D j(\omega, t, x, \nabla u) \cdot \nabla v \tag{7}
\end{equation*}
$$

moreover, since

$$
h \mapsto \frac{j(\omega, t, x, \nabla u+h \nabla v)-j(\omega, t, x, \nabla u)}{h}
$$

is nondecreasing, it follows from the Beppo-Levi theorem that

$$
\begin{equation*}
\lim _{h \rightarrow 0^{+}} \frac{J(u+h v)-J(u)}{h}=\int_{\Omega \times Q} D j(\omega, t, x, \nabla u) \cdot \nabla v d(t, x) \otimes d P \tag{8}
\end{equation*}
$$

It is left to prove that the integral on the right hand side of (8) is finite. Since

$$
\begin{align*}
& -j(\omega, t, x, \nabla(u-v))+j(\omega, t, x, \nabla u) \leq D j(\omega, t, x, \nabla u) \cdot \nabla v \tag{9}\\
\leq & j(\omega, t, x, \nabla(u+v))-j(\omega, t, x, \nabla u)
\end{align*}
$$

a.e. in (ω, t, x), it follows from (J1) that

$$
\begin{align*}
& \leq \max \{j(\omega, t, x, \nabla(u+v))-j(\omega, t, x, \nabla u), j(\omega, t, x, \nabla(u-v))-j(\omega, t, x, \nabla u)\} \tag{10}\\
& \leq|j(\omega, t, x, \nabla(u+v))|+|j(\omega, t, x, \nabla(u-v))|+2|j(\omega, t, x, \nabla u)| \\
& \leq C_{2} 2^{p^{+}+1}\left(|\nabla u|^{p(\omega, t, x)}+|\nabla v|^{p(\omega, t, x)}\right)+2\left(C_{2}|\nabla u|^{p(\omega, t, x)}+2 g_{2}\right)
\end{align*}
$$

Using (10) and writing $d \mu:=d(t, x) \otimes d P$ we arrive at

$$
\begin{aligned}
& |\langle D J(u), v\rangle| \leq \int_{\Omega \times Q}|D j(\omega, t, x, \nabla u) \cdot \nabla v| d \mu \\
\leq & \int_{\Omega \times Q} C_{2} 2^{p^{+}+1}\left(|\nabla u|^{p(\omega, t, x)}+|\nabla v|^{p(\omega, t, x)}\right)+2\left(C_{2}|\nabla u|^{p(\omega, t, x)}+2 g_{2}\right) d \mu
\end{aligned}
$$

and from (11) it follows that $D J(u) \in \mathscr{E}^{\prime}$. Since J is a convex, continuous and Gâteaux-differentiable functional, its Gâteaux derivative is a maximal monotone operator (see [6, Theorem 2.8., p.47]).

Remark 4.2. With similar arguments as in the proof of Lemma 4.1 one shows that
i.) For a.e. $(\omega, t) \in \Omega \times(0, T)$ the convex functional

$$
J_{D}: W_{0}^{1, p(\omega, t, \cdot)}(D) \rightarrow \mathbb{R}, u \mapsto \int_{D} j(\omega, t, x, \nabla u) d x
$$

is continuous and Gâteaux differentiable with respect to u : for all v in $W_{0}^{1, p(\omega, t, \cdot)}(D)$,

$$
\left\langle D J_{D}(u), v\right\rangle=\int_{D} D j(\omega, t, x, \nabla u) \cdot \nabla v d x
$$

ii.) For a.e. $\omega \in \Omega$, the convex functional

$$
J_{Q}: X_{\omega}(Q) \rightarrow \mathbb{R}, u \mapsto \int_{0}^{T} \int_{D} j(\omega, t, x, \nabla u) d x d t=\int_{0}^{T} J_{D}(u) d x d t
$$

is continuous, convex and Gâteaux differentiable with

$$
\begin{align*}
\left\langle D J_{Q}(u), v\right\rangle_{X_{\omega}^{\prime}(Q), X_{\omega}(Q)} & =\int_{0}^{T} \int_{D} D j(\omega, t, x, \nabla u) \cdot \nabla v d x d t \tag{11}\\
& =\int_{0}^{T}\left\langle D J_{D}(u), v\right\rangle_{W^{-1, p^{\prime}(\cdot)(D), W_{0}^{1, p(\cdot)}(D)}} d t
\end{align*}
$$

for all $u, v \in X_{\omega}(Q)$.

In particular, as an immediate consequence of Lemma 4.1 we have

$$
\begin{align*}
\langle D J(u), v\rangle_{\mathscr{E}^{\prime}, \mathscr{E}} & =\int_{\Omega \times Q} D j(\omega, t, x, \nabla u) \cdot \nabla v d \mu \tag{12}\\
& =\int_{\Omega}\left\langle D J_{Q}(u), v\right\rangle_{X_{\omega}^{\prime}(Q), X_{\omega}(Q)} d P \\
& =\int_{\Omega} \int_{0}^{T}\left\langle D J_{D}(u), v\right\rangle_{W^{-1, p^{\prime}(\cdot)}(D), W_{0}^{1, p(\cdot)}(D)} d t d P .
\end{align*}
$$

5. The additive case for $h \in S_{W}^{2}\left(0, T ; H_{0}^{k}(D)\right)$. Assume, in this section, that $h \in S_{W}^{2}\left(0, T ; H_{0}^{k}(D)\right)$ for a big enough value of k. Since $W^{-1, q^{\prime}}(D)$ is a separable Banach space, the notion of weak-measurability and Pettis measurability theorem yield the following proposition.

Proposition 5.1. For $q \geq \max \left(2, p^{+}\right)$and $\varepsilon>0$, the operator

$$
\begin{aligned}
A: \Omega \times(0, T) \times W_{0}^{1, q}(D) & \rightarrow W^{-1, q^{\prime}}(D), \\
(\omega, t, u) & \mapsto A(\omega, t, u)=-\varepsilon \Delta_{q}(u)+D J_{D}(\omega, t, u),
\end{aligned}
$$

satisfies the following properties:

- A is monotone for a.e. $(\omega, t) \in \Omega \times(0, T)$.
- A is progressively measurable, i.e. for every $t \in[0, T]$ the mapping

$$
A: \Omega \times(0, t) \times W_{0}^{1, q}(D) \rightarrow W^{-1, q^{\prime}}(D), \quad(\omega, s, u) \mapsto A(\omega, s, u)
$$

is $\mathscr{F}_{t} \times \mathscr{B}(0, t) \times \mathscr{B}\left(W_{0}^{1, q}(D)\right)$-measurable.
It is then a consequence of $\left[16\right.$, Theorem 2.1, p. 1253] ${ }^{2}$ that:
Proposition 5.2. Let $h \in S_{W}^{2}\left(0, T ; H_{0}^{k}(D)\right)$ for $k>0$ large enough. The operator - A satisfies the hypotheses of [16, Theorem 2.1, p. 1253], therefore for any $\varepsilon>0$ there exists a unique

$$
u^{\varepsilon} \in L^{2}\left(\Omega ; C\left([0, T] ; L^{2}(D)\right)\right) \cap N_{W}^{2}\left(0, T ; L^{2}(D)\right) \cap L^{q}\left(\Omega ; L^{q}\left(0, T ; W_{0}^{1, q}(D)\right)\right)
$$

that solves

$$
\begin{equation*}
u^{\varepsilon}(t)-u_{0}+\int_{0}^{t} D J_{D}\left(u^{\varepsilon}\right)-\varepsilon \Delta_{q}\left(u^{\varepsilon}\right) d t=\int_{0}^{t} h d w \tag{13}
\end{equation*}
$$

in $W^{-1, q^{\prime}}(D)$ for all $t>0$ a.s. in Ω.

[^2]Remark 5.1. In particular, it follows that u^{ε} such that $u^{\varepsilon}(0)=u_{0}$ satisfies (13) if and only if

$$
v^{\varepsilon}:=u^{\varepsilon}-\int_{0} h d w
$$

satisfies the random equation

$$
\begin{equation*}
\partial_{t} v^{\varepsilon}-\varepsilon \Delta_{q}\left(v^{\varepsilon}+\int_{0} h d w\right)+D J_{Q}\left(v^{\varepsilon}+\int_{0} h d w\right)=0 \tag{14}
\end{equation*}
$$

in $L^{q^{\prime}}\left(0, T ; W^{-1, q^{\prime}}(D)\right)$ a.s. in Ω. Using the regularity of u^{ε} and that the function h is in $S_{W}^{2}\left(0, T ; H_{0}^{k}(D)\right)$ we find $v^{\varepsilon} \in L^{q}\left(\Omega ; L^{q}\left(0, T ; W_{0}^{1, q}(D)\right)\right.$. Now, from (14) we get $\partial_{t} \nu^{\varepsilon} \in L^{q^{\prime}}\left(0, T ; W^{-1, q^{\prime}}(D)\right)$ a.s. in Ω. Therefore we can use v^{ε} as a test function in (14).

Lemma 5.3. \quad There exists $G \in L^{1}(\Omega)$ such that for all $t \in[0, T]$

$$
\begin{align*}
& \left\|v^{\varepsilon}(t)\right\|_{L^{2}(D)}^{2}+J_{Q_{t}}^{*}\left(D J_{Q_{t}}\left(u^{\varepsilon}\right)\right)+2 J_{Q_{t}}\left(u^{\varepsilon}\right)+\frac{\varepsilon}{q} \int_{0}^{t} \int_{D}\left|\nabla u^{\varepsilon}\right|^{q} d x d s \tag{15}\\
\leq & G(\omega)+\left\|u_{0}\right\|_{L^{2}(D)}^{2}
\end{align*}
$$

a.s. in Ω, where $Q_{t}:=(0, t) \times D$.

Proof. We fix $t \in[0, T]$ and write $Q_{t}:=(0, t) \times D$. Using v^{ε} as a test function in (14) and integration by parts, we obtain

$$
\begin{align*}
\frac{1}{2}\left\|v^{\varepsilon}(t)\right\|_{L^{2}(D)}^{2} & -\frac{1}{2}\left\|u_{0}\right\|_{L^{2}(D)}^{2}+\varepsilon\left\langle-\Delta_{q} u^{\varepsilon}, u^{\varepsilon}\right\rangle+\left\langle D J_{Q_{t}}\left(u^{\varepsilon}\right), u^{\varepsilon}\right\rangle \tag{16}\\
& =\varepsilon\left\langle-\Delta_{q} u^{\varepsilon}, \int_{0} h d w\right\rangle+\left\langle D J_{Q_{t}}\left(u^{\varepsilon}\right), \int_{0} h d w\right\rangle
\end{align*}
$$

Note that $-\Delta_{q} u=D J_{1}(u)$ in Q_{t} where

$$
J_{1}(u)=\int_{0}^{t} \int_{D} \frac{1}{q}|\nabla u|^{q} d x
$$

Using the Fenchel inequality we get from (16)

$$
\begin{aligned}
& \frac{1}{2}\left\|v^{\varepsilon}(t)\right\|_{L^{2}(D)}^{2}-\frac{1}{2}\left\|u_{0}\right\|_{L^{2}(D)}^{2}+\varepsilon J_{1}\left(u^{\varepsilon}\right)+\varepsilon\left(J_{1}\right)^{*}\left(D J_{1}\left(u^{\varepsilon}\right)\right)+J_{Q_{t}}\left(u^{\varepsilon}\right)+J_{Q_{t}}^{*}\left(D J_{Q_{t}}\left(u^{\varepsilon}\right)\right) \\
= & \varepsilon\left\langle D J_{1}\left(u^{\varepsilon}\right), \int_{0} h d w\right\rangle+\left\langle D J_{Q_{t}}\left(u^{\varepsilon}\right), \int_{0} h d w\right\rangle
\end{aligned}
$$

For all $\alpha>0$ we have

$$
\begin{aligned}
\left\langle D J_{Q_{t}}\left(u^{\varepsilon}\right), \int_{0} h d w\right\rangle & =\left\langle\alpha D J_{Q_{t}}\left(u^{\varepsilon}\right), \frac{1}{\alpha} \int_{0} h d w\right\rangle \\
& =\alpha\left\langle D J_{Q_{t}}\left(u^{\varepsilon}\right), \frac{1}{\alpha} \int_{0} h d w\right\rangle \\
& \leq \alpha J_{Q_{t}}^{*}\left(D J_{Q_{t}}\left(u^{\varepsilon}\right)\right)+\alpha J_{Q_{t}}\left(\frac{1}{\alpha} \int_{0} h d w\right)
\end{aligned}
$$

Plugging (17) in (17) and using the Fenchel-Young inequality for J_{1} we get

$$
\begin{align*}
& \frac{1}{2}\left\|v^{\varepsilon}(t)\right\|_{L^{2}(D)}^{2}-\frac{1}{2}\left\|u_{0}\right\|_{L^{2}(D)}^{2} \tag{17}\\
+ & J_{Q_{t}}^{*}\left(D J_{Q_{t}}\left(u^{\varepsilon}\right)\right)+J_{Q_{t}}\left(u^{\varepsilon}\right)+\varepsilon \int_{0}^{t} \int_{D} \frac{1}{q}\left|\nabla u^{\varepsilon}(t)\right|^{q} d x d s \\
\leq & \varepsilon\left(\int_{0}^{t} \int_{D} \frac{q-1}{q}\left|\nabla u^{\varepsilon}\right|^{q}+\frac{1}{q}\left|\nabla \int_{0}^{s} h d w\right|^{q} d x d s\right)+\alpha J_{Q_{t}}^{*}\left(D J_{Q_{t}}\left(u^{\varepsilon}\right)\right) \\
& +\alpha J_{Q_{t}}\left(\frac{1}{\alpha} \int_{0} h d w\right) .
\end{align*}
$$

For $\alpha=\frac{1}{2}$ and for all $t \in[0, T]$

$$
\begin{align*}
& \left\|v^{\varepsilon}(t)\right\|_{L^{2}(D)}^{2}+J_{Q_{t}}^{*}\left(D J_{Q_{t}}\left(u^{\varepsilon}\right)\right)+2 J_{Q_{t}}\left(u^{\varepsilon}\right)+2 \varepsilon \int_{0}^{t} \int_{D}\left|\nabla u^{\varepsilon}\right|^{q} d x d s \tag{18}\\
\leq & 2 \int_{0}^{t} \int_{D}\left|\nabla \int_{0}^{s} h d w\right|^{q} d x d s+J_{Q_{t}}\left(2 \int_{0} h d w\right) d s+\left\|u_{0}\right\|_{L^{2}(D)}^{2}
\end{align*}
$$

Since $\partial_{x_{i}}$ is a continuous linear operator from $H_{0}^{k}(D)$ to $L^{2}(D)$, we have

$$
\nabla \int_{0}^{t} h d w=\int_{0}^{t} \nabla h d w
$$

for all $t \in[0, T]$ and a.s. in Ω. From $h \in S_{W}^{2}\left(0, T ; H_{0}^{k}(D)\right)$ for $k>0$ large enough it follows that $\nabla h \in L^{\infty}(\Omega \times Q)^{d}$ and

$$
t \mapsto \int_{0}^{t} \nabla h d w \in C\left([0, T] ; L^{\infty}(\Omega \times D)^{d}\right)
$$

Therefore, using (J1), we get

$$
\begin{align*}
J_{Q_{t}}\left(2 \int_{0}^{\cdot} h d w\right) d s & \leq C_{2} \int_{Q}\left|\int_{0}^{t} \nabla h d w\right|^{p(\omega, \cdot)} d(t, x) \tag{19}\\
& +\int_{Q} g_{2}(\omega, t, x) d(t, x)
\end{align*}
$$

Thanks to the regularity of ∇h in particular it follows that

$$
\left|\int_{0}^{\cdot} \nabla h d w\right| \in L^{r}(\Omega \times Q)
$$

for any $1 \leq r<\infty$ and therefore by Fubini's Theorem

$$
\omega \mapsto G_{1}(\omega):=\int_{Q}\left|\int_{0}^{t} \nabla h d w\right|^{p(\omega, \cdot)}+\left|\int_{0}^{t} \nabla h d w\right|^{q} d(t, x)
$$

is in $L^{1}(\Omega)$. Moreover,

$$
\omega \mapsto G_{2}(\omega):=\int_{Q} g_{2}(\omega, t, x) d(t, x)
$$

is in $L^{1}(\Omega)$. Writing $G=G_{1}+G_{2}$, plugging (19) into (18) and rearranging the terms we arrive at (15).

Lemma 5.4. There exists a full measure set $\tilde{\Omega} \subset \Omega$ such that for any $\omega \in \tilde{\Omega}$,
i.) $\varepsilon \nabla u^{\varepsilon}$ is bounded in $L^{q}\left(0, T ;\left(L^{q}(D)\right)^{d}\right)$,
ii.) v^{ε} is bounded in $C\left([0, T] ; L^{2}(D)\right)$ and in $L^{p^{-}}\left(0, T ; W_{0}^{1, p^{-}}(D)\right)$, in particular, $v^{\varepsilon}(t)$ in bounded in $L^{2}(D)$ for all $t \in(0, T]$.
iii.) $\nabla u^{\varepsilon}(\omega)$ is bounded in $L^{p(\omega, \cdot)}(Q)$ and therefore $v^{\varepsilon}(\omega)$ is bounded in the space $X_{\omega}(Q)$.

Proof. By $(J 1)$ we have a.s. in Ω

$$
\begin{align*}
& J_{Q}^{*}\left(D J_{Q}\left(u^{\varepsilon}\right)\right)+2 J_{Q}\left(u^{\varepsilon}\right)=\left\langle D J_{Q}\left(u^{\varepsilon}\right), u^{\varepsilon}\right\rangle+J_{Q}\left(u^{\varepsilon}\right) \tag{20}\\
\geq & 2 J_{Q}\left(u^{\varepsilon}\right)-J_{Q}(0) \\
= & \int_{Q} j\left(\omega, s, x, \nabla u^{\varepsilon}\right)-j(\omega, s, x, 0) d(s, x) \\
\geq & C_{1} \int_{Q}\left|\nabla u^{\varepsilon}\right|^{p(\cdot)}-g_{1}(\omega, s, x)-g_{2}(\omega, s, x) d(s, x)
\end{align*}
$$

Combining (20) with (15) we arrive at

$$
\begin{equation*}
\left\|v^{\varepsilon}(t)\right\|_{L^{2}(D)}^{2}+C_{1} \int_{Q}\left|\nabla u^{\varepsilon}\right|^{p(\cdot)} d(t, x) \leq \tilde{G}(\omega)+\left\|u_{0}\right\|_{L^{2}(D)}^{2} \tag{21}
\end{equation*}
$$

where $\tilde{G}=G+\int_{Q} g_{1}(\omega, s, x)+g_{2}(\omega, s, x) d(s, x) \in L^{1}(\Omega)$.
Lemma 5.5. For $\omega \in \tilde{\Omega}$ fixed, $D J_{Q}\left(u^{\varepsilon}\right)$ is bounded in $X_{\omega}^{\prime}(Q)$.

Proof. Using (J1) and (15) it follows that

$$
\begin{equation*}
J_{Q}^{*}\left(D J_{Q}\left(u^{\varepsilon}\right)\right) \leq G(\omega)+\left\|u_{0}\right\|_{L^{2}(D)}^{2}+\int_{Q} g_{1} d(t, x)=: K\left(\omega, u_{0}\right) . \tag{22}
\end{equation*}
$$

From (22), the Fenchel-Young inequality and (J1) for any $v \in X_{\omega}(Q)$ it follows that

$$
\begin{align*}
\left|\left\langle D J_{Q}\left(u^{\varepsilon}\right), v\right\rangle\right| & \leq J_{Q}^{*}\left(D J_{Q}\left(u^{\varepsilon}\right)\right)+J_{Q}(v) \tag{23}\\
& \leq K\left(\omega, u_{0}\right)+C_{2} \int_{Q}|\nabla v|^{p(\omega,)}+g_{2} d(t, x) .
\end{align*}
$$

The following Lemma is a direct consequence of Lemma 5.4 and Lemma 5.5:
Lemma 5.6. For any $\omega \in \tilde{\Omega}$ there exists a (not relabeled) subsequence of $v^{\varepsilon}(\omega)$ and $v \in X_{\omega}(Q) \cap L^{\infty}\left(0, T ; L^{2}(D)\right)$ such that, for $\varepsilon \downarrow 0$,
i.) $v^{\varepsilon} \stackrel{*}{v} v$ in $L^{\infty}\left(0, T ; L^{2}(D)\right)$,
ii.) $\nabla v^{\varepsilon} \rightharpoonup \nabla v$ in $\left(L^{p(\omega, \cdot)}(Q)\right)^{d}$,
iii.) $v^{\varepsilon} \rightharpoonup v$ in $X_{\omega}(Q)$
iv.) There exists $\alpha(T) \in L^{2}(D)$ such that $v^{\varepsilon}(T) \rightharpoonup \alpha(T)$ in $L^{2}(D)$.
v.) Moreover, there exists $\mathrm{B} \in X_{\omega}^{\prime}(Q), \mathrm{B}=b-\operatorname{div} G$ with $b \in L^{2}(Q)$ and $G \in$ $\left(L^{p^{\prime}(\omega, \cdot)}(Q)\right)^{d}$ such that

$$
D J_{Q}\left(u^{\varepsilon}\right) \rightharpoonup b-\operatorname{div} G \text { in } X_{\omega}^{\prime}(Q),
$$

we recall that $u^{\varepsilon}=v^{\varepsilon}+\int_{0}^{t} h d w$.
We take $\varphi=\rho \zeta$ such that $\rho \in \mathscr{D}([0, T])$ and $\zeta \in \mathscr{D}(D)$ as a test function and we have

$$
\begin{align*}
& \int_{0}^{T} \int_{D}-v^{\varepsilon} \partial_{t} \varphi d x d s-\varepsilon\left\langle\Delta_{q}\left(u^{\varepsilon}\right), \varphi\right\rangle+\left\langle D J_{Q}\left(u^{\varepsilon}\right), \varphi\right\rangle \tag{24}\\
= & \int_{D} u_{0} \varphi(0, x)-v^{\varepsilon}(T, x) \varphi(T, x) d x
\end{align*}
$$

Since $\varepsilon \nabla u^{\varepsilon}$ is bounded in $L^{q}\left(0, T ;\left(L^{q}(D)\right)^{d}\right)$, it follows that

$$
\left\langle-\varepsilon \Delta_{q}\left(u^{\varepsilon}\right), \varphi\right\rangle \rightarrow 0
$$

for $\varepsilon \downarrow 0$. We can pass to the limit in all the other terms in (24) and arrive at

$$
\begin{equation*}
-\int_{0}^{T} \int_{D} v \partial_{t} \varphi d x d s+\int_{D} \zeta\left(\alpha(T) \rho(T)-u_{0} \rho(0)\right) d x+\langle\mathrm{B}, \varphi\rangle=0 \tag{25}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
v_{t}+B=0 \tag{26}
\end{equation*}
$$

in $\mathscr{D}^{\prime}(Q)$. From (26) we get $v_{t} \in X_{\omega}^{\prime}(Q)$ and therefore v is in

$$
W_{\omega}(Q):=\left\{v \in X_{\omega}(Q) \mid v_{t} \in X_{\omega}^{\prime}(Q)\right\} \hookrightarrow C\left([0, T] ; L^{2}(D)\right) .
$$

In particular, since $\mathscr{D}(Q)$ is dense in $X_{\omega}(Q)$, (26) holds also in $X_{\omega}^{\prime}(Q)$. Now, using the integration by parts formula in $W_{\omega}(Q)$ (see [12]) it follows that

$$
\begin{equation*}
\left\langle v_{t}, \varphi\right\rangle=-\int_{0}^{T} \int_{D} v \partial_{t} \varphi+\int_{D} \zeta\left(v(T) \rho(T)-u_{0} \rho(0)\right) d x \tag{27}
\end{equation*}
$$

Now, we can identify $\alpha(T)$ with $v(T)$: indeed, plugging (27) in (25) we can apply (26) to get

$$
\begin{equation*}
\int_{D} \zeta \rho(T)(\alpha(T)-v(T)) d x=0 \tag{28}
\end{equation*}
$$

Moreover, we find that the whole sequence $v^{\varepsilon}(T)$ converges weakly to $v(T)$. As the argumentation also holds true for any $t \in[0, T]$, we get that $v^{\varepsilon}(t) \rightharpoonup v(t)$ in $L^{2}(D)$ for all $t \in[0, T]$.

Lemma 5.7. In addition to Lemma 5.6, $B=D J_{Q}(u)$ in $X_{\omega}^{\prime}(Q),\left\langle D J_{Q}\left(u^{\varepsilon}\right), u^{\varepsilon}\right\rangle \rightarrow$ $\langle D J(u), u\rangle$ for $\varepsilon \downarrow 0$ where $u=v+\int_{0}^{t} h d w, \nabla u^{\varepsilon} \rightarrow \nabla u$ in $L^{p(\omega,)}(Q)$ and $\nabla v^{\varepsilon} \rightarrow \nabla v$ in $L^{p(\omega,)}(Q)$ as well.

Proof. Using v as a test function in (26), from integration by parts in $W_{\omega}(Q)$ we obtain

$$
\begin{equation*}
\frac{1}{2}\|v(T)\|^{2}-\frac{1}{2}\left\|u_{0}\right\|^{2}+\langle\mathrm{B}, v\rangle=0 . \tag{29}
\end{equation*}
$$

On the other hand, using v^{ε} as a test function in (24) and applying integration by parts we obtain

$$
\begin{align*}
& \frac{1}{2}\left\|v^{\varepsilon}(T)\right\|^{2}-\frac{1}{2}\left\|u_{0}\right\|^{2}-\varepsilon\left\langle\Delta_{q} u^{\varepsilon}, u^{\varepsilon}\right\rangle+\left\langle D J_{Q}\left(u^{\varepsilon}\right), u^{\varepsilon}\right\rangle \\
= & -\varepsilon\left\langle\Delta_{q} u^{\varepsilon}, \int_{0} h d w\right\rangle+\left\langle D J_{Q}\left(u^{\varepsilon}\right), \int_{0} h d w\right\rangle \tag{30}
\end{align*}
$$

discarding nonnegative terms for $\varepsilon \downarrow 0$ in the limit of (30) we get

$$
\begin{equation*}
\frac{1}{2}\|v(T)\|^{2}-\frac{1}{2}\left\|u_{0}\right\|^{2}+\limsup _{\varepsilon \downarrow 0}\left\langle D J_{Q}\left(u^{\varepsilon}\right), u^{\varepsilon}\right\rangle \leq\left\langle\mathbf{B}, \int_{0} h d w\right\rangle . \tag{31}
\end{equation*}
$$

Now, from (26) and (27) we obtain

$$
\begin{equation*}
\underset{\varepsilon \downarrow 0}{\limsup }\left\langle D J_{Q}\left(u^{\varepsilon}\right), u^{\varepsilon}\right\rangle \leq\langle\mathrm{B}, u\rangle . \tag{32}
\end{equation*}
$$

Since $X_{\omega}(Q)$ is reflexive and $D J_{Q}$ is the Gâteaux derivative of the convex and lower semicontinuous functional J_{Q}, from [21, Th. 3.32] it follows that $D J_{Q}$ is maximal monotone and therefore it follows from [6, Lemma 2.3, p.38] and (32) that $B=D J_{Q}(u)$ in $X_{\omega}^{\prime}(Q)$ and $\left\langle D J_{Q}\left(u^{\varepsilon}\right), u^{\varepsilon}\right\rangle \rightarrow\langle D J(u), u\rangle$.
As a consequence, $\lim _{\varepsilon \downarrow 0}\left\langle D J_{Q}\left(u^{\varepsilon}\right)-D J_{Q}(u), u^{\varepsilon}-u\right\rangle=0$ and Assumption (J3) with Section 8.1 yield the strong convergence claimed at the end of the Lemma.

From Lemma 5.6 and (25) it follows that

$$
\begin{equation*}
\partial_{t} v+D J_{Q}(u)=0 \tag{33}
\end{equation*}
$$

and $\partial_{t} v$ is in $X_{\omega}^{\prime}(Q)$ a.s. in Ω. If $v_{1}=u_{1}-\int_{0}^{t} h d w$ and $v_{2}=u_{2}-\int h d w$ are both satisfying (33), then subtracting the equations we arrive at

$$
\begin{equation*}
\partial_{t}\left(u_{1}-u_{2}\right)+\left(D J_{Q}\left(u_{1}\right)-D J_{Q}\left(u_{2}\right)\right)=0 \tag{34}
\end{equation*}
$$

and from (34) it follows that $\left(u_{1}-u_{2}\right) \in W_{\omega}(Q)$ a.s. in Ω. Therefore we can use $\left(u_{1}-u_{2}\right)$ as a test function in (34) and from integration by parts in $W_{\omega}(Q)$ it follows that $u_{1}=u_{2}$ a.e. in Q for a.e. $\omega \in \Omega$. Therefore, one may conclude by the following proposition:

Proposition 5.8. The convergences pointed out in Lemmata 5.6 and 5.7 hold for the whole sequences v^{ε} and u^{ε}.

Lemma 5.9. We have: $v \in L^{2}\left(\Omega ; C\left([0, T] ; L^{2}(D)\right), v^{\varepsilon}(\omega, t, \cdot) \rightarrow v(\omega, t, \cdot)\right.$ in $L^{2}(D)$, ω a.s. and for any t, and $\nabla v^{\varepsilon} \rightarrow \nabla v$ in $L^{p(\cdot)}(\Omega \times Q)$.

Proof. We know already that $v^{\varepsilon}(\omega, t) \rightharpoonup v(\omega, t)$ in $L^{2}(D)$ for almost every $\omega \in \Omega$ and all $t \in[0, T]$ as $\varepsilon \downarrow 0$. As mentioned above, since T can be replaced by any t, using (29) and (30) with $T=t$ and that $B=D J_{Q}(u)$ we get

$$
\begin{equation*}
\limsup _{\varepsilon \downarrow 0} \frac{1}{2}\left\|v^{\varepsilon}(t)\right\|_{L^{2}(D)}^{2} \leq \frac{1}{2}\|v(t)\|_{L^{2}(D)}^{2} \tag{35}
\end{equation*}
$$

and from (35) it follows that

$$
\begin{equation*}
\lim _{\varepsilon \downarrow 0}\left\|v^{\varepsilon}(t)\right\|_{L^{2}(D)}=\|v(t)\|_{L^{2}(D)}, \tag{36}
\end{equation*}
$$

and (36) together with the weak convergence in $L^{2}(D)$ yields $v^{\varepsilon}(\omega, t) \rightarrow v(\omega, t)$ in $L^{2}(D)$ for almost every $\omega \in \Omega$, for all $t \in[0, T]$.

From Lemma 5.3 and (20) it follows that for all $t \in[0, T]$, a.s. in Ω

$$
\begin{equation*}
\left\|v^{\varepsilon}(t)\right\|_{L^{2}(D)}^{2}+\int_{Q}\left|\nabla u^{\varepsilon}\right|^{p(\omega, \cdot)} d x d s \leq G_{1}+G_{2}+\left\|u_{0}\right\|_{L^{2}(D)}^{2} \tag{37}
\end{equation*}
$$

with $G_{1}, G_{2} \in L^{1}(\Omega)$.
From Lebesgue's dominated convergence theorem and the uniform convexity of $L^{2}(\Omega \times Q)$ and $L^{p(\cdot)}(\Omega \times Q)$ with similar arguments as in [14], it now follows that $v^{\varepsilon} \rightarrow v$ in $L^{2}\left(\Omega \times(0, T) ; L^{2}(D)\right)$ and $\nabla u^{\varepsilon} \rightarrow \nabla u$ in $L^{p(\cdot)}(\Omega \times Q)$. In particular, we get that $u^{\varepsilon} \rightarrow u=v+\int_{0}^{t} h d w$ in $L^{2}\left(\Omega \times(0, T) ; L^{2}(D)\right)$ as well. Now we need to prove that $v \in L^{2}\left(\Omega ; C\left([0, T] ; L^{2}(D)\right)\right)$. We already know that v : $\Omega \times(0, T) \rightarrow L^{2}(D)$ is a (predictible) stochastic process. Since $v(\omega, \cdot) \in W_{\omega}(Q) \hookrightarrow$ $C\left([0, T] ; L^{2}(D)\right)$ for a.e. $\omega \in \Omega$ the measurability follows from [9, Prop.3.17 p.84] with arguments as in [13, Cor. 1.1.2, p.8]. From (37) it now follows that v is in $L^{2}\left(\Omega ; C\left([0, T] ; L^{2}(D)\right)\right)$.

Summarizing all previous results we are able to pass to the limit with $\varepsilon \downarrow 0$ in (14). For the limit function u we have shown the following result:

Proposition 5.10. For $h \in S_{W}^{2}\left(0, T ; H_{0}^{k}(D)\right)$ there exists a full-measure set $\tilde{\Omega}$ and $u \in \mathscr{E} \cap L^{2}\left(\Omega ; C\left([0, T] ; L^{2}(D)\right)\right) \cap N_{W}^{2}\left(0, T ; L^{2}(D)\right)$ such that for all $\omega \in \tilde{\Omega}$

$$
\begin{equation*}
u(t)-u_{0}-\int_{0}^{t} D J_{D}(u(s)) d s=\int_{0}^{t} h d w \tag{38}
\end{equation*}
$$

a.e. in D for all $t \in[0, T]$.

6. The additive case for general h.

6.1. Uniform estimates. Now we want to derive existence for arbitrary $h \in$ $N_{W}^{2}\left(0, T ; H_{0}^{k}(D)\right)$ from the previous results. From the density of $S_{W}^{2}\left(0, T ; H_{0}^{k}(D)\right)$ in $N_{W}^{2}\left(0, T ; H_{0}^{k}(D)\right)$ it follows that there exists $\left(h_{n}\right) \subset S_{W}^{2}\left(0, T ; H_{0}^{k}(D)\right)$ such that $h_{n} \rightarrow$ h in $N_{W}^{2}\left(0, T ; H_{0}^{k}(D)\right)$. Let us remark that since $N_{W}^{2}\left(0, T ; H_{0}^{k}(D)\right)$ is a separable set there exists a countable set $\Lambda \subset S_{W}^{2}\left(0, T ; H_{0}^{k}(D)\right)$ such that $\left(h_{n}\right) \subset \Lambda$ (irrespective of $h \in N_{W}^{2}\left(0, T ; H_{0}^{k}(D)\right)$). Thus, the full-measure set $\tilde{\Omega}$ introduced in the above proposition can be shared by all the elements of Λ.

Lemma 6.1. For $h_{n}, h_{m} \in \Lambda$ let u_{n}, u_{m} be solutions to (38) with right-hand side h_{n}, and h_{m} respectively. There exists a constant $K_{1} \geq 0$ not depending on $m, n \in \mathbb{N}$, such that

$$
\begin{equation*}
E\left(\sup _{t \in[0, T]}\left\|u_{n}(t)\right\|_{L^{2}(D)}^{2}\right)+J^{*}\left(D J\left(u_{n}\right)\right)+J\left(u_{n}\right) \leq K_{1}\left(\left\|h_{n}\right\|_{L^{2}(\Omega \times Q)}^{2}+\left\|u_{0}\right\|_{L^{2}(D)}^{2}\right) \tag{39}
\end{equation*}
$$

for all $n \in \mathbb{N}$,

$$
\begin{align*}
& E\left(\sup _{t \in[0, T]}\left\|\left(u_{n}-u_{m}\right)(t)\right\|_{L^{2}(D)}^{2}\right)+\left\langle D J_{Q}\left(u_{n}\right)-D J_{Q}\left(u_{m}\right), u_{n}-u_{m}\right\rangle \tag{40}\\
\leq & K_{1}\left\|h_{n}-h_{m}\right\|_{L^{2}(\Omega \times Q)}^{2}
\end{align*}
$$

for all $n, m \in \mathbb{N}$.
Proof. Proof: Let u_{n} be a solution to (38) with right-hand side h_{n} and u_{m} be a solution to (38) with right-hand side h_{m}. Denoting u_{n}^{ε} and u_{m}^{ε} the corresponding approximation solutions to (13), using the Itô formula and discarding the nonnegative term it follows that for all $t \in[0, T]$ a.s. in Ω we have

$$
\begin{align*}
& \frac{1}{2}\left\|u_{n}^{\varepsilon}(t)-u_{m}^{\varepsilon}(t)\right\|_{L^{2}(D)}^{2}+\left\langle D J_{Q_{t}}\left(u_{n}^{\varepsilon}\right)-D J_{Q_{t}}\left(u_{m}^{\varepsilon}\right), u_{n}^{\varepsilon}-u_{m}^{\varepsilon}\right\rangle \tag{41}\\
\leq & \int_{D} \int_{0}^{t}\left(h_{n}-h_{m}\right)\left(u_{n}^{\varepsilon}-u_{m}^{\varepsilon}\right) d w d x+\frac{1}{2} \int_{0}^{t} \int_{D}\left(h_{n}-h_{m}\right)^{2} d x d s
\end{align*}
$$

Using the convergence results of lemmata 5.6 to 5.9 , it follows that, for a.e. $\omega \in \Omega$, $u_{n}^{\varepsilon} \rightarrow u_{n}$ in $L^{2}(Q), u_{n}^{\varepsilon}(t) \rightarrow u_{n}(t)$ in $L^{2}(D)$ for all $t \in[0, T], u_{n}^{\varepsilon} \rightarrow u_{n}$ in $X_{\omega}(Q)$, $D J_{Q_{t}}\left(u_{n}^{\varepsilon}\right) \rightharpoonup D J_{Q_{t}}\left(u_{n}\right)$ in $X_{\omega}^{\prime}(Q)$ and $\left\langle D J_{Q_{t}}\left(u_{n}^{\varepsilon}\right), u_{n}^{\varepsilon}\right\rangle \rightarrow\left\langle D J_{Q_{t}}\left(u_{n}\right), u_{n}\right\rangle$ for $\varepsilon \downarrow 0$ (and resp. with m):

$$
\begin{equation*}
\lim _{\varepsilon \downarrow 0}\left\langle D J_{Q_{t}}\left(u_{n}^{\varepsilon}\right)-D J_{Q_{t}}\left(u_{m}^{\varepsilon}\right), u_{n}^{\varepsilon}-u_{m}^{\varepsilon}\right\rangle=\left\langle D J_{Q_{t}}\left(u_{n}\right)-D J_{Q_{t}}\left(u_{m}\right), u_{n}-u_{m}\right\rangle \tag{42}
\end{equation*}
$$

Moreover, by Itô isometry we have that

$$
\begin{equation*}
\int_{0}^{t}\left(h_{n}-h_{m}\right)\left(u_{n}^{\varepsilon}-u_{m}^{\varepsilon}\right) d w \rightarrow \int_{0}^{t}\left(h_{n}-h_{m}\right)\left(u_{n}-u_{m}\right) d w \tag{43}
\end{equation*}
$$

in $L^{2}\left(\Omega ; C\left([0, T] ; L^{2}(D)\right)\right)$ for $\varepsilon \downarrow 0$, hence passing to a (not relabeled) subsequence if necessary, it follows that (43) holds a.s. in Ω and for all $t \in[0, T]$. Taking the supremum over $[0, T]$ and then taking expectation, we arrive at

$$
\begin{align*}
& E\left(\sup _{t \in[0, T]}\left\|u_{n}(t)-u_{m}(t)\right\|_{L^{2}(D)}^{2}\right)+2 E\left(\left\langle D J_{Q}\left(u_{n}\right)-D J_{Q}\left(u_{m}\right), u_{n}-u_{m}\right\rangle\right) \tag{44}\\
\leq & E\left(\left\|u_{0, n}-u_{0, m}\right\|_{L^{2}(D)}^{2}\right)+\left\|h_{n}-h_{m}\right\|_{L^{2}(\Omega \times Q)}^{2} \\
+ & 2 E\left(\sup _{t \in[0, T]} \int_{0}^{t} \int_{D}\left(h_{n}-h_{m}\right)\left(u_{n}-u_{m}\right) d x d w\right)
\end{align*}
$$

For the last term on the right-hand side of (44), for any $\gamma>0$ we use Burkholder, Hölder and Young inequality to estimate

$$
\begin{align*}
& E\left(\sup _{t \in[0, T]} \int_{0}^{t} \int_{D}\left(h_{n}-h_{m}\right)\left(u_{n}-u_{m}\right) d x d w\right) \tag{45}\\
\leq & 3 E\left(\int_{0}^{T}\left(\int_{D}\left(h_{n}-h_{m}\right)\left(u_{n}-u_{m}\right) d x\right)^{2} d s\right)^{1 / 2} \\
\leq & 3 E\left(\int_{0}^{T}\left\|h_{n}-h_{m}\right\|_{L^{2}(D)}^{2}\left\|u_{n}-u_{m}\right\|_{L^{2}(D)}^{2} d t\right)^{1 / 2} \\
\leq & 3 E\left[\left(\sup _{t \in[0, T]}\left\|u_{n}-u_{m}\right\|_{L^{2}(D)}^{2}\right)^{1 / 2}\left(\int_{0}^{T}\left\|h_{n}-h_{m}\right\|_{L^{2}(D)}^{2}\right)^{1 / 2}\right] \\
\leq & 3 \gamma E\left(\sup _{t \in[0, T]}\left\|u_{n}-u_{m}\right\|_{L^{2}(D)}^{2}\right)+\frac{3}{\gamma}\left\|h_{n}-h_{m}\right\|_{L^{2}(\Omega \times Q)}^{2}
\end{align*}
$$

Plugging (45) into (44), and choosing $\gamma>0$ small enough and $u_{0, n}=u_{0, m}$ we find $K_{1} \geq 0$ such that (40) holds.

Again, using the Itô formula and discarding the nonnegative term it follows that for all $t \in[0, T]$ a.s. in Ω,

$$
\begin{aligned}
& \frac{1}{2}\left\|u_{n}^{\varepsilon}(t)\right\|_{L^{2}(D)}^{2}+\left\langle D J_{Q_{t}}\left(u_{n}^{\varepsilon}\right), u_{n}^{\varepsilon}\right\rangle \\
\leq & \frac{1}{2}\left\|u_{0, n}\right\|_{L^{2}(D)}^{2}+\int_{D} \int_{0}^{t} h_{n} u_{n}^{\varepsilon} d w d x+\frac{1}{2} \int_{0}^{t} \int_{D}\left|h_{n}\right|^{2} d x d s
\end{aligned}
$$

Passing to the limit as above, yields

$$
\begin{aligned}
& \frac{1}{2}\left\|u_{n}(t)\right\|_{L^{2}(D)}^{2}+\left\langle D J_{Q_{t}}\left(u_{n}\right), u_{n}\right\rangle \\
\leq & \frac{1}{2}\left\|u_{0, n}\right\|_{L^{2}(D)}^{2}+\int_{D} \int_{0}^{t} h_{n} u_{n} d w d x+\frac{1}{2} \int_{0}^{t} \int_{D}\left|h_{n}\right|^{2} d x d s
\end{aligned}
$$

And then, as above, we arrive at (39) since by Fenchel-Young inequality it follows that $E\left(\left\langle D J_{Q}\left(u_{n}\right), u_{n}\right\rangle\right)=\left\langle D J\left(u_{n}\right), u_{n}\right\rangle=J^{*}\left(D J\left(u_{n}\right)\right)+J\left(u_{n}\right)$.

Let us fix an arbitrary $h \in N_{W}^{2}\left(0, T ; L^{2}(D)\right)$ and let $\left(h_{n}\right) \subset \Lambda$ be a sequence of simple functions such that $h_{n} \rightarrow h$ in $N_{W}^{2}\left(0, T ; L^{2}(D)\right)$. Let u_{n} be the solution to (38) with right-hand side h_{n} for $n \in \mathbb{N}$. From Lemma 6.1, (40) it follows that for $m, n \rightarrow \infty$

$$
\begin{equation*}
E\left(\left\|\left(u_{n}-u_{m}\right)(t)\right\|_{C\left([0, T] ; L^{2}(D)\right)}^{2}\right) \rightarrow 0 \tag{46}
\end{equation*}
$$

In particular, (46) implies that $\left(u_{n}\right)$ is a Cauchy sequence in $L^{2}\left(\Omega ; C\left([0, T] ; L^{2}(D)\right)\right)$ and in $N_{W}^{2}\left(0, T ; L^{2}(D)\right)$, hence $u_{n} \rightarrow u \in L^{2}\left(\Omega ; C\left([0, T] ; L^{2}(D)\right)\right) \cap N_{W}^{2}\left(0, T ; L^{2}(D)\right)$ for $n \rightarrow \infty$.
Moreover, we have the following
Lemma 6.2. $D J\left(u_{n}\right) \rightharpoonup D J(u)$ in \mathscr{E}^{\prime} and $\left\langle D J\left(u_{n}\right), u_{n}\right\rangle \rightarrow\langle D J(u), u\rangle$ for $n \rightarrow \infty$ for a non-relabeled subsequence.

Proof. Since $\left(h_{n}\right)$ is bounded in $N_{W}^{2}\left(0, T ; L^{2}(D)\right)$, for any $v \in \mathscr{E}$ by FenchelYoung inequality and thanks to Lemma 6.1, (39) and (J1) it follows that there exists a constant $K_{3} \geq 0$ such that

$$
\begin{align*}
\left|\left\langle D J\left(u_{n}\right), v\right\rangle\right| & \leq J(v)+J^{*}\left(D J\left(u_{n}\right)\right) \tag{47}\\
& \leq J(v)+K \\
& \leq C_{2} \int_{\Omega \times Q}|\nabla v|^{p(\cdot)} d \mu+K_{3} .
\end{align*}
$$

From (47) it follows that there exists a constant $K_{4}>0$ not depending on $n \in \mathbb{N}$ such that

$$
\begin{equation*}
\left\|D J\left(u_{n}\right)\right\|_{\mathscr{E}^{\prime}}=\sup _{\|\nu\|_{\mathscr{E}^{\prime} \leq 1}}\left|\left\langle D J\left(u_{n}\right), v\right\rangle\right| \leq K_{4} . \tag{48}
\end{equation*}
$$

Since \mathscr{E}^{\prime} is reflexive, from (48) it follows that there exists a subsequence, still denoted $\left(D J\left(u_{n}\right)\right)$, and $B \in \mathscr{E} \mathscr{E}^{\prime}$ such that $D J\left(u_{n}\right) \rightharpoonup B$ in \mathscr{E}^{\prime}.
From Lemma 6.1-(39) and (J1) it follows that there exists a constant $K_{5} \geq 0$ not depending on $n \in \mathbb{N}$ such that

$$
\begin{equation*}
\left\|\nabla u_{n}\right\|_{p(\cdot)} \leq K_{5} \tag{49}
\end{equation*}
$$

and since $\left(u_{n}\right)$ is bounded in $N_{W}^{2}\left(0, T ; L^{2}(D)\right)$ (see (39)), it follows that $\left(u_{n}\right)$ is bounded in the reflexive space \mathscr{E}. Therefore, passing again to a (not relabeled) subsequence if necessary, there exists $u \in \mathscr{E}$ such that $u_{n} \rightharpoonup u$ in \mathscr{E} for $n \rightarrow \infty$. Since $D J: \mathscr{E} \rightarrow \mathscr{E}^{\prime}$ is maximal monotone (see Lemma 4.1), the assertion follows from [6, Lemma 2.3., p.38] and (40).

6.2. Passage to the limit.

Proposition 6.3. For any $h \in N_{W}^{2}\left(0, T ; L^{2}(D)\right)$, there exists $u \in \mathscr{E}$ and a full measure set $\tilde{\Omega} \in \mathscr{F}$ such that for every $\omega \in \tilde{\Omega}$ and for all $t \in[0, T]$

$$
u(t)-u_{0}+\int_{0}^{t} D J_{D}(u) d s=\int_{0}^{t} h d w
$$

holds a.e. in D.

Proof. Let us fix an arbitrary $h \in N_{W}^{2}\left(0, T ; L^{2}(D)\right)$ and let $\left(h_{n}\right) \subset S_{W}^{2}\left(0, T ; H_{0}^{k}(D)\right)$ be a sequence of simple functions such that $h_{n} \rightarrow h$ in $N_{W}^{2}\left(0, T ; L^{2}(D)\right)$. Let u_{n} be the solution to (38) with right-hand side h_{n} for $n \in \mathbb{N}$. According to the results of the previous subsections, there exists a (not relabeled) subsequence of $\left(u_{n}\right)$ with the following convergence results for $n \rightarrow \infty$:
a.) $u_{n} \rightarrow u$ in $L^{2}\left(\Omega ; C\left([0, T] ; L^{2}(D)\right)\right)$, in $N_{W}^{2}\left(0, T ; L^{2}(D)\right)$ and a.s. in $C\left([0, T] ; L^{2}(D)\right)$ for a subsequence if needed. In particular, $u(0, \cdot)=u_{0} d P \otimes d x$-a.e. in $\Omega \times D$
b.) $\nabla u_{n} \rightharpoonup \nabla u$ in $L^{p(\cdot)}(\Omega \times Q)$
c.) $D J\left(u_{n}\right) \rightharpoonup D J(u)$ in \mathscr{E}^{\prime}.

We fix $A \in \mathscr{F}, \rho \in \mathscr{D}([0, T) \times D)$ and $\phi=\chi_{A} \rho$. Note that thanks to the regularity of h_{n} we have

$$
v_{n}:=u_{n}-\int_{0}^{t} h_{n} d w \in \mathscr{E} .
$$

Therefore, using Lemma 4.1 it follows that for all $n \in \mathbb{N}$

$$
\begin{equation*}
-\left(\int_{\Omega \times Q} v_{n} \partial_{t} \phi d \mu+\int_{\Omega \times D} u_{0} \phi(\omega, 0, x) d P d x\right)+\left\langle D J\left(u_{n}\right), \phi\right\rangle=0 \tag{50}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle$ denotes the duality bracket for $\mathscr{E}^{\prime}, \mathscr{E}$. Thanks to the Itô isometry

$$
\int_{A \times Q} \int_{0}^{t} h_{n} d w d \mu \rightarrow \int_{A \times Q} \int_{0}^{t} h d w d \mu,
$$

for $n \rightarrow \infty$. Therefore, we can pass to the limit with $n \rightarrow \infty$ and obtain

$$
\begin{equation*}
-\int_{A \times Q}\left(u-\int_{0}^{t} h d w\right) \partial_{t} \rho d \mu-\int_{A \times D} u_{0} \rho(0, x) d P d x+\left\langle D J_{Q}(u), \chi_{A} \rho\right\rangle=0 . \tag{51}
\end{equation*}
$$

Thanks to the monotonicity of $D J$, by an argument similar to the one pointed out after (34), from (51) we get that u is unique, hence the whole sequence u_{n} has the convergence properties a.) -c.). With a separability argument from (51) and from Lemma 4.1 it follows that there exists a full-measure set $\tilde{\Omega} \subset \Omega$ not depending on ρ, such that

$$
\begin{equation*}
\int_{Q} \partial_{t}\left(u-\int_{0}^{t} h d w\right) \rho d \mu+\left\langle D J_{Q}(u), \rho\right\rangle=0 \tag{52}
\end{equation*}
$$

for all $\omega \in \tilde{\Omega}$ and for all $\rho \in \mathscr{D}(Q)$. Moreover, a.s. in Ω

$$
u-\int_{0}^{t} h d w \in C\left([0, T] ; L^{2}(D)\right)
$$

and from (52) it follows that

$$
\partial_{t}\left(u-\int_{0}^{t} h d w\right) \in X_{\omega}^{\prime}(Q) \hookrightarrow L^{q^{\prime}}\left(0, T ; W^{-1, q^{\prime}}(D)\right)
$$

for $q \geq p^{+}+2$. Thus we can integrate (52) and use Lemma 4.1 to obtain a.s.

$$
\begin{equation*}
u(t)-u_{0}+\int_{0}^{t} D J_{D}(u) d s=\int_{0}^{t} h d w . \tag{53}
\end{equation*}
$$

7. Conclusion. For $h_{2}, h_{2} \in N_{W}^{2}\left(0, T ; L^{2}(D)\right)$ let u_{1}, u_{2} be solutions to (38) with right-hand side h_{1} and h_{2}, respectively. From Lemma 6.1, (40) and Lemma 6.2 it follows that

$$
\begin{align*}
& E\left(\left\|u_{1}-u_{2}\right\|_{C\left(\left[0, T ; L^{2}(D)\right)\right.}^{2}\right)+\left\langle D J\left(u_{1}\right)-D J\left(u_{2}\right), u_{1}-u_{2}\right\rangle \tag{54}\\
\leq & C\left\|h_{1}-h_{2}\right\|_{L^{2}(\Omega \times Q}^{2}
\end{align*}
$$

and therefore we can repeat the arguments of [7] based on Banach's fixed point theorem applied to

$$
\Psi: N_{W}^{2}\left(0, T ; L^{2}(D)\right) \rightarrow N_{W}^{2}\left(0, T ; L^{2}(D)\right), \quad S \mapsto u_{s}
$$

where u_{S} is the solution to (38) with right-hand side $h(\cdot, S)$ to deduce the existence of a unique solution u of (P, h) in the sense of Definition 3.1. From (54) it follows also that (2) holds true and we have finished the proof of Theorem 3.1

8. Appendix.

8.1. w-operators.

Definition 8.1. Let X be a Banach space and $A: X \rightarrow X^{\prime}$ an operator. A is a woperator if there exist continuous functions $d:[0,+\infty) \rightarrow(0,+\infty)$ and $w:[0,+\infty) \rightarrow[0,+\infty)$ with $w(r)=0$ if and only if $r=0$ such that

$$
\forall u, v \in X, d(\|u\|+\|v\|) w(\|u-v\|) \leq\langle A(u)-A(v), u-v\rangle .
$$

A is a weak-w operator if

$$
\forall u, v \in X, d(\|u\|+\|v\|) w(\|u-v\|)-v(u, v) \leq\langle A(u)-A(v), u-v\rangle .
$$

where $v(u, v) \rightarrow 0$ if $\langle A(u)-A(v), u-v\rangle \rightarrow 0$.

Let us remark that, of course, a w-operator is a strictly monotone operator and that for a given weak w-operator A, if $\left(u_{n}\right)$ is a bounded sequence such that $\left\langle A\left(u_{n}\right)-\right.$ $\left.A(u), u_{n}-u\right\rangle \rightarrow 0$ then u_{n} converges to u (strongly). Indeed, $v\left(u_{n}, u\right) \rightarrow 0$ and since d is uniformly strictly positive on bounded sets of $[0,+\infty[$, the above assumption yields the convergence of $w\left(\left\|u_{n}-u\right\|\right)$ to 0 when n goes to infinity. Denote by $a_{n}=\left\|u_{n}-u\right\|$. It is a bounded sequence and there exists a subsequence $\left(a_{n_{k}}\right)$ that converges to $a=\limsup _{n} a_{n}$. Since w is a continuous function, $w\left(a_{n_{k}}\right) \rightarrow w(a)$. But $w\left(a_{n_{k}}\right)$ has to converge to 0 , so $w(a)=0$ and $a=\limsup \sin _{n}\left\|u_{n}-u\right\|$. This yields the result.

An example of a w-operator is given by $A u=-\operatorname{div}\left[a(t, x)|\nabla u|^{p(t, x)-2} \nabla u\right]$ for a measurable function $a: Q \rightarrow \mathbb{R}$ such that $0<\alpha \leq a(t, x) \leq \beta<+\infty$ for almost every $(t, x) \in Q$ and where $1 \leq p^{-} \leq p(t, x) \leq p^{+}<+\infty$ on the space

$$
X=\left\{u \in L^{1}\left(0, T, W_{0}^{1,1}(D)\right), \nabla u \in L^{p(t, x)}(Q)\right\} .
$$

The presence of the function d is mainly due to possible values of $p(t, x)$ less than 2 (see Section 8.2).
Then, an example of a weak w-operator is given in Section 8.3 by the operator $D J: X \rightarrow X^{\prime}$ where $D J$ is the Gâteaux of the convex function

$$
J: u \in X \mapsto \int_{Q} \frac{1}{p(t, x)}|\nabla u|^{p(t, x)}-\delta \cos (|\nabla u|) d(t, x) \in \mathbb{R}
$$

for $2 \leq p(t, x) \leq p^{+}<+\infty$ and $\delta \in(0,1)$.
Let us remark that Assumption (J3) means that, a.s. $A_{\omega}=D J_{Q}: X_{\omega}(Q) \rightarrow X_{\omega}^{\prime}(Q)$ is an operator of type weak w-operator. Indeed, the coefficients a, p and the set X can be ω-dependent.

8.2. Appendix-1. An example of a w-operator is given by

$$
A u=-\operatorname{div}\left[a(t, x)|\nabla u|^{p(t, x)-2} \nabla u\right]
$$

for a measurable function $a: Q \rightarrow \mathbb{R}$ such that $0<\alpha \leq a(t, x) \leq \beta<+\infty$ for almost every $(t, x) \in Q$ and where $1 \leq p^{-} \leq p(t, x) \leq p^{+}<+\infty$ on the space

$$
X=\left\{u \in L^{1}\left(0, T, W_{0}^{1,1}(D)\right), \nabla u \in L^{p(t, x)}(Q)\right\} .
$$

Indeed, note first that for any $u, v \in X$,

$$
\begin{aligned}
& \langle A(u)-A(v), u-v\rangle \\
= & \int_{Q} a(t, x)\left[\left(|\nabla u|^{p(t, x)-2} \nabla u-|\nabla v|^{p(t, x)-2} \nabla v\right) \cdot \nabla(u-v)\right] d(t, x) \\
= & \int_{Q^{+}} a(t, x)\left[\left(|\nabla u|^{p(t, x)-2} \nabla u-|\nabla v|^{p(t, x)-2} \nabla v\right) \cdot \nabla(u-v)\right] d(t, x) \\
& +\int_{Q^{-}} a(t, x)\left[\left(|\nabla u|^{p(t, x)-2} \nabla u-|\nabla v|^{p(t, x)-2} \nabla v\right) \cdot \nabla(u-v)\right] d(t, x)
\end{aligned}
$$

where

$$
Q^{+}=\{(t, x) \in Q \mid p(t, x) \geq 2\}, \quad Q^{-}=\{(t, x) \in Q \mid p(t, x)<2\}
$$

We recall that [10, Lemma 4.4., p.13] yields

$$
\left(|\nabla u|^{p(t, x)-2} \nabla u-|\nabla v|^{p(t, x)-2} \nabla v\right) \cdot \nabla(u-v) \geq 2^{2-p(t, x)}|\nabla(u-v)|^{p(t, x)}
$$

a.e. in Q^{+}and therefore,

$$
\begin{aligned}
& \int_{Q^{+}}\left(|\nabla u|^{p(t, x)-2} \nabla u-|\nabla v|^{p(t, x)-2} \nabla v\right) \cdot \nabla(u-v) d(t, x) \\
\geq & 2^{2-p^{+}} \int_{Q^{+}}|\nabla(u-v)|^{p(t, x)} d(t, x)
\end{aligned}
$$

and,

$$
\int_{Q^{+}}|\nabla(u-v)|^{p(t, x)} d(t, x) \leq \frac{2^{p^{+}-2}}{\alpha}\langle A(u)-A(v), u-v\rangle
$$

For almost every $(t, x) \in Q^{-},[8$, Proposition 17.3, p.235] yields

$$
\begin{aligned}
& \left(|\nabla u|^{p(t, x)-2} \nabla u-|\nabla v|^{p(t, x)-2} \nabla v\right) \cdot \nabla(u-v) \\
\geq & (p(t, x)-1)|\nabla(u-v)|^{2}\left(1+|\nabla u|^{2}+|\nabla v|^{2}\right)^{\frac{p(t, x)-2}{2}} .
\end{aligned}
$$

Thanks to the generalized Young inequality, for any $0<\varepsilon \leq 1$, it follows

$$
\begin{aligned}
& \int_{Q^{-}}|\nabla u-\nabla v|^{p(\cdot)} d(t, x) \\
= & \int_{Q^{-}} \frac{|\nabla u-\nabla v|^{p(t, x)}}{\left(1+|\nabla u|^{2}+|\nabla v|^{2}\right)^{p(t, x)^{\frac{2-p(t, x)}{4}}}\left(1+|\nabla u|^{2}+|\nabla v|^{2}\right)^{p(t, x)^{\frac{2-p(t, x)}{4}}} d(t, x)} \\
\leq & \int_{Q^{-}} \varepsilon^{\frac{p(t, x)-2}{p(t, x)}} \frac{|\nabla u-\nabla v|^{2}}{\left(1+|\nabla u|^{2}+|\nabla v|^{2}\right)^{\frac{2-p(t, x)}{2}} d(t, x)+\varepsilon \int_{Q^{-}}\left(1+|\nabla u|^{2}+|\nabla v|^{2}\right)^{\frac{p(t, x)}{2}} d(t, x)} \\
\leq & \frac{1}{\varepsilon\left(p^{-}-1\right) \alpha} \int_{Q^{-}} a(t, x)\left(|\nabla u|^{p(t, x)-2} \nabla u-|\nabla v|^{p(t, x)-2} \nabla v\right) \cdot \nabla(u-v) d(t, x) \\
& +\varepsilon \int_{Q^{-}}\left(1+|\nabla u|^{p(t, x)}+|\nabla v|^{p(t, x)}\right) d(t, x) \\
\leq & \frac{1}{\alpha \varepsilon\left(p^{-}-1\right)}\langle A(u)-A(v), u-v\rangle+\varepsilon \int_{Q^{-}}\left(1+|\nabla u|^{p(t, x)}+|\nabla v|^{p(t, x)}\right) d(t, x) .
\end{aligned}
$$

By denoting $M=\max \left(\frac{1}{\alpha\left(p^{-}-1\right)}, \frac{2^{p^{+}-2}}{\alpha}\right)$, one gets that, for any $\varepsilon \in(0,1)$,

$$
\begin{aligned}
& \int_{Q}|\nabla u-\nabla v|^{p(\cdot)} d(t, x) \\
\leq & \frac{M}{\varepsilon}\langle A(u)-A(v), u-v\rangle+\varepsilon \int_{Q}\left(1+|\nabla u|^{p(t, x)}+|\nabla v|^{p(t, x)}\right) d(t, x) .
\end{aligned}
$$

Now consider the two possible cases:
If, on the one hand, $\int_{Q}\left(1+|\nabla u|^{p(t, x)}+|\nabla v|^{p(t, x)}\right) d(t, x) \leq M\langle A(u)-A(v), u-v\rangle$, then

$$
\begin{aligned}
& \int_{Q}|\nabla u-\nabla v|^{p(\cdot)} d(t, x) \leq 2 M\langle A(u)-A(v), u-v\rangle \\
\leq & \frac{2 M}{|Q|}\langle A(u)-A(v), u-v\rangle \int_{Q}\left(1+|\nabla u|^{p(t, x)}+|\nabla v|^{p(t, x)}\right) d(t, x) ;
\end{aligned}
$$

if, on the other hand, $\int_{Q}\left(1+|\nabla u|^{p(t, x)}+|\nabla v|^{p(t, x)}\right) d(t, x)>M\langle A(u)-A(v), u-v\rangle$, then, for $\varepsilon^{2}=\frac{M\langle\hat{A}(u)-A(v), u-v\rangle}{\int_{Q}(1+|\overline{\nabla u \mid}|(t, x)+|\nabla v| p(t, x)} d(t, x)$, one has

$$
\begin{aligned}
& \int_{Q}|\nabla u-\nabla v|^{p(\cdot)} d(t, x) \\
\leq & 2 \sqrt{M\langle A(u)-A(v), u-v\rangle\left(1+|\nabla u|^{p(t, x)}+|\nabla v|^{p(t, x)}\right) d(t, x)} .
\end{aligned}
$$

Thus, denoting by $\psi(x)=\min \left(x, x^{2}\right)$ for nonnegative x, there exists a constant K
such that

$$
\begin{aligned}
& \psi\left(\int_{Q}|\nabla u-\nabla v|^{p(\cdot)} d(t, x)\right) \\
\leq & K\langle A(u)-A(v), u-v\rangle \int_{Q}\left(1+|\nabla u|^{p(t, x)}+|\nabla v|^{p(t, x)}\right) d(t, x) .
\end{aligned}
$$

Since, for any U, by definition of the Luxemburg norm,

$$
\min \left[\|\nabla U\|^{p^{-}},\|\nabla U\|^{p^{+}}\right] \leq \int_{Q}|\nabla U|^{p(\cdot)} d(t, x) \leq \max \left[\|\nabla U\|^{p^{-}},\|\nabla U\|^{p^{+}}\right]
$$

one has that

$$
d(\|\nabla u\|+\|\nabla v\|) w(\|\nabla(u-v)\|) \leq\langle A(u)-A(v), u-v\rangle
$$

where, for nonnegative x,

$$
w(x)=\frac{1}{K} \min \left(x^{p^{-}}, x^{2 p^{+}}\right) \quad \text { and } \quad d^{-1}(x)=|Q|+2 \max \left(x^{p^{+}}, x^{p^{-}}\right) .
$$

The conclusion is then a consequence of Poincare's inequality.
8.3. Appendix-2. Let us also give an example of a weak w-operator: denote by $X=\left\{u \in L^{1}\left(0, T, W_{0}^{1,1}(D)\right), \nabla u \in L^{p(\cdot)}(Q)\right\}$, where $2 \leq p(t, x) \leq p^{+}<$ $+\infty$, and for any $\delta \in(0,1)$, consider

$$
J: u \in X \mapsto \int_{Q} \frac{1}{p(t, x)}|\nabla u|^{p(t, x)}-\delta \cos (|\nabla u|) d(t, x) \in \mathbb{R}
$$

If we define $j: Q \times[0,+\infty) \rightarrow \mathbb{R}$ by $j(t, x, s)=\frac{s^{p(t, x)}}{p(t, x)}-\delta \cos (s)$, then $J(u)=$ $\int_{Q} j(t, x,|\nabla u|) d(t, x)$. Moreover, for fixed $(t, x) \in Q$, and $s \geq 0$
$\partial_{s} j(t, x, s)=s^{p(t, x)-1}+\delta \sin (s) \quad$ and $\quad \partial_{s}^{2} j(t, x, s)=(p(t, x)-1) s^{p(t, x)-2}+\delta \cos (s)$.
For $s \in[0,1], \partial_{s}^{2} j(t, x, s) \geq \delta \cos (1)$ and for $s>1, \partial_{s}^{2} j(t, x, s) \geq 1-\delta$. Therefore

$$
\partial_{s}^{2} j(t, x, s) \geq \min (\delta \cos 1,1-\delta):=\bar{\alpha}>0
$$

for all $(t, x) \in Q$ and j is a convex function of the variable s for any fixed $(t, x) \in Q$, thus J is a convex function and $D J: X \rightarrow X^{\prime}, u \mapsto D J(u)$ where

$$
\langle D J(u), v\rangle=\int_{Q} \frac{\partial_{s} j(t, x,|\nabla u|)}{|\nabla u|} \nabla u \cdot \nabla v d x d t
$$

is a maximal monotone operator. For $(t, x) \in Q$ fixed let us set

$$
\begin{equation*}
\alpha: Q \times[0, \infty) \rightarrow \mathbb{R}, \quad(t, x, s) \mapsto s^{\frac{p(t, x)-2}{2}}+\delta \frac{\sin (\sqrt{s})}{\sqrt{s}} \tag{55}
\end{equation*}
$$

then,

$$
\begin{equation*}
\frac{1}{2} \int_{0}^{s^{2}} \alpha(t, x, \sigma) d \sigma=\int_{0}^{s} \sigma \alpha\left(t, x, \sigma^{2}\right) d \sigma=j(t, x, s) \tag{56}
\end{equation*}
$$

and for any $(t, x) \in Q, \alpha(t, x, \cdot)$ is a continuous function. Thus, [23] Lemma 25.26 b), p. 524 yields for all $u, v \in X$, a.e. in Q

$$
\begin{equation*}
\left(\alpha\left(t, x,|\nabla u|^{2}\right) \nabla u-\alpha\left(t, x,|\nabla v|^{2}\right) \nabla v\right) \cdot \nabla(u-v) \geq \bar{\alpha}|\nabla u-\nabla v|^{2}, \tag{57}
\end{equation*}
$$

and from (56) and (57) it follows that

$$
\begin{equation*}
\left(\frac{\partial_{s} j(t, x,|\nabla u|)}{|\nabla u|} \nabla u-\frac{\partial_{s} j(t, x,|\nabla v|)}{|\nabla u|} \nabla v\right) \cdot \nabla(u-v) \geq \bar{\alpha}|\nabla u-\nabla v|^{2} . \tag{58}
\end{equation*}
$$

for all $u, v \in X$ a.e. in Q. By integration over Q, we obtain

$$
\begin{equation*}
\forall u, v \in X, \quad\langle D J(u)-D J(v), u-v\rangle \geq \bar{\alpha} \int_{Q}|\nabla(u-v)|^{2} d(t, x) . \tag{59}
\end{equation*}
$$

Note that for every $u \in X$

$$
J(u)=\int_{Q} j_{0}(|\nabla u|)+j_{1}(t, x,|\nabla u|)
$$

with $j_{1}: Q \times[0, \infty) \rightarrow \mathbb{R}$ defined by $j_{1}(t, x, s)=\frac{s^{p(t, x)}}{p(t, x)}$ and $j_{0}:[0,+\infty) \rightarrow \mathbb{R}$ defined by $j_{0}(s)=-\delta \cos (s)$. If we define

$$
\alpha_{0}:(0, \infty) \rightarrow \mathbb{R}, \quad \alpha_{0}(s):=\delta \frac{\sin \sqrt{s}}{\sqrt{s}},
$$

then

$$
\begin{equation*}
\frac{1}{2} \int_{0}^{s^{2}} \alpha_{0}(\sigma) d \sigma=\int_{0}^{s} \sigma \alpha_{0}\left(\sigma^{2}\right) d \sigma=j_{0}(s) \tag{60}
\end{equation*}
$$

Thus, $j_{0}^{\prime}(s)=\delta \sin (s)$ is a δ-Lipschitz function and with the same arguments as in [23], proof of Lemma 25.26 d), p. 550 we get

$$
\begin{equation*}
\left|\alpha_{0}\left(|\nabla u|^{2}\right) \nabla u-\alpha_{0}\left(|\nabla v|^{2}\right) \nabla v\right| \leq 3 \delta|\nabla(u-v)| . \tag{61}
\end{equation*}
$$

From (61) it follows that for all $u, v \in X$, a.e. in Q,

$$
\begin{equation*}
\left|\frac{j_{0}^{\prime}(|\nabla u|)}{|\nabla u|} \nabla u-\frac{j_{0}^{\prime}(|\nabla v|)}{|\nabla v|} \nabla v\right| \leq 3 \delta|\nabla(u-v)| \tag{62}
\end{equation*}
$$

Thus, for $p(t, x) \geq 2$ we arrive at

$$
\begin{aligned}
& \langle D J(u)-D J(v), u-v\rangle \\
= & \int_{Q}\left(|\nabla u|^{p(t, x)-2} \nabla u-|\nabla v|^{p(t, x)-2} \nabla v\right. \\
+ & \left.\frac{j_{0}^{\prime}(|\nabla u|)}{|\nabla u|} \nabla u-\frac{j_{0}^{\prime}(|\nabla v|)}{|\nabla v|} \nabla v\right) \cdot \nabla(u-v) d(t, x) \\
\geq & 2^{2-p^{+}} \int_{Q}|\nabla(u-v)|^{p(t, x)} d x d t-3 \delta \int_{Q}|\nabla(u-v)|^{2} d(t, x)
\end{aligned}
$$

and $D J$ is a weak w-operator thanks to (59).

Remark 8.1. The previous example holds also true for

$$
j_{1}(t, x, s)=\frac{1}{p(t, x)}(1+s)^{p(t, x)}-\frac{1}{p(t, x)-1}(1+s)^{p(t, x)-1}
$$

with $2 \leq p(t, x) \leq p^{+}<+\infty$.

REFERENCES

[1] B. Andreianov, M. Bendahmane, and S. Ouaro. Structural stability for variable exponent elliptic problems, I: the $p(x)$-Laplacian kind problems. Nonlinear Anal., 73(1):2-24, 2010.
[2] B. Andreianov, M. Bendahmane, and S. Ouaro. Structural stability for variable exponent elliptic problems. II. The $p(u)$-Laplacian and coupled problems. Nonlinear Anal., 72(12):4649-4660, 2010.
[3] S. N. Antontsev and J. F. Rodrigues. On stationary thermo-rheological viscous flows. Ann. Univ. Ferrara Sez. VII Sci. Mat., 52(1):19-36, 2006.
[4] S. Antontsev and S. Shmarev. Anisotropic parabolic equations with variable nonlinearity. Publ. Mat., 53(2):355-399, 2009.
[5] H. Aoyama. Lebesgue spaces with variable exponent on a probability space. Hiroshima Math. J., 39(2):207-216, 2009.
[6] V. Barbu. Nonlinear differential equations of monotone types in Banach spaces, Springer Monographs in Mathematics. Springer, New York (2010).
[7] C. Bauzet, G. Vallet, P. Wittbold, and A. Zimmermann. On a $p(t, x)$-laplace evolution equation with a stochastic force. Stochastic Partial Differential Equations: Analysis and Computations, 1(3):552-570, 2013.
[8] M. Chipot. Elliptic equations: an introductionary course. Birkhäuser, Basel 2009.
[9] G. Da Prato and J. Zabczyk. Stochastic equations in infinite dimensions, volume 44 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1992).
[10] E. Di Benedetto. Degenerate Parabolic Equations. Springer, New York, 1993.
[11] L. Diening, P. Harjulehto, P. Hästö, and M. Ruzicka. Lebesgue and Sobolev Spaces with Variable Exponents. Springer, 2011.
[12] L. Diening, P. Nägele, and M. Ruzicka. Monotone operator theory for unsteady problems in variable exponent spaces. Complex Variables and Elliptic Equations, 57:1209-1231, 2012.
[13] J. Droniou. Intégration et Espaces de Sobolev à Valeurs Vectorielles. Preprint, http://www-gm3.univ-mrs.fr/polys/gm3-02/gm3-02.pdf.
[14] J. Giacomoni and G. Vallet. Some results about an anisotropic $p(x)$-Laplace-Barenblatt equation. Advances in Nonlinear Analysis, 1(3), 277-298 (2012).
[15] O. Kováčik and J. Rákosník. On spaces $L^{p(x)}$ and $W^{k, p(x)}$. Czechoslovak Math. J., 41(116)(4):592-618, 1991.
[16] N.V. Krylov, B.L. Rozowskii. Stochastic evolution equations. Current problems in mathematics, Vol. 14 (Russian), 71-147, 256, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1979.
[17] E. Nakai and G. Sadasue. Maximal function on generalized martingale Lebesgue spaces with variable exponent. Statist. Probab. Lett., 83(10):2168-2171, 2013.
[18] I. Posirca, Y. Chen, and C. Z. Barcelos. A new stochastic variational PDE model for soft Mumford-Shah segmentation. J. Math. Anal. Appl., 384(1):104-114, 2011.
[19] J. Ren, M. Röckner, and F.-Y. Wang. Stochastic generalized porous media and fast diffusion equations. J. Differential Equations, 238(1):118-152, 2007.
[20] M. Ružička. Electrorheological fluids: modeling and mathematical theory, volume 1748 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2000.
[21] M. Ružička. Modeling, mathematical and numerical analysis of electrorheological fluids. Appl. Math., 49(6):565-609, 2004.
[22] B. Tian, B. Xu, and Y. Fu. Stochastic field exponent function spaces with applications. Complex Var. Elliptic Equ., 59(1):133-148, 2014.
[23] E. Zeidler. Nonlinear functional analysis and its applications. II/B. Nonlinear monotone operators. Springer-Verlag, New York, 1990.
[24] V. V. Zhikov. Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat., 50(4):675-710, 877, 1986.

LMAP - UMR CNRS 5142,	Fakultät für Mathematik,
IPRA BP 1155,	Thea-Leymann-Str. 9,
64013 Pau Cedex, France,	45127 Essen, Germany,
E-mail: guy.vallet@univ-pau.fr	E-mail: petra.wittbold@uni-due.de; aleksandra.zimmermann@uni-due.de

[^0]: *Aleksandra Zimmermann in supported by DGF Project no. ZI 1542/1-1.
 MSC 2010 subject classifications: $35 \mathrm{~K} 92,46 \mathrm{E} 30,60 \mathrm{H} 15$
 Keywords and phrases: p-Laplace, random variable exponent, stochastic forcing

[^1]: ${ }^{1}$ A function f is Log-Hölder continuous if, for a constant $c \geq 0,|f(x)-f(y)| \leq c / \ln [e+1 / \mid x-$ $y \mid]$. If f is Hölder continuous with Hölder exponent α, then it is also log-Hölder continuous since $|f(x)-f(y)| \ln [e+1 /|x-y|] \leq c|x-y|^{\theta} \ln [e+1 /|x-y|]$ and since $\alpha \mapsto \alpha^{\theta} \ln [e+1 / \alpha]$ is continuous on $[0, M]$ for any positive M.

[^2]: ${ }^{2}$ Rmk: [9, Prop.3.17 p.84] and [16, Th. 2.3, p. 1254] yield $u^{\varepsilon} \in L^{2}\left(\Omega, C\left([0, T] ; L^{2}(D)\right)\right)$.

