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Abstract: We consider the Prandtl-Reuss model of plasticity with kinematic
hardening, aiming at a homogenization result. For a sequence of coefficient
fields and corresponding solutions uε, we ask whether we can characterize
weak limits u when uε ⇀ u as ε → 0. We assume neither periodicity nor
stochasticity for the coefficients, but we demand an abtract averaging prop-
erty of the homogeneous system on reference volumes. Our conclusion is an
effective equation on general domains with general right hand sides. The effec-
tive equation uses a causal evolution operator Σ that maps strains to stresses;
more precisely, in each spatial point x, given the evolution of the strain in the
point x, the operator Σ provides the evolution of the stress in x.
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1 Introduction
Due to its relevance in applications, the homogenization of plasticity models has be-
come a very active field of research. While the homogenization of other equations of
continuum mechanics is meanwhile well established (e.g. elasticity models for solids or
Navier-Stokes equations for fluids), the homogenization of plasticity models is more
involved. Only recently results have been obtained, and, so far, they concern only the
periodic setting (with the exception of [18], which is restricted to one space dimen-
sion). Plasticity imposes new analytical challenges, the most relevant is probably the
lack of spatial regularity due to the singular character of the flow rule.

The current homogenization literature on plasticity is mainly concerned with in-
finitesimal strain plasticity and an additive decomposition of the strain tensor (for
an exception see [12] and the references therein). With the single exception of [8],
all contributions include an hardening effect. We also include hardening by assuming
that the tensor Bε below is positive definite. We write the plasticity system (we refer
to [1, 13] for modelling aspects) in the form

−∇ · σε = f , σε = C−1
ε eε ,

∇suε = eε + pε , ∂tp
ε ∈ ∂Ψε(σ

ε −Bεp
ε) .

(1.1)
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The equations are posed on a space-time cylinder Q × (0, T ), where Q ⊂ Rn is a
bounded Lipschitz domain. The equations (1.1) are accompanied by initial and bound-
ary conditions, the unknowns are the deformation uε, the elastic strain eε, the plastic
strain pε, and the stress σε. Given are a right hand side f , the coefficient tensors Cε
and Bε, and the convex function Ψε that describes the flow rule.

The parameter ε > 0 indicates that we are given a family of coefficient fields. Our
interest is to investigate the corresponding solutions uε and to characterize weak limits
u of a sequence of solutions. This is the principle goal in homogenization theory. So
far, only the (essentially) periodic case has been studied, i.e. coefficients of the form
Cε(x) = C1(x, x/ε), and similarly for Bε, Ψε.

We present a result that is obtained with the needle-problem approach to homoge-
nization, an approach that was introduced with [20]. In this approach, mathematical
homogenization is regarded as a two-step procedure: Step 1 treats cell-problems, con-
cluding that, on a representative elementary volume (REV), the material behaves in
a well-defined way: an input (e.g. the averaged gradient ξ of the solution) results in
a certain output (e.g. the averaged flux A∗ξ). Step 2 treats arbitrary right hand sides
f and arbitrary domains Q. The conclusion of Step 2 is: the material law (obtained
from the REV) characterizes the behavior of the material on the macroscopic scale.

The needle-problem approach is concerned with Step 2 of this program. We assume
that the material parameters allow averaging: for solutions on simplices, corresponding
to affine boundary data ξ and vanishing forces f = 0, averages of the stress converge
weakly to some deterministic quantity Σ(ξ). We then conclude that the map Σ charac-
terizes solutions on general domains Q, with general boundary data and with general
forces.

The result of Step 2 is relevant as such, since it justifies to extract effective coeffi-
cients from REV-tests. On the other hand, in a more specific setting (e.g. a problem
with stochastic coefficients), one may be in a position to verify the averaging assump-
tion (Step 1); once this is done, the needle-problem result allows to conclude the full
homogenization limit.

1.1 Literature

Homogenization theory has become a well-established part of the theory of partial
differential equations. The most relevant approaches are energy methods, two-scale
convergence methods, and periodic unfolding. Having at disposal a well-developed
theory for linear equations with periodic coefficients, much of the more recent research
is focussed on stochastic homogenization [11, 18, 22] and nonlinear problems [5, 7, 9,
16, 25].

The homogenization of the highly nonlinear plasticity systems is quite recent. A
first mathematical formulation of the effective two-scale limit system (for a periodic
plasticity system with hardening) seems to appear in [2] (we refer to Subsection 1.4
below for a description of the limit system). The rigorous derivation of the effective
two-scale system was obtained with various approaches, covering a varying generality
of the coefficient functions. A consequent use of variational aspects and the method of
two-scale convergence was exploited first by Visintin, see [23, 24, 26], and later in [21].
Alber and Nesenenko use the method of two-scale convergence and combine it with
phase-shift convergence to obtain rigorous results, see [3, 17]. A homogenization proof
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based on Tartar’s energy method is presented in [19], and general homogenization
results for rate-independent systems have been developed in [15, 16]. The recent
analysis of [21] is entirely based on two-scale convergence, it allows quite general
monotone flow rules and it clearifies the necessary conditions regarding x- and y-
dependence of the flow function; we refer to this work also for a further description of
the literature.

1.2 Setting of the problem

We consider the ε-Problem (1.1) on a bounded Lipschitz domain Q ⊂ Rn, n ≤ 3.
More precisely, for some time horizon T > 0, we consider solutions of the system (1.1)
on Q× (0, T ). For a fixed sequence ε = εj → 0 we assume that a family of coefficients
and coefficient functions (Cε, Bε, Ψε) is given.

The other data are the right hand side f and the boundary data w. We complement
system (1.1) with the boundary condition uε = w on ∂Q × (0, T ). We assume the
regularity

w ∈ H1(0, T ;H1(Q;Rn)) , f ∈ H1(0, T ;L2(Q)) . (1.2)

We restrict ourselves to the initial condition

pε(0) = 0 . (1.3)

Regarding the tensor fields Cε, Bε ∈ L∞(Q;L(Rn×n
s ,Rn×n

s )), where Rn×n
s denotes the

symmetric n× n-matrices, we assume the boundedness and positivity

γ |ξ|2 ≤ ξ : (Cε(x) ξ) ≤ 1

γ
|ξ|2 , β |ξ|2 ≤ ξ : (Bε(x) ξ) ≤ 1

β
|ξ|2 (1.4)

for all ξ ∈ Rn×n
s and a.e. x ∈ Q, where the constants γ, β > 0 do not depend on ε. We

furthermore assume that Cε and Bε are symmetric with respect to the scalar product
on Rn×n

s . We finally assume that Ψε(., x) : Rn×n
s → R is convex, non-negative, and

that the convex conjugate function Ψ∗ε satisfies a Lipschitz continuity condition: For
C = C(ε) > 0 holds

|Ψ∗ε(σ;x1)−Ψ∗ε(σ;x2)| ≤ C(ε) |x1 − x2| |σ| . (1.5)

Given coefficients Cε and Bε, we use the notation

|ξ|2Cε := ξ : (Cε(x) ξ) , |ξ|2Bε := ξ : (Bε(x) ξ) .

Due to (1.4), the norms | . |Cε and | . |Bε are equivalent to the Euclidean norm on Rn×n
s .

Remark 1. No initial conditions for uε, eε and σε are imposed. The initial data (1.3)
imply: Cεσε(0) = ∇suε(0), hence (1.1)1 is equivalent to

−∇ ·
(
C−1
ε ∇suε(0)

)
= f(0) . (1.6)

Due to positivity of Cε in the space of symetric matrices, the elasticity system (1.6)
posesses a unique solution uε(0) to the boundary condition uε(0)|∂Q = w(0)|∂Q. This
solution also provides eε(0) = ∇suε(0) and σε(0) = C−1

ε eε(0).
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Definition 1.1 (Weak solution to the ε-problem). We say that (uε, eε, pε, σε) is a
weak solution to the ε-problem (1.1) on Q with boundary data w if the following holds:
uε = vε + w with

vε ∈ H1(0, T ;H1
0 (Q)) , eε, pε, σε ∈ H1(0, T ;L2(Q;Rn×n

s )) , (1.7)

for every ϕ ∈ L2(0, T ;H1
0 (Q)) holds

ˆ T

0

ˆ
Q

σε : ∇sϕ =

ˆ T

0

ˆ
Q

f · ϕ , (1.8)

and the relations

∂tp
ε ∈ ∂Ψε(σ

ε −Bεp
ε) , ∇suε = eε + pε , σε = Cεe

ε (1.9)

hold pointwise almost everywhere on Q× (0, T ).

For fixed Q and T , we denote the two time dependent function spaces of (1.7) as
V1

0 := H1(0, T ;L2(Q;Rn×n
s )) and V1

1 := H1(0, T ;H1
0 (Q)). The upper index shows the

regularity in time, the lower index shows the regularity in space (using the fact that
H0 ≡ L2). We emphasize that the indices express the regularity, but also the number
of components is different in the two spaces.

Theorem 1.2 (Existence of weak solutions). Let the data be as in (1.2)–(1.5). Then,
for every ε > 0, there exists a unique weak solution (uε, eε, pε, σε) to (1.1) in the sense
of Definition 1.1. The solution satisfies the a priori estimate

‖uε‖V1
1

+ ‖eε‖V1
0

+ ‖pε‖V1
0

+ ‖σε‖V1
0
≤ C , (1.10)

where C = C(w, f, β, γ) is independent of ε > 0.

Similar existence results are available in the literature. We note that Theorem 1.1
of [19] cannot be applied, since we do not have the term ∂2

t u in (1.1), while such an
inertia term is included [19]. The proof relies on the a priori estimate (1.10), which is
shown in the appendix.

1.3 Main Result

Our main result is a homogenization result. We regard it as a justification of the
concept of representative elementary volumes: We assume that the system has an av-
eraging property on standard elements (simplices) with standard data (affine boundary
data and vanishing right hand side), see Definition 1.3. We conclude from the averaging
property the homogenization result for general data, see Theorem 1.6.

We next want to formulate the averaging property. Since plasticity equations
include hysteresis effects, the evolution of the average stress in a representative volume
will not only depend on the applied strain, but it will depend on the whole history
of the strain. We must therefore work with operators that map a strain history to a
stress history,

Σ : H1(0, T ;Rn×n
s )→ H1(0, T ;Rn×n

s ) . (1.11)

We emphasize that no spatial dependence appears in this operator.
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We call an operator Σ as in (1.11) a causal operator, if and only if, for every
t ∈ [0, T ], the value Σ(ξ, t) := Σ(ξ)(t) is independent of ξ|(t,T ] in the sense that

ξ1, ξ2 ∈ H1(0, T ;Rn×n
s ) with ξ1|[0,t) = ξ2|[0,t) ⇒ Σ(ξ1, t) = Σ(ξ2, t) .

We can now formulate the averaging property for plasticity equations. We use
ffl
T f :=

|T |−1
´
T f to denote the average of a function f on T

Definition 1.3 (Averaging property). For fixed T > 0 we say that the plasticity system
with coefficients Cε, Bε and Ψε allows averaging if and only if there exist two causal
operators Σ and Π with the following property.

Let T ⊂ Rn be any simplex and let ξ ∈ H1(0, T ;Rn×n
s ) and a ∈ H1(0, T ;Rn) define

affine (time dependent) boundary data w(x, t) = ξ(t) · x + a(t). Let (uε, eε, pε, σε) be
the solution to the ε-problem with f = 0 and boundary data w. Then, as ε → 0, for
almost every t ∈ (0, T ), averages of stress and strain convergence:

 
T
pε(t)→ Π(ξ, t) ,

 
T
σε(t)→ Σ(ξ, t) . (1.12)

Remark 2. The averaging property of Definition 1.3 is independent of a in the fol-
lowing sense: if the averaging property holds for a ≡ 0 with solution (uε, eε, pε, σε),
then it holds for arbitrary a ∈ H1(0, T ;Rn) with solution (uε + a, eε, pε, σε).

Remark 3. The averaging property of Definition 1.3 implies the following averaging
property for the elasticity system (which is a classical homogenization result): There
exists an effective tensor C∗ such that, given ξ ∈ Rn×n and a ∈ Rn, the solutions uε of
the problem

−∇ ·
(
C−1
ε ∇suε

)
= 0 in T , uε(x) = ξ · x+ a on ∂T ,

satisfy the convergence of the average stress

lim
ε→0

 
T
C−1
ε ∇suε = C−1

∗ ξ .

This property can be concluded by considering t = 0 in the sense of traces in (1.12).
The map ξ 7→ Σ(ξ, 0) (considering ξ on the right hand side as the constant function
in time) is necessarily linear and hence given by some tensor C−1

∗ ∈ L(Rn×n
s ,Rn×n

s ).
The positivity of C−1

∗ can be concluded a posteriori from the elasticity system.

Remark 4. The Gauß theorem implies that, for almost every t ∈ (0, T ), the matrix
ξ(t) is the average of ∇suε(., t) on T . From this and the decomposition ∇su = eε + pε,
we obtain with the operator E := Id− Π

 
T
∇suε(t)→ ξ(t) and

 
T
eε(t)→ E(ξ, t) .

Regarding the further mathematical analysis, we remark that we could as well drop
the convergence condition on

ffl
T p

ε(t) in Definition 1.3. Our main homogenization
result holds also without the convergence property of the pε-averages.
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Definition 1.4 (Effective problem). The effective plasticity problem is given by the
momentum equation

−∇ · Σ(∇su) = f . (1.13)

We say that u is a weak solution to the effective problem (1.13) with boundary condition
w ∈ H1(0, T ;H1(Q;Rn)), if u can be written as u = w+v for v ∈ H1(0, T ;H1

0 (Q;Rn)),
if the regularity Σ(∇su) ∈ L2(Q × (0, T )) holds and if (1.13) holds in the sense of
distributions on Q× (0, T ).

Regarding the solution concept of Definition 1.4 and, in particular, the expres-
sion Σ(∇su), we note the following: We demand for solutions the regularity ∇su ∈
H1(0, T ;L2(Q;Rn×n

s )), hence ∇su(x, .) ∈ H1(0, T ;Rn×n
s ) for almost every x ∈ Q. As

a consequence, the expression Σ(∇su)(x, t) = Σ(∇su(x, .), t) is well-defined for almost
every x ∈ Q and almost every t ∈ (0, T ). In our solution concept, we demand that
this function is of class Σ(∇su) ∈ L2(Q× (0, T )).

For our homogenization result, we will have to assume not only the averaging
property, but also the following solvability property for Σ.

Definition 1.5 (Admissibility of Σ). We say that an operator Σ : H1(0, T ;Rn×n
s ) →

H1(0, T ;Rn×n
s ) is admissible, if, for every Q, f , and w as above, the effective problem

of Definition 1.4 has a solution.

Remark 5. Let Σ be a causal operator with the following property: For every se-
quence of solutions uh of the discretized effective problem (4.13) with uh ⇀ u in
H1(0, T ;H1(Q)) as h→ 0, there holds

Σ(∇suh) ⇀ Σ(∇su) weakly in L2(0, T ;L2(Q)) . (1.14)

Then Σ is admissible in the sense of Definition 1.5.
Proof: Proposition 4.5 yields the well posedness of (4.13), the a priori estimate

yields a bound for uh in H1(0, T ;H1(Q)). We can therefore select a weakly convergent
subsequence. Taking the limit h → 0, exploiting (1.14), we obtain the solvability for
the effective system.

Theorem 1.6 (Main Theorem). Let Q ⊂ Rn be open and bounded and let the data
satisfy (1.2)–(1.5). Let the coefficients allow averaging in sense of Definition 1.3 with
causal operators Σ and Π. We assume that Σ is admissible in the sense of Definition
1.5, i.e. that the effective problem posesses a solution. Then the following holds.

Let (uε, eε, pε, σε) be a sequence of solutions to the ε-problems (1.1) as specified in
Definition 1.1. Then

uε ⇀ u weakly in H1(0, T ;H1(Q;Rn)) , (1.15)
pε ⇀ Π(∇su), σε ⇀ Σ(∇su) weakly in H1(0, T ;L2(Q;Rn×n)) , (1.16)

where u is the unique weak solution to the homogenized problem (1.13) with right hand
side f and boundary condition w in the sense of Definition 1.4.

The proof of Theorem 1.6 is concluded in Subsection 4.4, an outline of the proof
is given in Subsection 2.1.
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1.4 Periodic Homogenization

To make the connection to periodic homogenization, we recall results of [21], where
the plasticity system

∂2
t u

ε −∇ · σε = f, Cεσ
ε = ∇suε − pε, (1.17)

∂tp
ε ∈ gε(σε −Bεp

ε) , (1.18)

is analyzed. We simplified here to a special case, omitting general internal variables.
In our case, the monotone multi-valued map gε is a subdifferential, gε = ∂Ψε. With
the unit cell Y := [0, 1[n, periodic coefficients are constructed as

Cε(x) := C
(
x,
x

ε

)
, Bε(x) := B

(
x,
x

ε

)
, gε(., x) := g

(
. ;x,

x

ε

)
.

In [21], the homogenization of (1.17)–(1.18) is performed and the following limit prob-
lem is established:

∂2
t u−∇ ·

(ˆ
Y

z dy

)
= f, Cz = ∇s

xu+∇s
yv − w, (1.19)

∂tw ∈ g(z −Bw ;x, y), ∇y · z = 0 . (1.20)

Here, z = z(x, y, t) is a two-scale stress variable, w = w(x, y, t) a two-scale plastic strain
variable, and v = v(x, y, t) stands for fine-scale deformations, these are functions on
Q× Y × [0, T ], while the strong limit u = u(x, t) is a function on Q× [0, T ]. Theorem
2.2 of [21] yields, in particular, uε → u, σε ⇀

´
Y
z dy and pε ⇀

´
Y
w dy.

We emphasize that we deal here with the quasi-static approximation, while in [21]
the inertia term ∂2

t u
ε has been included. Nevertheless, let us formally investigate the

form of the causal operator Σ in this periodic setting. We assume that the coefficients
do not depend on the macroscopic variable x.

Let ξ ∈ H1(0, T ;Rn×n
s ) be a prescribed evolution of the macroscopic strain. Our

aim is to characterize Σ(ξ). We start with relations (1.19)2 and (1.20)2, from which
we expect, since ∇s

xu = ξ is independent of y,

ξ − wξ = Czξ −∇s
yvξ , ∇y · zξ = 0 .

In these two equations on Y , the functions are wξ, zξ ∈ L2(Y ;Rn×n
s ), vξ ∈ H1(Y ;Rn),

ξ = ξ(t) is identified with a constant function on Q. We interpret the two equations
as a form of a Helmholtz decomposition (which it is for C = Id): Decomposing data
ξ − wξ into a solenoidal part and a gradient can determine the functions zξ and vξ.

On this basis we consider, for every time instance t, the function zξ(y) as determined
by the data ξ(t) and wξ(y, t). We therefore regard (1.20)1 as an equation for wξ,

∂twξ = g(zξ −Bwξ; y) .

If this ordinary differential equation for the variable wξ : [0, T ] → L2(Y ;Rn×n
s ) is

solvable, we can expect Σ(ξ) :=
´
Y
zξ dy and Π(ξ) :=

´
Y
wξ dy.

The relation (1.19)1 can now be interpreted as the effective macroscopic system,
and it corresponds to relation (1.13).

A similar perspective is used to perform stochastic homogenization, we present a
result in [14]. The homogenization result follows (from Theorem 1.6), as soon as the
properties of Σ are verified in the stochastic setting. To show the averaging and the
continuity properties, we construct the operator Σ in analogy to the periodic case,
sketched above.
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2 The needle problem approach

Our aim is to conclude from the averaging property (1.12) a homogenization result
for the plasticity system (1.1). We will follow the principal idea of [20] and use the
needle problem approach. This approach is based on a discretization of the domain
(paramater h > 0) and an auxiliary problem (the needle problem) with solution uεh.

In the course of the proof, an appropriate discretization of the domain must be
chosen and discretized equations must be formulated. We will deal with these more
technical parts later and present first an outline of the proof.

2.1 Outline of the proof of Theorem 1.6

We construct a discretization of the domain. Given a sequence uε of solutions, the
triangulation is chosen in such a way that a compensated compactness property for
the sequence uε is available. The discretization of the domain allows to formulate the
needle problem: We solve the original ε-system in each simplex of the triangulation,
but impose the side condition that the solutions must be affine on the boundary of
each simplex. The corresponding solutions are denoted as uεh. We can now compare
four functions: the original solution uε, the needle problem solution uεh, the solution u
of the effective problem, and the solution uh of a discretized effective problem.

The four functions can be compared as indicated in scheme (2.1). The parameter
of the small scale is ε > 0, the parameter of the spatial discretization is h > 0, where
we only consider ε� h.

uεh
Prop. 4.5−−−−−→
ε→0

uh

ε, h→0

xyProp. 4.1 h→0

yProp. 3.4

uε u

(2.1)

The scheme is justified as follows: The left double arrow (Proposition 4.1) indicates
that uεh − uε is small for small parameters; this will essentially be obtained by testing
the equations, exploiting the compensated compactness property for uε. The top arrow
(Proposition 4.5) will be a consequence of the averaging property; we use that uεh has
affine boundary data in every simplex. Finally, the right arrow (Proposition 3.4) is
obtained with a finite element analysis of the limit problem.

We proceed as follows. In Subsection 2.2 we discuss the discretization of the do-
main with adapted grids. In Subsection 2.3 we introduce some function spaces, a
discretization of the right hand side and a discretization of the boundary conditions.
In Subsection 2.4, we introduce a spatially discretized version of the plasticity equa-
tions — the needle problem.

Section 3 is devoted to the study of the limit system. In particular, we show
that solutions to the effective problem and to a spatial discretization of the effective
problem are unique.

In Section 4, Theorem 1.6 is derived from three results on the auxiliary problems:
limh→0 lim supε→0 ‖uε − uεh‖L∞(0,T ;L2(Q)) = 0 is shown with energy methods in Propo-
sition 4.1 and uεh → uh for ε→ 0 is shown with the averaging property in Proposition
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4.5. Using additionally the result uh → u for h→ 0 of Proposition 3.4, we obtain our
main result, uε → u, i.e. Theorem 1.6.

2.2 Adapted grids

Let Q ⊂ Rn be a bounded domain in two or three space dimensions, n ∈ {2, 3}. For
arbitrary h > 0, we approximate Q with a polygonal domain Qh ⊂ Q, the domain Qh

is discretized with simplices in a triangulation Th. We demand

Th := {Tk}k∈Λh is a triangulation of Qh, diam (Tk) < h ∀ Tk ∈ Th,
Qh has the property that x ∈ Q , dist(x, ∂Q) ≥ h implies x ∈ Qh ,

(2.2)

where Tk are disjoint open simplices and Λh ⊂ N is a finite set of indices. We always
assume that the sequence of meshes is regular in the sense of [6], Section 3.1.

In [20], where the needle-problem approach was introduced, the following theorem
is shown. It guarantees that, given a weakly convergent sequence uε ∈ H1(Q), we can
always construct a polygonal domain Qh with a triangulation Th as above such that
additionally a compensated compactness property for the sequence uε is satisfied.

Theorem 2.1 (Adapted grids and div-curl property, Theorem 1.3 in [20]). Let Q ⊂
Rn, n ≤ 3, be a bounded Lipschitz domain, let (uε)ε ⊂ H1(Q;Rm) be a sequence of
Rm-valued functions with

uε ⇀ u weakly in H1(Q,Rm) for ε→ 0 .

Let h > 0 be arbitrary. Then there exists an adapted grid, i.e. Qh ⊂ Q with a
triangulation Th as in (2.2), such that the following compensated compactness property
is satisfied: For every sequence (qε)ε in L2(Q,Rm×n) satisfying

qε ⇀ q weakly in L2(Q), (2.3)
f ε := ∇ · qε → f strongly in H−1(Tk;Rm), for all Tk ∈ Th , (2.4)

there holds
lim
ε→0

ˆ
Qh

qε : ∇uε =

ˆ
Qh

q : ∇u . (2.5)

The regularity of the sequence of grids was not explicitly stated in [20], but the
construction shows that a regular sequence can be constructed. Furthermore, the
original statement in [20] is for the case m = 1. However, the result remains valid for
every m ∈ N (with identical proof).

On the other hand, we must generalize to time dependent functions uε ⇀ u in
L2(0, T ;H1(Q)). To treat a time dependent situation, we must use a time-discretized
setting; the subsequent version of Theorem 2.1 allows to treat sequences of functions
uε ⇀ u in H1(0, T ;H1(Q)) due to their additional regularity in time.

Corollary 2.2 (Adapted grids and div-curl property for time-dependent functions).
Let Q ⊂ Rn, n ≤ 3, be a bounded Lipschitz domain, let (uε)ε ⊂ H1(0, T ;H1(Q;Rn))
be a sequence of functions with

uε ⇀ u weakly in H1(0, T ;H1(Q)) for ε→ 0 .
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Let h > 0 be arbitrary and let 0 ≤ t0 < t1 < . . . < tK ≤ T be points in [0, T ]. Then
there exists a adapted grid Qh ⊂ Q with a triangulation Th of Qh as in (2.2) such that
the following compensated compactness result holds.

For every family of sequences (qεk)ε in L2(Q,Rn×n), satisfying, for every k ≤ K,

qεk ⇀ qk weakly in L2(Q) , (2.6)
f εk := ∇ · qεk → fk strongly in H−1(Ti;Rn×n), for all Ti ∈ Th , (2.7)

there holds, for every k ≤ K, evaluating ∇uε(tk) in the sense of traces,

lim
ε→0

ˆ
Qh

qεk : ∇uε(tk) =

ˆ
Qh

qk : ∇u(tk). (2.8)

Proof. The function spaceH1(0, T ;H1(Q)) embeds continuously into C([0, T ];H1(Q)),
hence uε(tk) ⇀ u(tk) in H1(Q) for every k ∈ {0, 1, . . . , K}. This allows to consider
(uε(t0), uε(t1), . . . , uε(tK)) as a sequence of functions in H1(Q;R(K+1)n) and to apply
Theorem 2.1.

2.3 Discretization, projections, and a new function space

In this section, we assume that a sequence h → 0, a sequence of polygonal domains
Qh ⊂ Q, and a sequence of triangulations Th as described in (2.2) are given. We
consider the corresponding finite element space of continuous and piecewise affine
functions with vanishing boundary values,

Yh :=
{
φ ∈ H1

0 (Q)
∣∣ φ|Tk is affine ∀ Tk ∈ Th, φ ≡ 0 on Q \Qh

}
. (2.9)

Boundary conditions. We start by transforming the boundary data w into a piece-
wise affine function. To this end, we extend the triangulation of Qh by a finite number
of simplices with diameter not greater than h to obtain a grid T̃h that covers Q in
the sense that Q ⊂

⋃
Tk∈T̃h Tk. The extended grid T̃h allows to introduce the space

Ỹh :=
{
φ ∈ H1(Q)

∣∣∣φ|Tk∩Q is affine for every Tk ∈ T̃h
}
. Denoting by RQ,h the H1(Q)-

orthogonal projection H1(Q) → Ỹh (the Riesz-projection), we define piecewise affine
boundary data as wh := RQ,h(w).

We note that there holds the strong convergence wh → w in H1(0, T ;H1(Q)) as
h→ 0.

Transformation of the right hand side f . For a given right hand side f ∈
H1(0, T ;L2(Q)) and boundary data wh → w in H1(0, T ;H1(Q)), we consider the
following discretized Poisson problem (with t as a parameter):

Find vh(t) ∈ wh(t) + Yh with
ˆ
Q

∇vh(t) · ∇φ =

ˆ
Q

f(t)φ ∀φ ∈ Yh . (2.10)

Existence and uniqueness of solutions vh(t) and a uniform a priori estimate for vh ∈
H1(0, T ;H1(Q)) can easily be concluded with the Lax-Milgram theorem.
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We use vh to transform the right hand side f into jump conditions across edges of
the grid Th. We denote the subset composed by interior interfaces as

Γh :=

( ⋃
k∈Λh

∂Tk

)
\ ∂Qh =

⋃
k<j

Γk,j, Γk,j := T k ∩ T j .

We write ν(k) for the outer normal to Tk on ∂Tk. For every function ϕ : Q→ Rn with
the property that the traces of the normal component ϕ|∂Tk · ν(k) are well defined for
every k ∈ Λh, we define the normal jump across Γk,j through

[[ϕ]]kj := ϕ|Tk · ν(k) + ϕ|Tj · ν(j) =
(
ϕ|Tk − ϕ|Tj

)
· ν(k).

The definition guarantees [[ϕ]]kj = [[ϕ]]jk. The collection of jumps can be treated as a
function on the interfaces, [[ϕ]] : Γh → R.

For a given f and with vh from (2.10), we define gh : Γh → R as the function

gh|Γk,j := [[∇vh]]kj. (2.11)

We note that, by construction of vh, the function gh : Γh → R is constant on each
interface Γk,j. With this construction, we have transformed the right hand side f into
the jump condition gh. Indeed, using after each other (2.10), the fact that ∇vh is
constant in each Tk, the definition of jumps and (2.11), we find for arbitrary φ ∈ Yhˆ

Q

fφ =

ˆ
Q

∇vh · ∇φ =
∑
k

ˆ
∂Tk

(∇vh · ν(k))φ =
∑
k<j

ˆ
Γk,j

[[∇vh]]kjφ =

ˆ
Γh

ghφ . (2.12)

In this sense, we have replaced f ∈ L2(Q) by the measure ghHn−1|Γh .

Remark 6. In every time instance t, the finite element solution vh = vh(t) of (2.10)
solves, by construction of gh, the problem

vh ∈ wh + Yh with [[∇vh]]kj = gh|Γk,j ∀k < j . (2.13)

Vice versa, every solution to problem (2.13) is a solution to problem (2.10). This
follows from the fact that, in a connected set Q, the normal jumps of the gradient
across interfaces determine a piecewise affine function uniquely.

Definition 2.3 (Needle problem function space). Let Q ⊂ Rn be a Lipschitz domain
with a triangulation Th of Qh ⊂ Q with interior interfaces Γh. We define the needle
problem function space

Nh :=
{
φ ∈ H1

0 (Q) |φ|∂Tk is affine for all Tk ∈ Th, φ ≡ 0 on Q \Qh

}
.

We furthermore introduce projections Fh : Nh → Yh ⊂ Nh as follows: a function
u ∈ Nh (which is piecewise affine on edges) is mapped to the piecewise affine extension
of the values of u on edges. More precisely, Fh(u) : Q→ R is the function

Fh(u) ∈ Yh, Fh(u)|Γh = u|Γh . (2.14)

We use the construction also in affine spaces: For a boundary condition given
by w ∈ H1(0, T ;H1(Ω)) with a piecewise affine discretization wh, we define Fwh :
wh +Nh → wh + Yh by Fwh (u) := wh + Fh(u− wh).
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We have the following quite elementary properties of Fh (see Lemma 2.5 in [20]).

Lemma 2.4. Let Fh : Nh → Yh ⊂ Nh be the projections of Definition 2.3. These
projections have the following properties.

(i) ∇Fh(u)(x) =
ffl
Tk
∇u for x ∈ Tk.

(ii) Let h > 0 be fixed and let uε ∈ Nh be weakly convergent, uε ⇀ u in H1(Q) as
ε→ 0. Then

Fh(uε) ⇀
ε
Fh(u) weakly in H1(Q).

(iii) Let uh ∈ Nh be weakly convergent, uh ⇀ u in H1(Q) as h→ 0. Then

Fh(uh) ⇀
h
u weakly in H1(Q).

Properties (i) and (ii) hold also for the affine counterparts Fwh , property (iii) for Fwhh
along any sequence wh ⇀ w in H1(Q).

The projection Fh allows to formulate a variant of (2.12) that holds for every
function φ ∈ Nh in the needle problem function space (i.e. affine on edges):

ˆ
Q

f · Fh(φ) =

ˆ
Γh

ghFh(φ) =

ˆ
Γh

gh φ . (2.15)

The L2-projection. For a Lipschitz domain Q ⊂ Rn with triangulation Th of Qh ⊂
Q and a piecewise affine function wh prescribing a boundary condition, we denote the
L2(Q)-orthogonal projection onto the finite element space Yh by Ph : L2(Q) → Yh.
We denote the affine projection by Pwh (u) := wh + Ph(u− wh). The following Lemma
collects some properties of Ph and Pwh , which are standard in the theory of finite
element methods.

Lemma 2.5. For regular sequences of grids, the L2-orthogonal projections Ph : L2(Q)→
Yh have the following properties:

(i) With a constant C independent of h holds ‖Ph(u)‖H1(Q) ≤ C ‖u‖H1(Q).
(ii) For uε ⇀ u in H1(Q) weakly holds Ph(uε)→ Ph(u) strongly in H1(Q).
(iii) For u ∈ H1

0 (Q) ∩H2(Q) holds inf
{
‖χ− u‖H1(Q) : χ ∈ Yh

}
≤ Ch ‖u‖H2(Q).

(iv) For u ∈ H1
0 (Q), projections converge strongly, Ph(u)→ u in H1(Q) as h→ 0.

Proof. For the first and third statement we refer to [4], Corollary 7.8, Lemma 7.9 and
Proposition 6.8. The second statement is an immediate consequence of the continuity
of Ph and the fact that Yh has a finite dimension.

The fourth statement is used less, but it is an elementary consequence of the other
properties. Let u ∈ H1

0 (Q) be fixed. Exploiting density, we can approximate with
uδ ∈ H1

0 (Q) ∩H2(Q) and calculate with the triangle inequality and (i)

‖u− Ph(u)‖H1
0 (Q) ≤

∥∥u− uδ∥∥
H1

0 (Q)
+
∥∥uδ − Ph(uδ)∥∥H1

0 (Q)
+
∥∥Ph(uδ)− Ph(u)

∥∥
H1

0 (Q)

(i)

≤ (1 + C)
∥∥uδ − u∥∥

H1
0 (Q)

+
∥∥Ph(uδ)− uδ∥∥H1

0 (Q)
.
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We now apply (iii) to the function uδ. For every h > 0 we find a function uh with∥∥uδ − uh∥∥H1 ≤ Ch
∥∥uδ∥∥

H2 . Inserting above, we obtain with the triangle inequality

‖u− Ph(u)‖H1
0 (Q) ≤ (1 + C)

∥∥uδ − u∥∥
H1

0 (Q)
+
∥∥Ph(uδ)− uh∥∥H1

0 (Q)
+
∥∥uh − uδ∥∥H1

0 (Q)

(i)

≤ (1 + C)
(∥∥uδ − u∥∥

H1
0 (Q)

+
∥∥uh − uδ∥∥H1

0 (Q)

)
,

where we exploited Ph(uh) = uh in the last step. Choosing first uδ sufficiently close
to u and then h > 0 small, we conclude smallness of the expression on the right hand
side.

2.4 The needle problem of plasticity

We are now in the position to formulate the needle problem of plasticity. Essentially,
we demand that the full set of equations is satisfied — with the only exception that
we do not impose −∇ · σ = f on interior grid edges. This reduction in the set of
equations reflects the fact that we impose a side-condition on solutions: we demand
that u is in the needle space, i.e. that u is affine on interior grid edges.

Definition 2.6 (The needle problem of plasticity). The needle problem is to find
uεh ∈ wh +H1(0, T ;Nh), eεh, pεh, σεh ∈ H1(0, T ;L2(Qh;Rn×n

s )), such that pεh(0) = 0 and
ˆ T

0

ˆ
Qh

σεh : ∇ϕ =

ˆ T

0

ˆ
Γh

gh · ϕ ∀ϕ ∈ L2(0, T ;Nh) , (2.16)

and almost everywhere in Qh holds

∇suεh = eεh + pεh , Cεσ
ε
h = eεh , (2.17)

∂tp
ε
h ∈ ∂Ψε (σεh −Bεp

ε
h) . (2.18)

We set σεh = pεh = eεh = 0 on Q \ Qh and uεh = wh on Q \ Qh. We note that, by
(2.15), relation (2.16) can also be written as

ˆ T

0

ˆ
Qh

σεh : ∇ϕ =

ˆ T

0

ˆ
Qh

f · Fh(ϕ) ∀ϕ ∈ L2(0, T ;Nh) . (2.19)

Theorem 2.7 (Existence and uniqueness for the needle problem). Let Q ⊂ Rn be
open and bounded and let the data satisfy (1.2)–(1.5) as in Theorem 1.6. Then, for
every ε > 0 and every h > 0, there exists a unique solution to the needle problem of
Definition 2.6. The sequence of solutions satisfies the uniform estimate

‖uεh‖V1
1

+ ‖eεh‖V1
0

+ ‖pεh‖V1
0

+ ‖σεh‖V1
0
≤ C(w, f) . (2.20)

We recall that V1
1 = H1(0, T ;H1

0 (Q)) and V1
0 = H1(0, T ;L2(Q;Rn×n

s )).

The existence proof for the needle problem is analogous to the existence proof for
the original problem, see Theorem 1.2: A Galerkin scheme is constructed, uniform
estimates for the corresponding discrete problems allow to select a weakly convergent
subsequence, the solution properties are checked for the limit. We nevertheless sketch
the proof of Theorem 2.7 in the appendix.
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3 The effective system and properties of Σ
In this section, we collect some properties of the operator Σ. Since Σ is defined through
the averaging property of Definition 1.3, all properties of Σ must be derived from
Definition 1.3. We start with some basic facts that will allow to derive a uniqueness
result in Section 3.2.

3.1 An estimate for Σ

Regarding initial values, we have already noted in Remark 3 after Definition 1.3 that,
for t = 0, an elasticity system is averaged. For any ξ ∈ H1(0, T ;Rn×n

s ), there holds

Σ(ξ)(0) = lim
ε→0

 
T
σε(0) = lim

ε→0

 
T
C−1
ε ∇suε(0) = C−1

∗ ξ(0) . (3.1)

Lemma 3.1. Let Cε, Bε and Ψε satisfy (1.2)–(1.5) and allow averaging with the
causal operators Σ and Π. Then there is a constant C > 0 such that, for two inputs
ξ1, ξ2 ∈ H1(0, T ;Rn×n

s ) there holds, for almost every t ∈ [0, T ],

|ξ1 − ξ2|2 (t) + (Σ(ξ1)− Σ(ξ2))2 (t) + (Π(ξ1)− Π(ξ2))2 (t)

≤ C

(
|ξ1 − ξ2|2 (0) +

ˆ t

0

(Σ(ξ1)− Σ(ξ2)) : ∂t (ξ1 − ξ2)

)
.

(3.2)

Proof. The lemma is a consequence of the energy estimate for the plasticity system.
Given two inputs ξ1, ξ2 ∈ H1(0, T ;Rn×n

s ), we exploit the definition of Σ(ξi): For ε > 0
and i ∈ {1, 2} we consider the ε-plasticity problem on a simplex T ⊂ Rn, i.e. we
consider solutions uεi (t, x) = ξi(t) · x+ vεi (t, x) with vεi ∈ H1(0, T ;H1

0 (T )) ofˆ T

0

ˆ
T
σεi : ∇sϕ = 0 ∀ϕ ∈ L2(0, T ;H1

0 (T )) , (3.3)

∂tp
ε
i ∈ ∂Ψε(σ

ε
i −Bεp

ε
i ) , ∇suεi = Cεσ

ε
i + pεi , (3.4)

with initial condition pεi (0) = 0.
The initial values (in the sense of traces) satisfy ∇ · (σε1(0) − σε2(0)) = 0. Testing

this relation with the admissible test functions uε1(., 0)− ξ1(0) ·x and uε2(., 0)− ξ2(0) ·x
yields, using σεi (0) = C−1

ε ∇suεi (0),

0 =

ˆ
T
C−1
ε ∇(uε1 − uε2)(0) : (∇suε1 − ξ1 −∇suε2 + ξ2) (0) .

This yields

‖(∇uε1 −∇uε2)(0)‖2
L2(T ) + ‖(σε1 − σε2)(0)‖2

L2(T ) ≤ C |ξ1 − ξ2|2 (0) . (3.5)

For positive time instances t ∈ (0, T ) we can now evaluate the expression from the
right hand side of (3.2). In equation (i) below, we use ϕ = ∂t(u

ε
1 − uε2 − ξ1 · x+ ξ2 · x)

as a test function in (3.3). In inequality (ii) below, we exploit the flow rule, inserting
Bεp

ε
1 − Bεp

ε
2; we use the monotonicity of the subdifferential, which reads (A1 − A2) ·

(∂Ψε(A1)− ∂Ψε(A2)) ≥ 0ˆ t

0

(Σ(ξ1)− Σ(ξ2)) : ∂t (ξ1 − ξ2) = lim
ε→0

ˆ t

0

 
T

(σε1 − σε2) : ∂t (ξ1 − ξ2)

(i)
= lim

ε→0

ˆ t

0

 
T

(σε1 − σε2) : ∂t∇s (uε1 − uε2)
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= lim
ε→0

ˆ t

0

 
T

(σε1 − σε2) : ∂t (Cε (σε1 − σε2) + (pε1 − pε2))

(ii)

≥ lim sup
ε→0

ˆ t

0

 
T

1

2

d

dt

(
|σε1 − σε2|

2
Cε

+ |pε1 − pε2|
2
Bε

)
=

1

2
lim sup
ε→0

 
T

(
|σε1 − σε2|

2
Cε

+ |pε1 − pε2|
2
Bε

)∣∣∣∣t
0

. (3.6)

The averaging property implies the inequality

(Σ(ξ1)− Σ(ξ2))2 (t) ≤ lim sup
ε→0

 
T
|σε1 − σε2|

2 (t) ,

and the analogous inequality for Π. Together with (3.5) and (3.6), this yields (3.2) for
the Σ- and Π-differences. The estimate for ξ1(t)− ξ2(t) follows from the fact that ξi(t)
is the average of ∇suεi , which is controlled by σεi and pεi .

3.2 Uniqueness results for the effective problem

We recall that uniqueness is a standard property of plasticity equations with hardening,
compare also our Theorems 1.2 and 2.7. However, the operator Σ is not a standard
plasticity operator, but it is given only implicitely through the averaging property.
With the help of Lemma 3.1, we can nevertheless derive uniqueness results. We start
with the discretized problem.

Lemma 3.2 (Uniqueness for the discretized effective problem). Let the data be as in
(1.2)–(1.5), allowing averaging with the causal operator Σ. Let Th := {Tk}k∈Λh

be a
grid for Q, let wh ∈ H1(0, T ;H1(Q)) be piecewise affine, prescribing boundary data,
let f ∈ H1(0, T ;L2(Q)) be a right hand side. We consider the following discretized
effective problem for uh ∈ wh +H1(0, T ;Yh):ˆ T

0

ˆ
Q

Σ(∇suh) : ∇ϕ =

ˆ T

0

ˆ
Q

f · ϕ ∀ϕ ∈ L2(0, T ;Yh) . (3.7)

There exists at most one solution uh to (3.7).

Proof. Let uh,1, uh,2 be two solutions to (3.7). As solutions of a discretized elasticity
problem with boundary data wh(0) and right hand side f(0), the initial values coincide,
uh,1(0) = uh,2(0).

By definition of Yh in (2.9), for each simplex Tk of the discretization, we find
matrices ξ1,k, ξ2,k ∈ H1(0, T ;Rn×n

s ) and vectors a1,k, a2,k ∈ H1(0, T ;Rn), such that

uh,i|Tk(t, x) = ξi,k(t) · x+ ai,k(t) .

Since the deformations coincide for t = 0, we have ξ1,k(0) = ξ2,k(0) and a1,k(0) = a2,k(0)
for all k. We use ϕ = ∂t(uh,1 − uh,2)χ[0,t] as a test function in (3.7) (for i = 1 and
i = 2) and obtain

0
(3.7)
=

ˆ t

0

ˆ
Q

(Σ(∇suh,1)− Σ(∇suh,2)) : ∂t (∇suh,1 −∇suh,2)

=
∑
k

ˆ t

0

ˆ
Tk

(Σ(ξ1,k)− Σ(ξ2,k)) : ∂t (ξ1,k − ξ2,k) .
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Together with ξ1,k(0) = ξ2,k(0), inequality (3.2) provides ξ1,k(t) = ξ2,k(t) for a.e. t ∈
[0, T ], and hence also uh,1(t) = uh,2(t) for a.e. t ∈ [0, T ].

Proposition 3.3 (Uniqueness for the effective problem). Let the causal operator Σ be
the averaged operator for data as in (1.2)–(1.5). Let w ∈ H1(0, T ;H1(Q)) prescribe
boundary data and let f ∈ H1(0, T ;L2(Q)) be a right hand side. Then there is at most
one solution u ∈ w +H1(0, T ;H1

0 (Q)) to the effective problem (1.13), i.e.
ˆ T

0

ˆ
Q

Σ(∇su) : ∇sϕ =

ˆ T

0

ˆ
Q

f · ϕ ∀ϕ ∈ L2(0, T ;H1
0 (Q)) . (3.8)

Proof. Let u1, u2 be two solutions of (3.8), we write ξi := ∇sui for the symmetrized
gradients. Once more, we can exploit that the initial values ui(0) solve an elasticity
problem, −∇ · Σ(∇sui(0); 0) = −∇ · C−1

∗ ∇sui(0) = f , compare (3.1). Due to the
identical boundary data w(0), this provides u1(0) = u2(0).

The solution space for gradients ξi = ∇sui is

H1(0, T ;L2(Q)) =
{
u ∈ L2(Q× (0, T ))

∣∣ ∂tu ∈ L2(Q× (0, T ))
}

= L2(Q;H1(0, T )) .

This implies that there exists a set Q̃ ⊂ Q of full measure such that ξi,x(.) := ξi(x, .) =
∇sui(x, .) ∈ H1(0, T ;Rn×n

s ) holds for all x ∈ Q̃. We can assume that, additionally,
there holds ξ1,x(0) = ξ2,x(0) for every x ∈ Q̃.

We now use ϕ∂t(u1 − u2)χ[0,t] as a test function in (3.8) for i = 1, 2 and find

0 =

ˆ t

0

ˆ
Q

(Σ(∇su1)− Σ(∇su2)) : ∂t (∇su1 −∇su2)

=

ˆ t

0

ˆ
Q̃

(Σ(ξ1,x)− Σ(ξ2,x)) : ∂t (ξ1,x − ξ2,x) dx ds
(3.2)
≥ 1

C

ˆ
Q̃

|ξ1,x(t)− ξ2,x(t)|2 dx .

This provides ξ1 = ξ2 almost everywhere and hence the uniqueness.

3.3 The limit h→ 0 in the discretized effective equation

In the last section, we have obtained uniqueness results for the effective equation (for
both, the limit system and the discretized system). We will now use the same method
of proof and obtain a convergence result: Solutions uh to the (sequence of) discrete
systems converge to a solution u of the space-continuous system.

Proposition 3.4 (Convergence behavior of discrete solutions). Let the causal operator
Σ be the averaged operator for data as in (1.2)–(1.5). Let f ∈ H1(0, T ;L2(Q)) be a
right hand side and let h → 0 be a sequence of positive numbers. For a correspond-
ing sequence of grids Th let wh ∈ H1(0, T ;H1(Q)) be a sequence of piecewise affine
functions that prescribe boundary data, such that wh → w in H1(0, T ;H1(Q)). Let
uh ∈ H1(0, T ;H1(Q)) be a sequence of solutions to the discrete problems (3.7) with
boundary condition wh, satisfying the uniform bound

‖uh‖H1(0,T ;H1(Q)) + ‖Σ(∇suh)‖H1(0,T ;L2(Q)) ≤ C . (3.9)
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Furthermore, let u ∈ H1(0, T ;H1(Q)) be a solution to the effective problem (3.8) with
the boundary condition w. Then there holds

∇suh → ∇su and Σ(∇suh)→ Σ(∇su) and Π(∇suh)→ Π(∇su) (3.10)

as h→ 0 in the space L∞(0, T ;L2(Q)).

Proof. As in the previous proofs, we will use a testing procedure and apply (3.2).
Step 1. Initial values. The initial values uh(0) and u(0) are determined by a

discretized and a continuous elasticity problem. Using (3.1), from equations (3.7) and
(3.8) we obtain

ˆ
Q

C−1
∗ ∇suh(0) : ∇sϕ =

ˆ
Q

f · ϕ and
ˆ
Q

C−1
∗ ∇su(0) : ∇sψ =

ˆ
Q

f · ψ

for every ϕ ∈ Yh and ψ ∈ H1
0 (Q;Rn). We use ϕ := ψ := (uh − Pwh (u))(0) as a test

function in both equations. We subtract and obtain
ˆ
Q

C−1
∗ ∇s (uh − u) (0) : ∇s (uh − Pwh (u)) (0) = 0 .

We expand the second factor as uh −Pwh (u) = uh − u+ u−Pwh (u) and conclude with
the Cauchy-Schwarz inequality: The strong convergence Pwh (u(0)) → u(0) in H1(Q)
of Lemma 2.5, item (iv) (which remains valid for strongly convergent boundary values
wh) provides uh(0)→ u(0) strongly in H1(Q).

Step 2. Positive times. Also in this step, we use differences of solutions as test
functions. In the subsequent calculation, the first equality follows from (3.8) with the
test function ∂t(u− uh−w+wh)χ[0,t], the second equality follows from (3.7) with the
test function ∂t(Pwh (u)− uh)χ[0,t]. We find

ˆ
Q

ˆ t

0

(Σ(∇su)− Σ(∇suh)) : ∂t∇s (u− uh) (3.11)

(3.8)
=

ˆ
Q

ˆ t

0

f · ∂t (u− uh − w + wh) +

ˆ
Q

ˆ t

0

Σ(∇su) : ∂t∇s (w − wh)

−
ˆ
Q

ˆ t

0

Σ(∇suh) : ∂t∇s (u− Pwh (u) + Pwh (u)− uh)

(3.7)
= =

ˆ
Q

ˆ t

0

f · ∂t (u− uh − w + wh)−
ˆ
Q

ˆ t

0

f : ∂t (Pwh (u)− uh)

−
ˆ
Q

ˆ t

0

Σ(∇suh) : ∂t∇s (u− Pwh (u)) +

ˆ
Q

ˆ t

0

Σ(∇su) : ∂t∇s (w − wh)

=

ˆ
Q

ˆ t

0

f · ∂t (u− Pwh (u)− w + wh) +

ˆ
Q

ˆ t

0

Σ(∇su) : ∂t∇s (w − wh)

−
ˆ
Q

ˆ t

0

Σ(∇suh) : ∂t∇s (u− Pwh (u)) .

We study the limit h → 0. The second integral on the right hand side converges to
zero because of wh → w in H1(0, T ;H1(Q)). In the first integral we can integrate
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by parts because of f ∈ H1(0, T ;L2(Q)); we exploit u ∈ C([0, T ];H1(Q)) to conclude
Pwh (u) → u in this space (generalizing (iv) of Lemma 2.5), and obtain that also the
first integral vanishes in the limit h → 0. The third integral is treated similarly with
the help of the a priori estimate (3.9):∣∣∣∣ˆ

Q

ˆ t

0

Σ(∇suh) : ∂t∇s (u− Pwh (u))

∣∣∣∣
≤

∣∣∣∣∣
ˆ
Q

Σ(∇suh) : ∇s (u− Pwh (u))

∣∣∣∣t
0

∣∣∣∣∣+

∣∣∣∣ˆ
Q

ˆ t

0

∂tΣ(∇suh) : ∇s (u− Pwh (u))

∣∣∣∣
≤ C ‖u− Pwh (u)‖C([0,T ];H1(Q)) → 0 (3.12)

as h → 0. Together with the convergence of the initial values we have therefore
obtained

ˆ
Q

|∇su(0)−∇suh(0)|2 +

ˆ
Q

ˆ t

0

(Σ(∇su)− Σ(∇suh)) : ∂t (∇su−∇suh)→ 0 .

We can now apply the estimate (3.2) for Σ with the arguments ξ1(x, t) = ∇su(x, t)
and ξ2(x, t) = ∇suh(x, t) in almost every point x ∈ Q. We obtain the strong con-
vergences ∇suh → ∇su, Σ(∇suh) → Σ(∇su), and Π(∇suh) → Π(∇su) in the space
L∞(0, T ;L2(Q)) as claimed.

4 Proof of the main theorem
We recall the sketch of proof of the main theorem in (2.1). In the last section we have
obtained the vertical arrow on the right hand side. Our next aim is to justify the other
two arrows.

4.1 Original problem and needle problem

In this section, we deal with the vertical arrow on the left hand side: We will show
that the solution uεh of the needle problem (2.16)–(2.18) is close to the solution uε of
the original problem (1.8)–(1.9).

We assume here that a sequence ε → 0 with a solution sequence uε is fixed. For
a sequence h → 0 we furthermore fix a sequence K = Kh → ∞ and a family of time
discretizations 0 = th0 < th1 < . . . < thK = T with maxk |thk+1 − thk| ≤ h. According
to these data (uε, h, (thk)k), we choose a sequence of adapted grids as in Corollary 2.2.
Furthermore, we project boundary data w with a sequence of functions wh satisfying
wh → w as in Section 2.3.

Initial data. We start by an analysis of the initial values. The function uεh(0) ∈
wεh(0) +Nh solves the stationary needle-problem

ˆ
Q

(
C−1
ε ∇suεh(0)

)
: ∇ϕ =

ˆ
Q

f(0) · ϕ ∀ϕ ∈ Nh , (4.1)

while uεh(0) solves the corresponding uncontrained elasticity problem. For this se-
quence of elliptic problems with constraints, Proposition 2.6 of [20] yields the following
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convergence property:

lim
h→0

lim
ε→0

(
‖(∇suε −∇suεh) (0)‖L2(Q) + ‖(σε − σεh) (0)‖L2(Q) + ‖(pε − pεh) (0)‖L2(Q)

)
= 0 .

Proposition 4.1 (Comparison of uεh and uε). For ε → 0 and h → 0, let the data
(uε, h, (thk)k) be as described above, and let uεh ∈ wh + H1(0, T ;Nh) be the solutions to
the needle problem (2.16)–(2.18) on the adapted grids. Then there holds

lim
h→0

lim sup
ε→0

(‖∇suε −∇suεh‖V0,∞ + ‖σε − σεh‖V0,∞ + ‖pε − pεh‖V0,∞) = 0 ,

where V0,∞ := L∞(0, T ;L2(Q;Rn×n)).

The idea of the proof is to use ∂t(uε−uεh) as a test function in the original problem
(1.8) and in the needle problem (2.16), and to take the difference. There are two
difficulties.

1.) The function ∂t(uε−uεh) is not a valid test-function. The first problem is that it
does not vanish at the boundary. This can be corrected by subtracting the boundary
data w − wh. The second problem is that ∂tuε is not in the needle space. This fact is
circumvented by using the projection ∂t(Phuε − uεh) in the needle problem.

2.) In the energy estimate there appears, on the right hand side, an integral over
a product of weakly convergent sequences. This integral must be treated with the
compensated compactness property of Corollary 2.2.

Proof. The sequences uε and uεh satisfy the a priori estimates (1.10) and (2.20). We
can therefore extract a subsequence and find limit functions u, uh ∈ H1(0, T ;H1(Q))
and p, ph, σ, σh ∈ H1(0, T ;L2(Q)), such that, as ε→ 0,

uε ⇀ u , uεh ⇀ uh weakly in H1(0, T ;H1(Q)) ,

pε ⇀ p , pεh ⇀ ph , σε ⇀ σ , σεh ⇀ σh weakly in H1(0, T ;L2(Q)) .

Step 1: An estimate of energy type. We consider, for t0 ∈ (0, T ),

Iεh :=
1

2

ˆ t0

0

d

dt

ˆ
Q

(
|σε − σεh|

2
Cε

+ |pε − pεh|
2
Bε

)
(∗)
≤ 1

2

ˆ t0

0

d

dt

ˆ
Q

(
|σε − σεh|

2
Cε

+ |pε − pεh|
2
Bε

)
+

ˆ t0

0

ˆ
Q

∂t (pε − pεh) : ((σε −Bεp
ε)− (σεh −Bεp

ε
h))

=

ˆ t0

0

ˆ
Q

(σε − σεh) : ∂t (Cε (σε − σεh) + (pε − pεh))

=

ˆ t0

0

ˆ
Q

σε : ∂t∇s (uε − uεh)−
ˆ t0

0

ˆ
Q

σεh : ∂t∇s (uε − uεh) , (4.2)

where in (∗) we used the flow rules

∂tp
ε ∈ ∂Ψε(σ

ε −Bεp
ε) and ∂tp

ε
h ∈ ∂Ψε (σεh −Bεp

ε
h) ,

and the monotonicity of ∂Ψε.
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The first integral on the right hand side of (4.2) is transformed with the ε-equation
(1.8); using ∂t (uε − uεh − w + wh) as a test function we find

ˆ t0

0

ˆ
Q

σε : ∂t∇s (uε − uεh)

=

ˆ t0

0

ˆ
Q

f · ∂t (uε − uεh − w + wh) +

ˆ t0

0

ˆ
Q

σε : ∂t∇s (w − wh) .

The second integral in (4.2) is treated with the help of the needle-problem (2.16), using
the test function ∂t(Pwh (uε) − uεh) and relation (2.15) (which transforms the force f
into a force gh),

ˆ t0

0

ˆ
Q

σεh : ∂t∇s (uε − uεh)

=

ˆ t0

0

ˆ
Q

f · ∂tFh(Pwh (uε)− uεh) +

ˆ t0

0

ˆ
Q

σεh : ∂t∇s(uε − Pwh (uε)) .

Inserting into (4.2), we obtain

Iεh ≤
ˆ t0

0

ˆ
Q

f · ∂t (uε − Pwh (uε)− w + wh) +

ˆ t0

0

ˆ
Q

f · ∂t (Fwh (uεh)− uεh)

+

ˆ t0

0

ˆ
Q

σε : ∂t∇s (w − wh) +

ˆ t0

0

ˆ
Q

σεh : ∂t∇s(Pwh (uε)− uε)

=: Iεh,1 + Iεh,2 + Iεh,3 + Iεh,4 . (4.3)

We can now exploit the properties of Fwh and Pwh under weak convergence, see Lemma
2.4, item (ii), and Lemma 2.5, item (ii). They provide for the first integral Iεh,1 →´ t0

0

´
Q
f ·∂t (u− Pwh (u)− w + wh) as ε→ 0, and for the second integral Iεh,2 →

´ t0
0

´
Q
f ·

∂t (Fwh (uh)− uh) as ε → 0. In the limit h → 0, these two integrals vanish due to the
convergence wh → w, the approximation property of Pwh (item (iv) in Lemma 2.5),
and the weak convergence of uh to u together with Lemma 2.4, item (iii).

In the third integral Iεh,3, we use the weak convergence σε ⇀ σ and the convergence
wh → w to conclude limh→0 limε→0 I

ε
h,3 = 0. We note that the convergence rate for

Iεh,1, Iεh,2, and Iεh,3 is independent of t0.

Step 2: Time discretization and compensated compactness. It remains to treat
the fourth integral Iεh,4 of (4.3). We note that, by (2.20), there is Cσ > 0 such that
‖∂tσεh‖L2(0,T ;L2(Q)) ≤ Cσ for all h, ε > 0.

The weak convergence σεh ⇀ σh together with the strong convergence Pwh (uε) →
Pwh (u) as ε→ 0 provides (with item (iv) in Lemma 2.5)

ˆ t0

0

ˆ
Q

σεh : ∂t∇sPwh (uε) −−→
ε→0

ˆ t0

0

ˆ
Q

σh : ∂t∇sPwh (u) −−→
h→0

ˆ t0

0

ˆ
Q

σ : ∂t∇su .

For the other term, we need compensated compactness, which is only available
in finitely many points thk. In order to treat the error term that is induced by the
discretization, we define an approximation of σεh, which is piecewise constant in time,

σεh(t, ·) := σεh(t
h
k, ·) for t ∈ [thk; t

h
k+1) , k ≤ K − 1 . (4.4)
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In the same way, we define σh as the discretization of σ. Due to our choice of thk, the
approximation satisfies the uniform error estimate

sup
t∈[0,T ]

‖σεh(t, ·)− σεh(t, ·)‖L2(Q) ≤ h1/2 ‖∂tσεh‖L2(0,T ;L2(Q)) ≤ Cσ h
1/2 .

The remaining part of Iεh,4 can now be written, choosing j ≤ K−1 such that thj satisfies
thj ≤ t0 ≤ thj + h,

ˆ t0

0

ˆ
Q

σεh : ∂t∇suε =

ˆ thj

0

ˆ
Q

σεh : ∂t∇suε

+

ˆ t0

0

ˆ
Q

(σεh − σεh) : ∂t∇suε +

ˆ t0

thj

ˆ
Q

σεh : ∂t∇suε .

The last two integrals vanish in the limit limh→0 limε→0 due to smallness of σεh − σεh
and smallness of t0 − thj (independent of the value of t0). The first integral is written,
evaluating ∇uε(thk) in the sense of traces, as

ˆ thj

0

ˆ
Q

σεh : ∂t∇suε =

j−1∑
k=0

ˆ
Q

σεh(t
h
k) : (∇suε(thk+1)−∇suε(thk)) .

In this form, we can apply Corollary 2.2 to the spatial integrals. We exploit the weak
L2(Q)-convergence σεh(thk) ⇀ σh(t

h
k), the fact that ∇·σεh(thk) = 0 holds in each simplex,

and the fact that the grid is adapted. Corollary 2.2 yields, in the limit ε→ 0

ˆ thj

0

ˆ
Q

σεh : ∂t∇suε →
j−1∑
k=0

ˆ
Q

σh(t
h
k) : (∇su(thk+1)−∇su(thk)) =

ˆ thj

0

ˆ
Q

σh : ∂t∇su .

We have thus shown

lim
h→0

lim
ε→0

Iεh,4 =

ˆ t0

0

ˆ
Q

σ : ∂t∇su− lim
h→0

ˆ thj

0

ˆ
Q

σh : ∂t∇su = 0 .

We can conclude from the energy estimate (4.3) and the convergence of the initial data
that, for almost every t0 ∈ (0, T ),

lim
h→0

lim sup
ε→0

ˆ
Q

(
|σε − σεh|

2
Cε

+ |pε − pεh|
2
Bε

)
(t0)

≤ lim
h→0

lim sup
ε→0

2Iεh + lim
h→0

lim sup
ε→0

ˆ
Q

(
|σε − σεh|

2
Cε

+ |pε − pεh|
2
Bε

)
(0) = 0 ,

Since the convergence rate in all error terms is independent of t0, we have verified the
claim. The difference ∇suε − ∇suεh is controlled by the corresponding differences in
stresses σ and plastic strains p.

4.2 Stabilization result

We start our analysis with a variant of the averaging property: The data are allowed
to vary with ε.
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Lemma 4.2. Let the coefficients Cε, Bε and Ψε allow averaging in the sense of Defini-
tion 1.3. For a simplex T ⊂ Rn, let uε, eε, pε and σε be solutions to the ε-problem on
T for f = 0 and boundary data wε = ξε ·x+aε, where ξε ⇀ ξ weakly in H1(0, T ;Rn×n

s ),
aε ⇀ a weakly in H1(0, T ;Rn). Then, as ε→ 0, for almost every t ∈ [0, T ]:

 
T
σε(t)→ Σ(ξ, t) ,

 
T
pε(t)→ Π(ξ, t) . (4.5)

Proof. The convergence (4.5) is a direct consequence of an energy estimate. Let ũε,
ẽε, p̃ε and σ̃ε be solutions to the ε-problem on T ⊂ Rn with the right hand side f = 0
and the limit boundary data w(t) = ξ(t) · x + a(t). The equation for ũε − uε can be
multiplied with ∂t((ũε − w)− (uε − wε)) to obtain the energy estimate

‖∇ (uε − ũε)‖V0,∞ + ‖(σε − σ̃ε)‖V0,∞ + ‖(eε − ẽε)‖V0,∞ + ‖(pε − p̃ε)‖V0,∞ → 0 (4.6)

as ε→ 0 in the space V0,∞ = L∞(0, T ;L2(T ;Rn×n)). The convergence of the σ̃ε- and
p̃ε-averages provides (4.5).

The following theorem is our central stabilization result: The oscillatory solutions
in a fixed simplex T converge necessarily to affine limit functions as ε→ 0. While the
averaging property only demands convergence of the stress average over the simplex,
we now find that, indeed, the stress converges weakly to a constant function (constant
on T , for every t).

Theorem 4.3 (Stabilization). Let the coefficients Cε, Bε and Ψε allow averaging in
the sense of Definition 1.3. For a simplex T ⊂ Rn, let uε, eε, pε and σε be solutions
to the ε-problem on T for f = 0 and boundary data w(x, t) = ξ(t) · x, where ξ is in
H1(0, T ;Rn×n

s ). Then, as ε→ 0, there holds

uε ⇀ w weakly in H1(0, T ;H1(T )) , (4.7)
σε ⇀ Σ(ξ) and pε ⇀ Π(ξ) weakly in L2(0, T ;L2(T )) . (4.8)

Proof. The proof is similar to the proof of Proposition 2.8 in [20]: The simplex T now
plays the role of the domain Q, and we can consider a triangulation of T with a fine
grid. We can therefore exploit the approximation results that are obtained so far.

Step 1: Construction of auxiliary functions. We can extract a weakly convergent
subsequence and set u to be a weak limit of the original sequence uε inH1(0, T ;H1(T )).

For a fixed sequence h ↘ 0 and a fixed sequence of time discretizations, we make
use of Corollary 2.2 and choose a polygonal domain Th ⊂ T with a triangulation
Sh := {Sk}k∈Λh

such that Sh is an adapted grid for uε. On this grid, let uεh be a
solution to the needle problem (see Definition 2.6). We use the right hand side f = 0
and the affine boundary condition w (together with wh = w).

The family of needle problem solutions are bounded. We can therefore select a
subsequence ε→ 0 and find, for limit functions uh, the convergence uεh ⇀ uh weakly in
H1(0, T ;H1(T )). We recall that the functions uεh and uh are piecewise affine functions
on ∂Sk for all k, but they are not necessarily affine in the single simplex Sk.

Finally, for any ε > 0 and h > 0, we consider the piecewise affine interpolations
ūεh := Fwh (uεh) of the needle problem solutions. Choosing a further subsequence if
necessary, these functions are weakly convergent, we denote their weak limits by ūh.
The limit functions are affine in each simplex Sk.
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Step 2: Characterization of ūh. We investigate further the piecewise affine functions
ūεh with the aim of showing ūh = w. We use the abbreviations ξεk := ∇sūεh|Sk ⇀
∇sūh|Sk =: ξk in H1((0, T )) and find, using Lemma 4.2, as ε→ 0: 

Sk
σε(t)→ Σ(ξk, t) ,

 
Sk
pε(t)→ Π(ξk, t) .

We now choose an arbitrary test function φ ∈ L2(0, T ;Yh). Since ∇φ is constant in
space on any Sk, and since φ|T \Th ≡ 0, we obtain for arbitrary t, as ε→ 0,

0 =

ˆ
T
σεh : ∇φ =

∑
k

ˆ
Sk
σεh : ∇φ→

∑
k

ˆ
Sk

Σ(ξk) : ∇φ =

ˆ
T

Σ(∇sūh) : ∇φ . (4.9)

Lemma 3.2 shows that solutions in w+H1(0, T ;Yh) to (4.9) are uniquely determined.
On the other hand, the affine function w is a solution itself, since Σ(∇w) is a constant
function. We have therefore obtained ūh = w.

Step 3: Comparison of limits. We apply the needle problem comparison result of
Proposition 4.1 together with weak lower semicontinuity of norms to find

lim
h→0
‖u− uh‖L∞(0,T ;H1(T )) ≤ lim

h→0
lim sup
ε→0

‖uε − uεh‖L∞(0,T ;H1(T )) = 0 .

The only (distributional) limit of uh is therefore u; in particular, we find uh ⇀ u
weakly in H1(0, T ;H1(T )) as h→ 0.

The weak continuity of Fwh , Lemma 2.4 item (ii), provides, as ε→ 0,

Fwh (uh) ↼ Fwh (uεh) = ūεh ⇀ ūh = w .

On the other hand, uh ⇀ u weakly in H1(0, T ;H1(T )) allows to apply Lemma 2.4,
item (iii). We conclude that Fwh (uh) converges, for h→ 0, to u. This provides u = w
and hence (4.7).

Step 4: Convergence of stress and strain. It remains to prove (4.8). We select
weakly convergent subsequences and consider eε ⇀ e, pε ⇀ p and σε ⇀ σ as well as
eεh ⇀ eh, pεh ⇀ ph and σεh ⇀ σh in H1(0, T ;L2(T )). From the weak lower semicontinu-
ity of norms and Proposition 4.1, we know

lim
h→0

(‖∇su−∇suh‖V0 + ‖σ − σh‖V0 + ‖p− ph‖V0) ≤

lim
h→0

lim sup
ε→0

(‖∇suε −∇suεh‖V0 + ‖σε − σεh‖V0 + ‖pε − pεh‖V0) = 0 ,

where the norm is that of V0 = L2(0, T ;L2(T )).
With this information at hand, we will be able to characterize limits. We choose

an arbitrary function ϕ ∈ C([0, T ];C1
c (T )n) and choose a sequence of piecewise con-

stant functions ϕh ∈ L2(0, T ;L2(Q)) (constant on Sk for every k ∈ Λh), such that
‖ϕ− ϕh‖L2(0,T ;L2(T )) → 0 as h→ 0. We calculate, for ε→ 0,ˆ
T
σh : ϕh ←

ˆ
T
σεh : ϕh =

∑
k

ˆ
Sk
σεh : ϕh

→
∑
k

ˆ
Sk

Σ(ξk) : ϕh =

ˆ
T

Σ(∇sūh) : ϕh =

ˆ
T

Σ(∇sw) : ϕh =

ˆ
T

Σ(ξ) : ϕh .

The strong convergences σh → σ and ϕh → ϕ provide, since ϕ was arbitrary, the
relation σ = Σ(ξ). An analogous calculation shows p = Π(ξ), which verifies (4.8).
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Similar to our procedure in Lemma 4.2, we now generalize the result to a situation
with ε-dependent boundary data.

Corollary 4.4 (Stabilization for sequences of boundary data). Let the coefficients Cε,
Bε and Ψε allow averaging in the sense of Definition 1.3. For a simplex T ⊂ Rn, let
uε, eε, pε and σε be solutions to the ε-problem (1.1) with f = 0 and wε(x, t) = ξε(t)·x+
aε(t), where ξε ∈ H1(0, T ;Rn×n

s ) and aε ∈ H1(0, T ;Rn). We assume that ξε ⇀ ξ weakly
in H1(0, T ;Rn×n

s ) and aε ⇀ a weakly in H1(0, T ;Rn), and set w(x, t) = ξ(t) · x+ a(t).
Then, as ε→ 0,

uε ⇀ w(x, t) = ξ(t) · x+ a(t) weakly in H1(0, T ;H1(T )) , (4.10)
pε(.) ⇀ Π(∇sw, .) , σε(.) ⇀ Σ(∇sw, .) weakly in L2(0, T ;L2(T )) . (4.11)

Proof. Let ũε, ẽε, p̃ε and σ̃ε be solutions to the ε-problem with f = 0 and w = ξ ·x+a.
Due to our a priori estimates and the stabilization result of Theorem 4.3 it suffices to
prove

lim
ε→0

(‖∇suε −∇sũε‖V0 + ‖σε − σ̃ε‖V0 + ‖pε − p̃ε‖V0) = 0 , (4.12)

where the norm is V0 = L2(0, T ;L2(T )).
This energy type estimate is obtained as in other proofs with a testing procedure

(see, e.g. the proof of Lemma 4.2): We use equation (1.8)1 for both uε and ũε, substract
the two equations, and use ∂t (uε − wε) − ∂t (ũε − w) as a test function. With the
monotonicity of the flow rule, we obtain (4.12).

4.3 Needle problem and discretized limit problem

We can now use the stabilization result of Corollary 4.4 to derive the remaining small-
ness result, the horizontal arrow in (2.1): We show that the solutions to the needle
problem converge to the solution of the discretized limit problem.

Proposition 4.5. Let the domain Q ⊂ Rn, the data w and f , and the coefficients be as
in (1.2)–(1.5). We assume that the coefficients allow averaging in sense of Definition
1.3 with causal operators Σ and Π.

Let (uεh, e
ε
h, p

ε
h, σ

ε
h) be solutions to the needle problem (2.16)–(2.18). Then, as ε→ 0,

we find uεh ⇀ uh weakly in H1(0, T ;H1(Q)) and σεh ⇀ Σ(∇uh), pεh ⇀ Π(∇uh) weakly
in the space H1(0, T ;L2(Q,Rn×n

s )), where uh ∈ wh + Yh is the unique weak solution to
the discretized problem (3.7),

ˆ T

0

ˆ
Qh

Σ(∇suh) : ∇ϕ =

ˆ T

0

ˆ
Qh

f · ϕ ∀ϕ ∈ L2(0, T ;Yh) . (4.13)

Proof. The a priori estimates for the needle problem solutions uεh allow to extract a
subsequence ε→ 0 such that uεh ⇀ ũh in H1(0, T ;H1(Q)) for some limit function ũh.

The functions uεh ∈ wh + L2(0, T ;Nh) are affine on the boundaries of each simplex
Tk. For fixed k, ε, and h, we write this affine function as wεk(x, t) = ξεk(t) ·x+ aεk(t) for
x ∈ Tk. For a further subsequence, we find an affine function wk(x, t) = ξk(t) ·x+ak(t)
such that wεk ⇀ wk weakly in H1(0, T ;H1(Tk)). Considering a fixed simplex Tk, we
can apply Corollary 4.4. We obtain

uεh
∣∣
Tk
⇀ wk , pεh

∣∣
Tk
⇀ Π(∇swk, .) , σεh

∣∣
Tk
⇀ Σ(∇swk, .) ,
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weakly in H1(0, T ;H1(Tk)) and H1(0, T ;L2(Tk)), respectively. Since the number of
simplices is finite in this consideration, the above convergence implies ũh ∈ L2(0, T ;Yh)
with ũh

∣∣
Tk

= wk, and

uεh ⇀ ũh , pεh ⇀ Π(∇sũh, t) , σεh ⇀ Σ(∇sũh, t) ,

as ε→ 0, weakly in H1(0, T ;H1(Q)) and H1(0, T ;L2(Q)), respectively.
We next use an arbitrary test function ϕ ∈ L2(0, T ;Yh). The needle problem

relation (2.16) allows to calculate

ˆ T

0

ˆ
Q

f · ϕ (2.12)
=

ˆ T

0

ˆ
Γh

gh · ϕ =

ˆ T

0

ˆ
Q

σεh : ∇ϕ→
ˆ T

0

ˆ
Q

Σ(∇sũh) : ∇ϕ .

We obtain that ũh solves (4.13). Since the solution to this relation is unique by
Lemma 3.2, we find ũh = uh. The convergences of uεh to ũh and σεh to Σ(∇sũh) yield
the claim.

4.4 Proof of Theorem 1.6

We are given a sequence ε = εj → 0 and a sequence of solutions uε of the original
problem. For a sequence h → 0 and a sequence of time discretizations 0 ≤ th0 < th1 <
. . . < thK ≤ T with maxk |thk+1 − thk| ≤ h we can choose a sequence of grids Th that is
adapted to uε in the sense of Corollary 2.2.

For each h > 0 and ε > 0 we consider the unique solution uεh ∈ wh +H1(0, T ;Nh),
eεh, p

ε
h, σ

ε
h ∈ H1(0, T ;L2(Qh)) to the needle problem of Definition 2.6. Proposition 4.5

implies that uεh ⇀ uh weakly in wh + H1(0, T ;Yh) as ε → 0, where uh is the unique
solution to the discrete problem (4.13).

We next want to apply Proposition 3.4. The proposition is applicable: (i) The
admissibility assumption of Definition 1.5 guarantees the existence of a solution u
to the effective problem. (ii) Proposition 4.5 guarantees the existence of a solution
uh to the discretized effective problem. Proposition 3.4 yields uh ⇀ u weakly in
H1(0, T ;H1(Q)) as h→ 0, where u is the solution of the effective system. Proposition
4.1 provides smallness of uε − uεh. With a triangle inequality we obtain

lim
ε→0
‖uε − u‖L2(QT )

≤ lim inf
h→0

lim sup
ε→0

(
‖uε − uεh‖L2(QT ) + ‖uεh − uh‖L2(QT ) + ‖uh − u‖L2(QT )

)
= 0 .

This characterizes every weak limit of (subsequences of) uε and, therefore, provides
the weak convergence (1.15) of Theorem 1.6.

We now analyze the sequence of stresses and (plastic) strains. The needle problem
solution uεh is accompanied by σεh and pεh. Proposition 4.5 provides σεh ⇀ Σ(∇suh)
and pεh ⇀ Π(∇suh) weakly as ε → 0. Proposition 3.4 yields Σ(∇suh) → Σ(∇su) and
Π(∇suh) → Π(∇su) strongly in L∞(0, T ;L2(Q)) as h → 0. Finally, Proposition 4.1
compares σεh with σε and pεh with pε.

Due to the a priori estimate (1.10) we find a subsequence ε→ 0 and limits σ and p
such that σε ⇀ σ and pε ⇀ p weakly in H1(0, T ;L2(Q,Rn×n

s )). In order to characterize
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these limits we calculate, for arbitrary ϕ ∈ L2(0, T ;L2(Q;Rn×n)),
ˆ T

0

ˆ
Q

σ : ϕ = lim
ε→0

ˆ T

0

ˆ
Q

σε : ϕ = lim
h→0

lim
ε→0

ˆ T

0

ˆ
Q

σεh : ϕ

= lim
h→0

ˆ T

0

ˆ
Q

Σ(∇suh) : ϕ =

ˆ T

0

ˆ
Q

Σ(∇su) : ϕ .

This shows σ = Σ(∇su). A similar calculation shows pε ⇀ Π(∇su) weakly in the
space H1(0, T ;L2(Q;Rn×n)) as ε → 0. This provides (1.16) and concludes the proof
of our main result, Theorem 1.6.

A On the proof of Theorem 1.2
We present here only the (formal) a priori estimates. On the basis of the a priori
estimates for the discretized system, the construction of a solution is performed in a
standard way with a Galerkin scheme (as e.g. in [19]). In the following, we therefore
suppose that a sufficiently regular solution uε to the ε-problem (1.8) is given. Our aim
is to derive the estimate (1.10).

We obtain energy type estimates with a testing procedure. In a first step, we use
χ[0,t]∂t(u

ε−w) as a test function in the original equation −∇·σε = f ; here χ[0,t] is the
characteristic function of the interval [0, t] for t < T . In a second step, we differentiate
the equation with respect to time and use ∂t(uε − w) as test function.

In what follows, we write ‖ . ‖L2L2 for the norm in L2(0, T ;L2(Q)) and ‖ . ‖H1L2 for
the norm in H1(0, T ;L2(Q)); other norms are abbreviated in the analogous way, we
use ‖ . ‖L2H1 and ‖ . ‖H1H1 .

The test function χ[0,t]∂t(u
ε − w) provides

ˆ t

0

ˆ
Q

f · ∂t (uε − w) +

ˆ t

0

ˆ
Q

σε : ∇s∂tw =

ˆ t

0

ˆ
Q

σε : ∇s∂tu
ε

=

ˆ t

0

ˆ
Q

σε : ∂t (Cεσ
ε + pε)

=

ˆ t

0

ˆ
Q

(
1

2

d

dt
|σε|2Cε + (σε −Bεp

ε) : ∂tp
ε + (Bεp

ε) : ∂tp
ε

)
=

ˆ t

0

ˆ
Q

(
1

2

d

dt

(
|σε|2Cε + |pε|2Bε

)
+ (σε −Bεp

ε) : ∂tp
ε

)
(∗)
=

ˆ t

0

ˆ
Q

(
1

2

d

dt

(
|σε|2Cε + |pε|2Bε

)
+ Ψ∗ε(∂tp

ε) + Ψε (σε −Bεp
ε)

)
(A.1)

where in (∗) we used that for Ψε and its conjugate Ψ∗ε holds

(σε −Bεp
ε) : ∂tp

ε = Ψ∗ε(∂tp
ε) + Ψε (σε −Bεp

ε) ,

because of ∂tpε ∈ ∂Ψε (σε −Bεp
ε). Since t ≤ T was arbitrary, we obtain from (A.1)

sup
t∈[0,T ]

‖σε(t)‖2
L2(Q) + sup

t∈[0,T ]

‖pε(t)‖2
L2(Q) ≤ ‖f‖L2L2 ‖∂tw‖L2L2 (A.2)

+ ‖f‖L2L2 ‖∂tuε‖L2L2 + ‖w‖2
H1H1 + ‖σε‖2

L2L2 + ‖σε(0)‖2
L2(Q) ,
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where we used ‖pε(0)‖2
L2(Q) = 0 and the fact that Ψε and Ψ∗ε are nonnegative.

In order to obtain an estimate for ∂tσε, ∂tpε, ∂t∇uε, and ∂tuε we apply the time
derivative ∂t to the equation −∇ · σε = f . We use the test function ∂t(uε − w) and
integrate over [0, T ]×Q. With an integration by parts we obtain

ˆ T

0

ˆ
Q

∂tf · ∂t (uε − w) +

ˆ T

0

ˆ
Q

∂tσ
ε : ∇s∂tw =

ˆ T

0

ˆ
Q

∂tσ
ε : ∇s∂tu

ε

=

ˆ T

0

ˆ
Q

∂tσ
ε : ∂t (Cεσ

ε + pε) =

ˆ T

0

ˆ
Q

(
|∂tσε|2Cε + ∂tσ

ε : ∂tp
ε
)

=

ˆ T

0

ˆ
Q

(
|∂tσε|2Cε + |∂tpε|2Bε + ∂t [σε −Bεp

ε] : ∂tp
ε
)

=

ˆ T

0

ˆ
Q

(
|∂tσε|2Cε + |∂tpε|2Bε +

d

dt
Ψε(σ

ε −Bεp
ε)

)
. (A.3)

By nonnegativity of Ψε(σ
ε(t)−Bεp

ε(t)) we obtain

‖∂tσε‖2
L2L2 + ‖∂tpε‖2

L2L2 ≤ ‖f‖H1L2 ‖∂tw‖L2L2

+ ‖f‖H1L2 ‖∂tuε‖L2L2 + ‖w‖2
H1H1 +

1

2
‖∂tσε‖2

L2L2 + ‖Ψε(σ
ε(0))‖L2 . (A.4)

This provides essentially a bound for the norms of (1.10). The variables ∂tσε and ∂tpε
control ∂teε by the additive decomposition of the strain. As a consequence, Korn’s
inequality allows to control ∂t∇uε. Formally, we can absorb the factor ‖∂tuε‖2

L2L2 of
(A.2) and (A.4) with the help of

‖∂tuε(t)‖L2(Q) ≤ ‖∂tu
ε(t)‖H1(Q) ≤ C

(
‖∂t∇suε(t)‖L2(Q) + ‖∂tw(t)‖H1(Q)

)
≤ C

(
‖∂tpε(t)‖L2(Q) + ‖∂tσε(t)‖L2(Q) + ‖∂tw(t)‖H1(Q)

)
∀t ∈ [0, T ] . (A.5)

Young’s inequality provides the a priori estimate (1.10) for ∂tσε and ∂tpε. The estimate
on uε follows from (A.5), the estimate for the original functions follows from (A.2).

B Outline of the proof of Theorem 2.7

Regularization, Galerkin scheme and existence. The proof follows the lines of the proof
of Theorem 1.1. in [19]. The basic idea is to regularize the potential Ψε and to use
a space discretization to construct approximate solutions. We approximate Ψε by its
Yosida transform Ψε,δ(σ) := infξ

{
Ψε(ξ) + |σ−ξ|

δ

}
. We furthermore regularize wh to

a function wh,δ ∈ C1([0, T ]; Ỹh). Approximate solutions are constructed with finite
element spaces: Let Th = {Tk}Λh

be the (fixed) grid with typical length scale h. For
any 0 < η < h let Th,η =

{
T ηj
}
j∈Λh,η

be a refinement of Th in the following sense: Λh,η

is a finite set for all η and there holds

diam T ηj ≤ η , T ηj ∩ Tk 6= ∅ ⇒ T
η
j ⊂ Tk ∀j ∈ Λh,η .
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Let

Yh,η :=
{
φ ∈ H1

0 (Q) : φ|T ηj is affine ∀ T ηj ∈ Th,η, φ ≡ 0 on Q \Qh

}
,

Wh,η :=
{
φ ∈ L2(Q) : φ|T ηj is constant ∀ T ηj ∈ Th,η, φ ≡ 0 on Q \Qh

}
,

Ph,η : L2(Q)→ Wh,η , the L2-orthogonal projection.

We look for solutions uεh,η,δ = vεh,η,δ + wh,δ with vεh,η,δ ∈ C1(0, T ;Yh,η) and pεh,η,δ, eεh,η,δ,
σεh,η,δ ∈ C1(0, T ;Wh,η) to the discrete system

ˆ
Q

σεh,η,δ(t) : ∇ϕ =

ˆ
Γh

gh(t) · ϕ ∀ϕ ∈ Yh,η , ∀t ∈ [0, T ] , (B.1)

∇suεh,η,δ = Cεσ
ε
h,η,δ + pεh,η,δ , (B.2)

∂tp
ε
h,η,δ = ∂Ψε,η,δ

(
σεh,η,δ −Bεp

ε
h,η,δ

)
, (B.3)

where Ψε,η,δ(σ;x) = Ψε,δ(Ph,η,δ(σ); x̄η), where x̄η is a representative point in the η-
size simplex that contains x. As in the proof of [19] Lemma 2.3, we can show that
(B.1)–(B.3) has a unique solution pεh,η,δ, uεh,η,δ and σεh,η,δ. The derivation of a priori
estimates follows the lines of Appendix A. As in [19], we can consider the joint limit
η → 0, δ → 0 and obtain weakly convergent subsequences uεh,η,δ ⇀ uεh, weakly in
H1(0, T ;H1(Q)) and σεh,η,δ ⇀ σεh, pεh,η,δ ⇀ pεh weakly in H1(0, T ;L2(Q)), such that uεh,
σεh, pεh satisfy (2.16)-(2.18) and the apriori estimate (2.20).

Uniqueness. In order to show uniqueness, we assume that we were given two solu-
tions,

(
uεh,1, σ

ε
h,1, p

ε
h,1

)
and

(
uεh,2, σ

ε
h,2, p

ε
h,2

)
. We use equation (2.16) for uεh,1 and uεh,2 and

take the difference of the two equations. We introduce the difference (ũεh, σ̃
ε
h, p̃

ε
h) :=(

uεh,1 − uεh,2, σεh,1 − σεh,2, pεh,1 − pεh,2
)
and insert ∂tũεh as test function. Following the cal-

culations of Appendix A, we obtain
ˆ

Γh

ghũ
ε
h

∣∣∣∣T
0

−
ˆ T

0

ˆ
Γh

∂tghũ
ε
h =

ˆ
Γh

gh · ∂tũεh

=

ˆ T

0

ˆ
Qh

σ̃εh : ∇s∂tũ
ε
h =

ˆ T

0

ˆ
Qh

σ̃εh,η : ∂t
(
Cεσ̃

ε
h,η + p̃εh,η

)
=

ˆ T

0

ˆ
Qh

1

2

d

dt
(σ̃εh : (Cεσ̃

ε
h) + p̃εh : (Bεp̃

ε
h))

+

ˆ T

0

ˆ
Qh

(σ̃εh −Bεp̃
ε
h) :

(
∂Ψε(σ

ε
h,1 −Bεp

ε
h,1)− ∂Ψε(σ

ε
h,2 −Bεp

ε
h,2)
)
. (B.4)

As the subdifferential of a convex function, the non-linear operator ∂Ψε is a monotone
operator. This implies that the last integral in (B.4) is positive. We emphasize that
the above calculation (e.g. the use of the fundamental theorem of calculus for |σ̃εh|2Cε)
is justified by the regularity properties in our solution concept.

In order to exploit (B.4) further, we must make use of a trace theorem,

‖ũεh‖L2(Γh) ≤ C‖ũεh‖H1(Q) ≤ C
(
‖∇ũεh‖L2(Q) + ‖wh,δ‖H1(Q)

)
≤ C

(
‖p̃εh‖L2(Q) + ‖σ̃εh‖L2(Q) + ‖wh,δ‖H1(Q)

)
.

With Young’s inequality and Gronwall’s inequality we find (ũεh, σ̃
ε
h, p̃

ε
h) = (0, 0, 0),

hence the uniqueness.
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