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DIFFUSE-INTERFACE APPROXIMATIONS OF OSMOSIS FREE
BOUNDARY PROBLEMS

ANDREAS RÄTZ

Abstract. Free boundary problems based on mass conservation and surface tension
with application in osmotic swelling are the topic of this contribution. We introduce new
phase-field approximations of such models, in order to numerically investigate proper-
ties of the solutions. Formal justification of the proposed approximations is provided by
matched asymptotic expansions supported by numerical tests reproducing the convergence
for shrinking interface thickness.

1. Introduction

In the present paper, we consider a mathematical model for osmosis, i.e. we are interested
in a membrane separating a region of a fluid with a higher solute concentration from a
region with a lower concentration of a solute dissolved in the fluid. The membrane is
called semipermeable, if it is permeable to the solvent but impermeable to the solute. A
tendency to equal solute concentrations on both sides a semipermeable membrane can lead
to a flux of the solvent through the membrane. Such osmotic phenomena play an important
role in biological cells, since biological membranes are semipermeable.

1.1. A one-phase osmosis model. For the mathematical modeling of the above situa-
tion, we let Ω+ = Ω+(t) ⊂ Rn, t ∈ [0, T ], an open bounded time dependent domain bounded
by a smooth closed hypersurface Γ(t) := ∂Ω+(t) for all times t under consideration. While
Γ represents the membrane, the inner of the membrane (in biological applications the cell)
is given by Ω+. We denote the outer normal to Γ by ν and define the mean curvature

H =
n−1∑
i=1

κi with principal curvatures κi, i = 1, . . . , n − 1. Note that we use the sign con-

vention that H > 0 holds for Ω+ convex. Furthermore, we consider the normal velocity v

of the interface. For the solute concentration u(·, t) : Ω+(t) → R, t ∈ [0, T ], we study the
one-phase free boundary model

∂tu−D+∆u = 0 in Ω+,(1.1)

−D+∇u · ν − uv = 0 on Γ,(1.2)

v = −αH + βu on Γ(1.3)

with diffusion coefficient D+ and positive parameters α and β related to surface tension and
osmotic pressure, respectively. Moreover, we assume suitable initial conditions Ω+(0) =
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2 A. RÄTZ

Ω+,0 and u(·, 0) = u0. From (1.1)–(1.2) one obtains the conservation law

d

dt

ˆ
Ω+(t)

u(x, t) dx =

ˆ
Γ(t)

u(x, t)v(x, t) dσ(x) +

ˆ
Ω+(t)

∂tu(x, t) dx(1.4)

=

ˆ
Γ(t)

u(x, t)v(x, t) dσ(x) +

ˆ
Ω+(t)

D+∆u(x, t) dx

=

ˆ
Γ(t)

u(x, t)v(x, t) dσ(x) +

ˆ
Γ(t)

D+∇u(x, t) · ν(x, t) dσ(x) = 0.

The geometric evolution law (1.3) represents the competition between the surface tension
and the osmotic force, where the first tends to shrink the membrane, while the latter tends
to expand the membrane. The one-phase osmosis model (1.1)–(1.3) corresponds to the case
that the membrane Γ and its inner Ω+ are surrounded by the solvent with vanishing solute
concentration. In this way it can be interpreted as a special case of the two-phase model
described in the subsequent section 1.2. Note that the free boundary problem (1.1)–(1.3)
admits for a stationary solution with u spatially constant and Γ spherical, which will be
used for numerical tests in section 4.

Recently, several results have been found for the above free boundary problem and related
models. A one dimensional variant of (1.1)–(1.3) has been analytically and numerically
investigated by Frischmuth and Hänler [7], see also [26] for a related model. More recently,
Pickard [22] introduced a model for cell swelling based on proportionality of free energy dif-
ferences and water flux without taking surface tension into account. Numerical simulations
are included in [22] for rotationally symmetric situations. Short-time existence results for
(1.1)–(1.3) have been proved in [13]. In [29], a variational formulation in a gradient flow
framework has been investigated (see also [30]). For well-posedness and regularity results
for a class of free boundary problems including (1.1)–(1.3) as a special case, we refer to [31].
Extensions of the above model with incorporation of viscous motion of the fluid have been
proposed in by Lippoth, Peletier and Prokert [12], where short-time existence of classical
solutions for the resulting problem has been proved.

1.2. A two-phase osmosis model. In addition to the previous one-phase model we
study a two-phase osmosis model [14]. Here we consider an open bounded domain Ω ⊂ Rn

and a time dependent smooth interface Γ = Γ(t), t ∈ [0, T ], separating Ω into two time

dependent sub domains Ω± = Ω±(t), Γ(t) = ∂Ω+(t), t ∈ [0, T ], such that Γ = Ω+(t)∩Ω−(t)

and Ω = Ω+(t) ∪ Ω−(t) hold for all times t. Then the two-phase osmosis free boundary

problem with u±(·, t) : Ω±(t)→ R reads

∂tu± −D±∆u± = 0 in Ω±,(1.5)

D±∇u± · ν + u±v = 0 on Γ,(1.6)

v = −αH + β[u] on Γ,(1.7)

∂νu− = 0 on Σ(1.8)

with Σ := ∂Ω and initial conditions Ω±(0) = Ω±,0 and u±(·, 0) = u±,0. Moreover, by
[u] := u+|Γ − u−|Γ we denote the jump of the solute concentration across the interface.
Note that choosing the initial conditions for Ω± corresponds to choosing an initial interface
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Γ(0) = Γ0. For the above two-phase model, the conservation law analogous to (1.4) reads

d

dt

( ˆ
Ω+

u+ +

ˆ
Ω−

u−

)
=

ˆ
Γ

(u+ − u−)v +

ˆ
Ω+

∂tu+ +

ˆ
Ω−

∂tu−(1.9)

=

ˆ
Γ

(u+ − u−)v +

ˆ
Ω+

D+∆u+ +

ˆ
Ω−

D−∆u−

=

ˆ
Γ

(u+ − u−)v +

ˆ
Γ

(D+∇u+ −D−∇u−) · ν = 0.

We would like to remark, that in the special case u−(x, t) ≡ 0 the two-phase model (1.5)–
(1.8) reduces to the one-phase model (1.1)–(1.3).

1.3. Outline of the paper. In this paper, we introduce phase-field approximations of
both the one-phase and the two-phase model. In such a diffuse-interface approximation
the interface is implicitly given by a phase-field function, which is obtained, roughly speak-
ing, by smearing out the indicator function of Ω+ on a short length O(ε) for some small
parameter ε > 0. The diffuse domain method [9, 10, 11] offers a powerful tool for the
approximation of free boundary problems [23, 25] and coupled bulk–surface PDE-systems
[27, 24]. It will be used here, in order to numerically simulate the one- and two-phase mod-
els previously introduced. Apart from the numerical investigations of a simplified version
of the one-phase model in one space dimension in [7], this contribution is the first attempt
to provide a systematic numerical treatment of the one- and two-phase models (1.1)–(1.3)
and (1.5)–(1.8), respectively, in full generality.

In section 2, we introduce the diffuse approximations of (1.1)–(1.3) and (1.5)–(1.8), re-
spectively. These are related to a phase-field model for precipitation in porous media,
recently proposed in [25]. The phase-field approximations are justified by matched asymp-
totic expansions formally showing convergence of the diffuse-interface models towards the
sharp-interface counterparts as the width of the diffuse interface shrinks to zero (section
3).

For the phase-field approximations, we propose in section 4 finite element discretizations,
which are semi implicit in time. These schemes are used in order to recover the convergence
towards the original sharp-interface models in rotationally symmetric, quasi-stationary sit-
uations. Further numerical examples are included to provide more insight to the properties
of the model and its solutions.

2. Diffuse-interface approximations

For the numerical approximation of solutions of the one- and two-phase models (1.1)–
(1.3) and (1.5)–(1.7), respectively, we use a phase-field approach. The key ingredient
behind this ansatz is the diffuse-domain [9, 10, 11] approximation, where boundary value
problems are described in a phase-field context. For a closely related model for precipitation
in porous media, recently a phase-field model has been proposed in [25]. As described
in [25], this phase-field model has the same structure as the model introduced in [20].
Rigorous convergence proofs for the diffuse domain method approximating second order
elliptic boundary value problems have been provided in [5]. Moreover, in [1] a diffuse
domain approach of a linear coupled elliptic PDE system has been analyzed. Thereby,
well-posedness of the diffuse approximation and convergence results for interface thickness
tending to zero have been proved.
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2.1. One-phase model. In order to provide a diffuse-interface approximation of the one-
phase model (1.1)–(1.3), we choose a (simple computational) domain Ω ⊂ Rn containing

Ω+(t) ∀t ∈ [0, T ]. The idea in such diffuse-interface (or “phase-field”) approximation is
to smear out the indicator function of Ω+ on a short length of order O(ε) for a small
parameter ε > 0. This approach is based on a Ginzburg-Landau free energy

(2.1) Hε(ϕ) :=

ˆ
Ω

(ε
2
|∇ϕ|2 + ε−1G(ϕ)

)
for the smeared out function ϕ, where

G = G(ϕ) := 18ϕ2(1− ϕ)2

denotes a double well potential normalized such thatˆ 1

0

√
2G(ϕ) dϕ = 1.

holds. By the celebrated Modica–Mortola theorem (2.1) Gamma-converges with respect
to L1 to the perimeter functional [18, 17]

H(Γ) = Hn−1(Γ).

Taking only normal variations of the surface Γ into account the functional derivative of
the perimeter functional reads δH

δΓ
= −H. Thus, a natural diffuse-interface counterpart of

mean curvature is given by

(2.2) Hε :=
δHε

δϕ
= −ε∆ϕ+ ε−1G′(ϕ).

With this ansatz in mind we end up with a diffuse-interface approximation

∂t(ϕu)−D+∇ · (ϕ∇u) = 0 in Ω× (0, T ),(2.3)

ε∂tϕ = α(ε∆ϕ− ε−1G′(ϕ)) + βg(ϕ)u in Ω× (0, T )(2.4)

of the sharp-interface one-phase osmosis model (1.1)–(1.3), where in (2.3) the phase-field
function ϕ has been used in order to restrict diffusion to the part of Ω which is inside the
interface, see [11]. In addition, one can use

g(ϕ) :=
√

2G(ϕ)

or

g(ϕ) := 30ϕ2(1− ϕ)2,

where the latter is our choice for the numerical simulations in section 4. Note that if we
neglect the last term on the right hand side of (2.4), it coincides with the Allen–Cahn
equation [3], which is a standard phase-field approximation of mean curvature flow, see
[19, 6, 8] for rigorous convergence results. The asymptotic analysis will show that (2.3) not
only includes a diffuse-interface description of the diffusion equation (1.1) but also encodes
the boundary condition (1.2).

The diffuse conservation law corresponding to (1.4) reads

(2.5)
d

dt

ˆ
Ω

ϕ(x, t)u(x, t) dx =

ˆ
Ω

∂t(ϕ(x, t)u(x, t)) dx =

ˆ
Ω

D+∇ · (ϕ(x, t)∇u(x, t)) = 0,

where we have assumed no flux boundary condition ϕ∇u ·ν∂Ω = 0 on ∂Ω, ν∂Ω denoting the
outer normal to ∂Ω. Moreover, we assume ∇ϕ · ν∂Ω = 0 on ∂Ω and initial conditions for
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u and ϕ in Ω which correspond to initial conditions of the original sharp-interface model
(1.1)–(1.3).

2.2. Two-phase model. For the diffuse-interface approximation of the two-phase sharp-
interface model (1.5)–(1.7), we propose the natural extension

∂t(ϕu+)−D+∇ · (ϕ∇u+) = 0 in Ω× (0, T ),(2.6)

∂t((1− ϕ)u−)−D−∇ · ((1− ϕ)∇u−) = 0 in Ω× (0, T ),(2.7)

ε∂tϕ = α(ε∆ϕ− ε−1G′(ϕ)) + βg(ϕ)(u+ − u−) in Ω× (0, T ),(2.8)

of the above diffuse one-phase model, where Ω = Ω+(t) ∪ Ω−(t). In (2.7), the function
1 − ϕ is used in order to restrict the diffusion to the part outside the interface. Again,
we choose initial conditions related to the ones of the sharp-interface model as well as
boundary conditions for ϕ and u± on ∂Ω. We remark that this approach is similar to the
proposed in [23], where a related phase-field model has been used in order to approximate a
Stefan–like free boundary (“Burton–Cabrera–Frank”) step flow model in epitaxial growth.

The diffuse-interface counterpart of the conservation law (1.9) now reads

(2.9)
d

dt

ˆ
Ω

(ϕ(x, t)u+(x, t) + (1− ϕ(x, t))u+(x, t)) dx = 0

similar to the one-phase case and again assuming no-flux boundary conditions ϕ∇u+ ·ν∂Ω =
0 and (1−ϕ)∇u− ·ν∂Ω = 0 on ∂Ω. As for the one-phase model, we will assume ∇ϕ ·ν∂Ω = 0
on ∂Ω for our numerical simulations.

3. Matched asymptotic expansions

In this section, we provide matched asymptotic expansions (see e.g. [21]) for the approx-
imation of the above two-phase-model by the diffuse-interface model (2.6)–(2.8). In order
to achieve more rigorous results, one would have to apply techniques from [19, 6, 8] for the
Allen–Cahn equation or [2] for the Cahn–Hilliard equation.

We closely follow the asymptotic expansions in [11, 23] and apply the setup in [23]. The
outer solution is an approximation to the solution in the solvent, the inner solution zooms
in at the interface. We make the following ansatz for the outer expansions:

u+ = u+,0 +O(ε),

u− = u−,0 +O(ε),

ϕ = ϕ0 +O(ε).

We consider a smeared-out interface connecting the inner of a membrane where ϕ ≈ 0
to the outer of a membrane where ϕ ≈ 1. Let Γ denote the interface {ϕ = 1

2
}. Let ν

denote the outer normal of Γ, H its mean curvature, v its normal velocity. We further
introduce new coordinates in a neighborhood of the interface. To this end, we consider
a (local) parametric representation X : S × [0, T ] → Γ ⊂ Rd of Γ, where S is an open
subset of Rd−1. Moreover, r = r(x, t) is defined as the signed distance of x from Γ being
positive outside Γ. We assume that in a sufficiently small neighborhood of Γ one can write
x = X(s, t) + r(x, t)ν(s, t). Now one transforms u+, u− and ϕ to the new coordinate
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system:

û+(r, s, t) := u+(X(s, t) + rν(s, t), t),

û−(r, s, t) := u−(X(s, t) + rν(s, t), t),

ϕ̂(r, s, t) := ϕ(X(s, t) + rν(s, t)).

Furthermore a stretched variable is introduced z := r
ε
, and one defines

U+(z, s, t) := û+(r, s, t),

U−(z, s, t) := û−(r, s, t),

Φ(z, s, t) := ϕ̂(r, s, t).

We assume outer expansions

û+(r, s, t) = û+,0(r, s, t) +O(ε),(3.1)

û−(r, s, t) = û−,0(r, s, t) +O(ε),(3.2)

ϕ̂(r, s, t) = ϕ̂0(r, s, t) +O(ε)(3.3)

and inner expansions

U+(z, s, t) = U+,0(z, s, t) + εU+,1(z, s, t) + ε2U+,2(z, s, t) +O(ε3),(3.4)

U−(z, s, t) = U−,0(z, s, t) + εU−,1(z, s, t) + ε2U−,2(z, s, t) +O(ε3),(3.5)

Φ(z, s, t) = Φ0(z, s, t) + εΦ1(z, s, t) +O(ε2)(3.6)

With this ansatz, we have

∂tu+ = −ε−1v∂zU+ +O(1),(3.7)

∇u+ = ε−1∂zU+ν +
n−1∑
i,j=1

gij∂siU+∂sjX +O(ε),(3.8)

∆u+ = ε−2∂2
zU+ + ε−1H∂zU+ + ∆ΓU+ +O(ε),(3.9)

where gij := ∂siX · ∂sjX and (gij) := (gij)
−1. Corresponding relations hold for u−, ϕ and

U−,Φ, respectively. Furthermore, we use matching conditions on inner and outer solutions

lim
z→±∞

U+,0 = lim
r→±0

û+,0, lim
z→±∞

∂zU+,1 = lim
r→±0

∂rû+,0 = lim
r→±0

∂νu+,0,(3.10)

lim
z→±∞

U−,0 = lim
r→±0

û−,0, lim
z→±∞

∂zU−,1 = lim
r→±0

∂rû−,0 = lim
r→±0

∂νu−,0,(3.11)

lim
z→±∞

Φ0 = lim
r→±0

ϕ̂0.(3.12)

3.1. Outer Expansions. The outer expansions to order O(ε−1) yield in (2.8)

(3.13) G′(ϕ0) = 0 =⇒ ϕ0 ∈ {0, 1},

where we have excluded the unstable solution ϕ0 = 1
2
. From (3.13) we get in (2.6) and

(2.7) to O(ε0)

∂t(u−,0) = D−∆u−,0 where ϕ0 = 0,(3.14)

∂t(u+,0) = D+∆u+,0 where ϕ0 = 1,(3.15)

i.e. diffusion equations (1.5) for u−,0 and u+,0 outside and inside the membrane, respec-
tively.
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3.2. Inner Expansions. The inner expansions in (2.8) lead to

(3.16) ∂2
zΦ0 −G′(Φ0) = 0

to order O(ε−1). From (3.12), we get to leading order O(ε−2) in (2.6), (2.7)

∂zU−,0 = ∂zU+,0 = 0,

and to order O(ε−1)

−v∂z(Φ0U+,0) = D+∂z(Φ0∂zU+,1),

−v∂z((1− Φ0)U−,0) = D−∂z((1− Φ0)∂zU−,1).

Integration leads to

v lim
z→−∞

U+,0 = −D+ lim
z→−∞

∂zU+,1,

−v lim
z→∞

U−,0 = D− lim
z→∞

∂zU−,1,

and hence, by matching conditions, u−,0 and u+,0 fulfill the boundary conditions (1.6).
Going back to (2.8), we obtain in O(ε0)

−v∂zΦ0 = α(∂2
zΦ1 −G′′(Φ0)Φ1 +H∂zΦ0) + βg(Φ0)(U+,0 − U−,0),

which gives by testing O(ε0) with ∂zΦ0 the evolution law

v = −αH + β

(
lim
r→−0

u+,0 − lim
r→+0

u−,0

)
,

which is equivalent to (1.7). Thus, we have formally shown the convergence of the phase-
field model (2.6)–(2.8) towards its sharp-interface counterpart (1.5)–(1.7) for diffuse inter-
face thickness tending to zero.

4. Numerical Results

In this section, we present numerical results for the diffuse-interface approximations
(2.3)–(2.4) and (2.6)–(2.8) for the one-phase and two-phase sharp-interface counterparts,
respectively. Thereby, we use a spatial finite element discretization combined with a semi-
implicit discretization in time.

In section 4.1 we describe the discretization of the phase-field approximations. Moreover,
in sections 4.2 and 4.3 we present numerical results for the approximation of the one-phase
and two-phase models. Thereby, we compare the numerical results with analytic solutions
for rotationally symmetric quasi-stationary cases in dimension n = 2, and we further
provide simulation results showing properties of the models.

4.1. Semi-implicit finite element discretization. Here, we only describe the numerical
treatment of the diffuse-interface one-phase system (2.3)–(2.4). The discretization of (2.6)–
(2.8) is then a straight forward generalization.
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We introduce time instants τm, m = 1, . . . ,MT . First we provide a time discrete weak
formulation of (2.3)–(2.4)

ˆ
Ω

ϕ(m)u(m+1)

τm+1

ψ +

ˆ
Ω

ϕ(m+1)u(m)

τm+1

ψ +D+

ˆ
Ω

b(ϕ(m))∇u(m+1) · ∇ψ(4.1)

= 2

ˆ
Ω

ϕ(m)u(m)

τm+1

ψ,

ε

ˆ
Ω

ϕ(m+1)

τm+1

η + αε

ˆ
Ω

∇ϕ(m+1) · ∇η − β
ˆ

Ω

g(ϕ(m))u(m+1)η +
α

ε

ˆ
Ω

G′′(ϕ(m))ϕ(m+1)η(4.2)

= ε

ˆ
Ω

ϕ(m)

τm+1

η +
α

ε

ˆ
Ω

(G′′(ϕ(m))ϕ(m) −G′(ϕ(m)))η

for all ψ, η ∈ H1(Ω). Thereby, we have used b(s) := δ + s+, s ∈ R, for a small regularizing
parameter δ > 0 and the positive part s+ := max(0, s) of s, in order to regularize the
otherwise degenerate equation. To discretize in space, we use linear finite elements and a
simple strategy of adaptive mesh refinement and coarsening similar to the one described in
[4] based on the values of the discrete phase-field function. The resulting linear system of
PDE’s is solved by a stabilized bi-conjugate gradient (BiCGStab) method. This numerical
scheme is implemented in the adaptive FEM toolbox AMDiS [28].

4.2. Numerical examples for the one-phase model. We apply the above numerical
scheme for the phase-field approximation of the one-phase model and compare numerical
and analytic solutions. Moreover, we investigate the influence of the concentration on the
membrane shape and vice versa.

4.2.1. Approaching stationary solutions: the one-phase model. For given initial conditions
u0 and Ω+,0 = BR0(0) with initial radius R0, we consider as a first benchmark the stationary
solutions

(4.3) Ω∞ = BR∞(0), u∞ =
πα2

Mβ2

of the one-phase model (1.1)–(1.3) for n = 2, where R∞ = Mβ
πα

and

M :=

ˆ
Ω+,0

u0 = πR2
∞u∞

denotes the (conserved) total mass. We apply the above numerical scheme of the phase-
field approximation (2.3)–(2.4) with Ω = (−2, 2)2 and approximation parameter δ = 10−5,
ε = 0.1. Moreover, we apply a diffuse-interface approximation ϕ(·, 0) of χΩ0 . For the
sharp-interface model, we choose u0 = 1

2
, D+ = 1, β = 1. In Fig. 1 we see plots of the

diffuse area

(4.4) Aε(t) :=

ˆ
Ω

ϕ(·, t) ≈ |Ω+(t)|

versus time t for two different scenarios: the approximation of

• a growth scenario (α = 1
8

and R0 = 1
2
) (left)

• a shrinkage scenario (α = 1 and R0 = 1) (right)

each towards a stationary solution with area πR2
∞.
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Figure 1. Diffuse area Aε versus time t for α = 1
8 and R0 = 1

2 (left) and for α = 1
and R0 = 1 (right) compared with area corresponding to analytic stationary solution in

(4.3).

4.2.2. Comparison with analytic results. For a quantitative comparison of numerical results
with an analytic solution, we consider the following rotationally symmetric and quasi-
stationary situation. In the formal limit D+ →∞ one obtains from the one-phase system
(1.1)–(1.3) the quasi-stationary system

−∆u = 0 in Ω+(t), t > 0,(4.5)

−∇u · ν = 0 on Γ(t), t > 0,(4.6)

v = −αH + βu on Γ(t), t > 0.(4.7)

Thus, u is spatially constant, u(x, t) ≡: û(t), where û is given by mass conservation

û(t)|Ω+(t)| =
ˆ

Ω+(t)

u(x, t) dx =

ˆ
Ω+(0)

u(x, 0) dx =

ˆ
Ω0

u0(x) dx.

For our numerical tests we assume Ω+(t) = BR(t)(0) ∀t and constant initial data u0. Then
for n = 2 one obtains from (4.5)–(4.7) the ODE

(4.8) Ṙ = −α
R

+
βu0R

2
0

R2

with initial radius R(0) = R0, which we solve numerically with MapleTM[15], in order to
investigate the approximation of the analytic solution for decreasing values of ε. In Fig. 2
we compare the perimeter L(t) = 2πR(t) corresponding to (4.8) with the diffuse-interface
counterparts

Lε(t) =

ˆ
Ω

(ε
2
|∇ϕ(·, t)|2 + ε−1G(ϕ(·, t))

)
obtained from simulation results of the discretization of (2.3), (2.4) for different ε values
and for Ω = (−2, 2)2, D+ = 100, δ = 10−5. Moreover, we see the stationary perimeter 2π
due to the parameters α = 1

8
, u0 = 1

2
, β = 1 and R0 = 1

2
. One observes the approximation

of the analytic solution for decreasing ε as predicted by the asymptotic analysis in section
3.

As a further validation of the numerical scheme, we consider the diffuse mass conservation
law (see also (2.5))

(4.9) M+(t) :=

ˆ
Ω

ϕ(x, t)u(x, t) dx ≡M+(0).
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Figure 2. Comparison of the analytic perimeter L = L(t) = 2πR(t) with R = R(t)
given by the ODE (4.8) with initial condition R0 = 1

2 with diffuse length Lε versus time
t for various values of ε.
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Figure 3. Discrete mass versus time for ε = 1
8 .

In Fig. 3 we see the discrete mass versus time for the case ε = 1
8

of the previous exam-
ple, with ϕ and u replaced by discrete solutions ϕh and uh in (4.9). The results show a
reasonable approximation of the conservation law (4.9).

4.2.3. Further numerical results. In the following we show further simulation results of
the diffuse-interface approximation (2.3)–(2.4) of the one-phase osmosis model (1.1)–(1.3),
where we have studied the influence of various initial conditions. Moreover, we have used
ε = 0.1 and δ = 10−5. For n = 2 we have triangulated Ω = (−10, 10)2, and for n = 3 we
have considered Ω = (−5, 5)3.
I: Ellipse as initial membrane shape. As initial conditions we assume an ellipse for Γ0

and a constant value for u0:

Ω+(0) =
{

(x, y) ∈ R2 :
x2

a2
+ a2y2 < 1

}
, u0 ≡ 1.

Further parameters used for this example are

D+ = 1; α = 0.2; β = 1; a = 5.

Results of this situation can be seen in Fig. 4, where the conserved quantity ϕhuh is
displayed in a contour plot with additional plot of the level line {ϕh = 1

2
}. We see that the

initially constant discrete concentration becomes non-constant and the interface evolves
towards a circle.
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Figure 4. Elliptic initial membrane shape. Discrete concentration ϕhuh and level set
{ϕh = 1

2} at times t = 0, t ≈ 0.76, t ≈ 1.93, t ≈ 25.12 and t ≈ 1000.

Figure 5. Locally increased initial solute concentration and circular initial membrane
shape. Discrete concentration ϕhuh and level set {ϕh = 1

2} at times t = 0, t ≈ 0.06,
t ≈ 0.87, t ≈ 16.29 and t ≈ 50.

II: Locally increased initial solute concentration. In a second example we consider
locally increased initial solute concentration and a circular initial membrane shape:

Ω+(0) = B1(0), u0(x, y) = B(au) exp(−au((x− x0)2 + (y − y0)2))

for (x, y) ∈ Ω, x0 = 1
2
, y0 = 0, au = 5 and B(au) is chosen such that M = π holds. In

addition, we use

D+ = 1; α = 0.2; β = 1.

In Fig. 5, one can see plots of ϕhuh at different times showing only little influence of the
solute concentration on the membrane shape.
III: Perturbation of circular membrane shape and locally increased solute con-
centration.

2d: Next we use a perturbation of a circular initial membrane shape and the locally
increased initial solute concentration from the previous example:

Ω+(0) =
{

(r cos θ, r sin θ) : 0 ≤ r < 1 + A cos(mθ), 0 ≤ θ ≤ 2π
}

with m = 6, A = 0.6 and the initial function u0 from II with au = 20, x0 = 1.8,
y0 = 0. Moreover, the parameters

D+ = 0.01; α = 0.2; β = 1

have been used. Results for the discrete conserved concentration ϕhuh in this
example are shown in Fig. 6. According to the bump in the initial condition, one
observes asymmetric intermediate shapes as well as lateral shift of the membrane.
Another example is given in Fig. 7, where we consider an initial function u0 with
two local maxima.

3d: Similar to the 2d-case, we consider a perturbation of a sphere

(4.10) Γ(0) =

Rψ

(1 + Aθ cos(kθθ)) cos(ψ) cos(θ)
(1 + Aθ cos(kθθ)) cos(ψ) sin(θ)

sin(ψ)

 : 0 ≤ θ ≤ 2π,−π
2
≤ ψ ≤ π

2
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Figure 6. Perturbation of a circular initial membrane shape and the locally increased
initial solute concentration. Discrete concentration ϕhuh and level set {ϕh = 1

2} at times
t = 0, t ≈ 0.986, t ≈ 2.495, t ≈ 35.255 and t ≈ 1501.151.

Figure 7. Discrete concentration ϕhuh and level set {ϕh = 1
2} at times t = 0,

t ≈ 0.744, t ≈ 3.635, t ≈ 44.633 and t ≈ 1501.151.

Figure 8. Contour plot of cross section of initial concentration ϕh(·, 0)uh(·, 0) and
cross section of level set {ϕh(·, 0) = 1

2}.

Figure 9. Level sets {ϕh(·, t) = 1
2} for t = 0, t ≈ 0.1108, t ≈ 0.6041, t ≈ 1.176, t ≈ 35.8921.

as an initial condition with Rψ := 1.7(0.5 + Aψ cos(kψψ)) and

Aθ = Aψ = 0.2; kθ = kψ = 8.

Further parameters are

D+ = 0.1; α = 0.05; β = 1; ε =
1

8

and a similar initial condition for u as in the 2d-case, see Fig. 8 for a contour plot
of ϕh(·, 0)uh(·, 0) on a cross section. In Fig. 9 we present level sets {ϕh(·, t) = 1

2
}

for various times t. The locally increased concentration yields a locally deformed
membrane shape in the early stage of the evolution, which eventually provides a
spherical shape in an almost stationary state.

4.3. Numerical examples for the two-phase model. In this section, we present nu-
merical results for the approximation of the two-phase model. As in the one-phase case
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Figure 10. Comparison of the analytic perimeter L = L(t) = 2πR(t) with R = R(t)
given by the ODE (4.15) with initial condition R0 = 1

2 with diffuse length Lε versus time
t for various values of ε.

we validate the numerical scheme by a comparison with analytic solutions. Moreover, we
provide results for n = 2, 3 with similar applications as for the one-phase model.

4.3.1. Comparison with analytic results. For the two-phase system (1.5)–(1.8), we obtain
in the formal limit D± →∞

−∆u± = 0 in Ω±(t), t > 0,(4.11)

∇u± · ν = 0 on Γ(t), t > 0,(4.12)

v = −αH + β[u] on Γ(t), t > 0,(4.13)

∂nu− = 0 on Σ, t > 0.(4.14)

From (4.11) and (4.12) we deduce, that u± are spatially constant u±(x, t) = û±(t). Again,
u± are given by mass conservation

û±(t)|Ω±(t)| =
ˆ

Ω±(t)

u±(x, t) dx =

ˆ
Ω±(0)

u±(x, 0) dx =

ˆ
Ω±(0)

u±,0(x) dx,

where constant initial data u±,0 = u±(·, 0) are assumed. Assuming Ω = BRΣ
(0) for some

RΣ, Ω+(t) = BR(t)(0) ∀t and constant initial data for u±, one obtains an ODE

(4.15) Ṙ = −α
R

+
βu+,0R

2
0

R2
− βu−,0(R2

Σ −R2
0)

R2
Σ −R2

for the radius R, supplemented with an initial datum R(0) = R0. Using R0 = 0.5, u+,0 ≡ 5,
u−,0 ≡ 0.5 and RΣ = 5, we again solve this ODE with MapleTM[15] and compare the
corresponding perimeter with diffuse perimeters Lε obtained from the discretization of
(2.6)–(2.8). For the diffuse-interface approximation we have used a triangulation Ωh of
Ω = BRΣ

(0), ε = 0.1 and δ = 10−5. Furthermore, the parameters D± = 100, α = 1
8
, β = 1

as well as initial conditions u+,0 ≡ 5 and u−,0 ≡ 0.5 have been applied. In Fig. 10 one can
see a comparison of the analytically obtained perimeter in comparison with Lε for several
values of ε. Again, the results of the asymptotic expansions for the limit ε→ 0 in section
3 are confirmed by the numerical experiments.

Similar to the one-phase case, we further validate the numerical scheme by considering
mass conservation

M+(t) :=

ˆ
Ω

ϕ(x, t)u+(x, t) dx ≡M+(0)
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Figure 11. Discrete counterparts of mass M+ (left) and M−(t) (right) versus time
for ε = 1

8 .

and

M−(t) :=

ˆ
Ω

(1− ϕ(x, t))u−(x, t) dx ≡M−(0).

In Fig. 11 we see the discrete counterparts of mass M+ and M− versus time for the case
ε = 1

8
of the previous example. The results again further justify the applied numerical

treatment.

4.3.2. Further numerical results. For the two-phase model we restrict ourselves to case III,
where a perturbation of a circular initial membrane shape and a locally increased initial
solute concentration u+,0, while the initial concentration u−,0 is assumed constant. In
addition, we present examples with a perturbation of a spherical initial membrane shape
in R3.
III: Perturbation of circular/spherical membrane shape and locally increased
solute concentration.

2d: We assume

Ω+(0) =
{

(r cos θ, r sin θ) : 0 ≤ r < RΓ + A cos(mθ), 0 ≤ θ ≤ 2π
}

with A = 0.7, m = 6, RΓ = 1.5 and

u0(x, y) = B(au)[exp(−au((x− x0)2 + (y − y0)2))

+ exp(−au((x− x1)2 + (y − y1)2))]

for (x, y) ∈ Ω, x0 = 1.9, y0 = 0, x1 = 0.95, y1 = 1.645448, au = 20 and B(au)
is chosen such that M = π holds. Moreover, we use u−,0 ≡ 1 and the parameters
D± = 0.1, α = 0.05, β = 1. For the diffuse-interface approximation, we choose
Ω = (−5, 5)2, ε = 0.1 and δ = 10−5. In Fig. 12 and Fig. 13 one can see contour
plots of the conserved discrete concentrations ϕhu+,h and (1−ϕh)u−,h, respectively,
as well as the level lines {ϕh = 1

2
}. The results clearly show an influence of the

concentrations on the membrane shape and vice versa. Furthermore, a drift of the
membrane to the right can be observed.

3d: For the two-phase system, we consider the same initial membrane shape (4.10) as for
the one-phase model. The initial condition for concentration u+ coincides with the
one for u in the one-phase model, as well. In addition, we assume u−(·, 0) = 0.1, see
Fig. 14 contour plots of cross sections of the initial concentrations ϕh(·, 0)u±,h(·, 0).
We further use the parameters
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Figure 12. Perturbation of a circular initial membrane shape and a locally increased
initial solute concentration u+,0, constant initial concentration u−,0. Discrete concentra-
tion ϕhu+,h and level set {ϕh = 1

2} at times t = 0, t ≈ 0.191, t ≈ 1.427, t ≈ 32.328 and
t ≈ 500.

Figure 13. Perturbation of a circular initial membrane shape and a locally increased
initial solute concentration u+,0, constant initial concentration u−,0. Discrete concentra-
tion (1− ϕh)u−,h and level set {ϕh = 1

2} at times t = 0, t ≈ 0.191, t ≈ 1.427, t ≈ 32.328
and t ≈ 500.

Figure 14. Contour plots of cross sections of the initial concentrations
ϕh(·, 0)u±,h(·, 0) and cross section of level set {ϕh(·, 0) = 1

2}.

Figure 15. Level sets {ϕh(·, t) = 1
2} for t = 0, t ≈ 0.1108, t ≈ 0.6041, t ≈ 1.176, t ≈ 35.8921.

D+ = D− = 0.1; α = 0.05; β = 1; ε =
1

8
; δ = 10−5

and the domain Ω = (−5, 5)3. In Fig. 15 we see a similar evolution as in the case
of the one-phase model, which is due to the fact that the concentration u− is rather
low for this example.

5. Conclusions

The “diffuse domain method” has originally been used for the numerical treatment
of PDE’s and corresponding boundary conditions in domains with possibly complicated
boundaries and for the simulation of coupled bulk-surface PDE’s [9, 10, 11, 24], see also
[27, 16] for the evolving surface case. In this contribution it is used for a new diffuse-
interface approximation of a Stefan-like free boundary problem for osmotic swelling, which
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has not been numerically investigated yet. Besides [23], the current paper provides a further
example of the flexibility of the diffuse domain method with respect to applicability to more
classical free boundary problems.

Acknowledgment. The author would like to thank Georg Prokert and Frieder Lippoth for
helpful discussions and especially for pointing out several interesting numerical examples.
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