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Abstract

This paper deals with the problem of positivity preservation in numerical
algorithms for simulating fiber suspension flows. In contrast to fiber orienta-
tion models based on the Advani-Tucker evolution equations for even-order
orientation tensors, the probability distribution function of fiber orientation
is approximated using the Galerkin discretization of the Fokker-Planck equa-
tion with Fourier basis functions or spherical harmonics. This procedure leads
to a natural generalization of orientation tensor models replacing ad hoc clo-
sure approximations by Galerkin equations for the fine-scale components.
After introducing an operator splitting approach to solving the discretized
Fokker-Planck equation, we present conditions and correction techniques that
guarantee physically correct distribution functions. As the reader will see,
the derivation of these conditions is independent of the space dimension and
their applicability is not limited to the simulation of fiber suspensions.

Keywords: fiber suspension flows, Fokker-Planck equation, orientation
tensors, Galerkin approximation, Fourier analysis, spherical harmonics

1. Introduction

The simulation of complex two-phase flows is still one of the key chal-
lenges in the field of Computational Fluid Dynamics. While simple mixing
processes only depend on the volume fractions of the two materials, the ori-
entation of fibers transported by a fluid medium has a strong influence on
the rheological behavior of fiber suspensions. If many fibers are aligned, the
viscosity increases in the corresponding direction, and the mixture behaves
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more like a solid. Therefore, neglecting those effects may result in very inac-
curate models that do not reproduce practical experiments very well.

In a typical fiber suspension model, the evolution equations introduced
by Advani and Tucker [1] are used to calculate an orientation tensor of the
distribution function. One disadvantage of this approach is the lack of a
universal closure for higher-order tensors that appear in the evolution equa-
tions. Also, orientation tensors corresponding to distribution functions with
negative values may arise. This could generate antidiffusive stress tensors in
the Navier-Stokes equations and unphysical oscillations in the solution. In
the worst case, the simulation may abort due to numerical instabilities.

Numerical solutions to the Fokker-Planck equation for the probability
density function may also become negative leading to physically unrealistic
predictions of local orientation states. While a variety of positivity-preserving
schemes are available for simulating convective transport of scalar quantities
in space and time, the presence of the divergence operator with respect to
the orientation angles makes it more difficult to enforce positivity.

In this paper, we focus on the preservation of physical properties of ori-
entation tensors. We prove that all even-order orientation tensors associated
with a nonnegative probability density function are positive semi-definite.
Then we derive and enforce sufficient conditions of positive semi-definiteness
for a Galerkin discretization of the Fokker-Planck equation. The proposed
correction techniques adjust the coefficients of Fourier basis functions or
spherical harmonics so as to guarantee the physical correctness of orientation
tensors in 2D/3D. The space-dependent part of the Fokker-Planck equation is
decoupled using operator splitting. The corresponding subproblems and the
Navier-Stokes equations for the velocity and pressure of the fiber suspension
can be solved, e.g., using finite element schemes presented in [7, 11, 14]. For
validation purposes, a numerical study is performed for planar flow problems
with constant velocity gradients and known analytical solutions.

2. Fiber orientation modeling

Tracking the evolution of individual fibers is impossible and redundant
when it comes to experimental and numerical studies of fiber suspension
flows. The large number of fibers and immense costs associated with mea-
surement or prediction of their properties call for a statistical approach to
describing fiber orientation states. Therefore, we consider a (local) proba-
bility distribution function ψ : Rn × Sn−1 × R+

0
→ R+

0
which specifies the
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probability ψ(x,p, t) that a fiber occupying the space location x ∈ Rn at
the time instant t ∈ R+

0
has the orientation p ∈ Sn−1 ⊂ Rn. Based on this

definition, ψ satisfies the normalization condition∫
Sn−1

ψ(x,p, t) dp = 1 for all x ∈ Rn and t ≥ 0 (1)

and possesses a positive parity due to the indistinguishability of the fiber
ends

ψ(·,p, ·) = ψ(·,−p, ·) for all orientations p ∈ Sn−1. (2)

The evolution of the probability distribution function ψ can be described by
the (nonconservative form of the) Fokker-Planck equation [2, 8, 15]

dψ

dt
+∇p · (ṗψ) =

∂ψ

∂t
+ u · ∇xψ + divp(ṗψ) = Dr∆pψ, (3)

where u is the divergence-free velocity of the carrier fluid and ṗ is the time
rate of change in the orientation p of a single fiber interacting with the fluid.
This rotation rate can be modeled by the Jeffery equation [10]

ṗ = W · p + λ [D · p−D : (p⊗ p)p] , (4)

where D = 1
2
(∇xu + ∇xu

>) and W = 1
2
(∇xu − ∇xu

>) are the strain rate
and vorticity tensors of the fluid and λ = (r2

e − 1)(r2
e + 1)−1 is a parameter

depending on the aspect ratio of the fibers re = L
d

with the fiber length L and
the fiber diameter d. The right hand side of the Fokker-Planck equation (3)
simulates possible fiber-fiber interactions using the Laplace-Beltrami opera-
tor ∆p. Folgar and Tucker [9] define Dr = CI γ̇ with γ̇ = (1

2
D : D)1/2 and an

empirical constant CI ≥ 0 depending on the crowding number.
The Navier-Stokes equations for the velocity u ∈ Rn and pressure p ∈ R+

0

of an incompressible mixture with density ρ ∈ R+

0
are given by

∂(ρu)

∂t
+ divx(ρu⊗ u) = −∇xp+ divxτeff , divxu = 0, (5)

where τeff is the effective stress tensor of the mixture (see below).
Because of averaging processes u and ρ are defined by

ρ = (1− α)ρf + αρs, (6a)

ρu = (1− α)ρfuf + αρsus, (6b)
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where α is the volume fraction of fibers. The variables of the solid and fluid
phase are denoted by ρs, us and ρf , uf , respectively. If we assume that the
velocity of the fibers us is equal to the velocity of the mixture u, we have

(1− α)ρfuf + αρsus = ρu

⇔ (1− α)ρfuf + αρsu = (1− α)ρfu + αρsu

⇔ (1− α)ρfuf = (1− α)ρfu

(7)

and therefore u = us = uf .
This model for fiber suspensions is completed by the evolution equation

for the volume fraction α : Rn × R+

0
→ [0, 1]

∂α

∂t
+ divx(usα) =

∂α

∂t
+ divx(uα) = 0 (8)

and a generic model for the effective stress tensor τeff [12]

τeff = 2µeff [D +NpA4 : D +Ns(A2 ·D + D · A2)] , (9)

µeff = µ0(1 + αH), Np = αE
1+αH

, Ns = αB
1+αH

,

where µ0 is the dynamic viscosity of the fluid, H, E, B are positive material
constants and A2 and A4 are the orientation tensors of second and fourth
order, respectively, defined by (1 ≤ i, j, k, l ≤ n)

A2 = (Aij), Aij = 〈pipj〉 =

∫
S
pipjψ(p) dp, (10a)

A4 = (Aijkl), Aijkl = 〈pipjpkpl〉 =

∫
S
pipjpkplψ(p) dp. (10b)

In a similar vein, an orientation tensor of order m ∈ N can be defined in
terms of its components with 1 ≤ i1, . . . , im ≤ n as follows:

Am = (Ai1...im), Ai1...im = 〈pi1 . . .pim〉 =

∫
S
pi1 . . .pimψ(p) dp. (10c)

Notice that all orientation tensors Am for odd m are equal to zero due to the
positive parity of the orientation distribution function ψ.

The system of partial differential equations given by the Navier-Stokes
equations (5) and the Fokker-Planck equation (3) models the macroscopic
behavior of (semi-)dilute fiber suspension flows. As expected, there is a two-
way coupling between (3) and (5) due to the dependence of the effective
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stress tensor τeff on the orientation tensors A2 and A4 (and therefore on the
orientation distribution function ψ) and the dependence of the rotation rate
ṗ given by the Jeffery equation (4) on the spatial velocity gradient ∇xu.

If we multiply the Fokker-Planck equation (11) by the volume fraction α
and add the evolution equation (8) multiplied by ψ, we obtain the following
conservative formulation of the Fokker-Planck equation for the orientation
probability density per unit volume ψ̃ = αψ:

0 = α

(
∂ψ

∂t
+ u · ∇xψ + divp(ṗψ)−Dr∆pψ

)
+ ψ

(
∂α

∂t
+ divx(uα)

)
= α

∂ψ

∂t
+ ψ

∂α

∂t
+ αu · ∇xψ + ψdivx(uα) + αdivp(ṗψ)− αDr∆pψ

=
∂αψ

∂t
+ divx(uαψ) + divp(ṗαψ)−Dr∆p(αψ)

=
∂ψ̃

∂t
+ divx(uψ̃) + divp(ṗψ̃)−Dr∆pψ̃.

(11)

By definition, ψ̃(x,p, t) describes the probability of discovering a fiber with
an orientation p at the space location x and time t. By (1) we have

α(x, t) =

∮
Sn−1

ψ̃(x,p, t) dp for all x ∈ Rn and t ≥ 0. (12)

In the following, we will always use the α-weighted form of the orientation
distribution and omit the tilde ·̃ for brevity. In particular, the orientation
tensors Am are defined by the volumetric probability density ψ̃. If we consider
the space-independent formulation of the Fokker-Planck equation (11), the
two definitions of the orientation distribution function are equivalent.

3. Galerkin discretization

In this section, we focus on the discretization of the Fokker-Planck equa-
tion (11). Multiplying it by pipj, integrating over the sphere Sn−1 and in-
voking the definition of the orientation tensors A2 and A4, one obtains the
evolution equation introduced by Advani and Tucker [1]

dA2

dt
= (WA2 − A2W) + λ(DA2 + A2D− 2A4 : D) + 2Dr(I − nA2). (13)

This popular fiber orientation model represents a second-order moment ap-
proximation to the Fokker-Planck equation.
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Similarly, evolution equations for orientation tensors Am of higher order
m = 2k, k > 1 can be derived by multiplying the Fokker-Planck equa-
tion (11) by pi1 . . .pim and integrating over the sphere Sn−1. A common
drawback of such moment approximations is the necessity of an empirical
closure for the orientation tensor of the next higher order Am+2 ≈ Ãm+2(Am)
to obtain a closed formulation (such as equation (13) with the unknown tensor
A4 approximated by a function of A2). There are many closure approxima-
tions based on different modeling approaches like the linear, quadratic, and
hybrid closure from the paper by Advani and Tucker [1] and orthotropic clo-
sures derived by Cintra and Tucker [6]. Unfortunately, none of these closures
is able to model the tensor A4 correctly in all possible test cases.

Here we introduce another, more general approach to deriving a discrete
version of the Fokker-Planck equation (11) based on an operator splitting
approach to time integration, Galerkin discretizations of the corresponding
PDEs, and a customized tensor product ansatz to avoid the use of closure
approximations and minimize the dimension of the subproblems.

To decompose the Fokker-Planck equation (11) into subproblems with
segregated treatment of the convective transport in space and orientation
changes at a fixed location, we define the differential operators Lx and Lp

w.r.t. the space and orientation variables, respectively, as follows:

Lx· = divx(u·), (14a)

Lp· = divp(ṗ·)−Dr∆p · . (14b)

This decomposition of L = Lx+Lp makes it possible to discretize the Fokker-
Planck equation (11) in time using an operator splitting approach. In the
simplest case, we have to solve the following initial value problems:

∂ψ(p)

∂t
+ Lpψ

(p) = 0 for t ∈ (tn, tn+1) with ψ(p)(tn) = ψn, (15a)

∂ψ(x)

∂t
+ Lxψ

(x) = 0 for t ∈ (tn, tn+1) with ψ(x)(tn) = ψ(p)(tn+1)

(15b)

for discrete time levels t0 = 0 < t1 < . . . < tM = T with the initial condition
ψ0 = ψ0. The final orientation distribution ψ(x)(tn+1) approximates the
solution of the Fokker-Planck equation (11) at the time level tn+1, that is,
ψn+1 = ψ(x)(tn+1) ≈ ψ(tn+1). Further discretization of the two subproblems
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is based on the tensor product ansatz

ψ(x,p, t) =
∑
i,j

ψi,j(t)σi(x)%j(p) ∈ V = span{σi%j} (16)

with a currently arbitrary orthonormal basis {%j} in the orientation direc-
tion and linear finite elements {σi} in the space direction for the orientation
distribution function ψ. Using σk%l as test functions in the weak formulation
and substituting (16), one obtains the semi-discrete problems

0 =

∫
Ω

∮
S
σk(x)%l(p)

∑
i,j

σi(x)
[
ψ̇i,j(t)%j(p) + ψi,j(t)

(
divp(ṗ%j(p))

−Dr∆p%j(p)
]

dp dx,

(17a)

0 =

∫
Ω

∮
S
σk(x)%l(p)

∑
i,j

%j(p)
[
ψ̇i,j(t)σi(x) + ψi,j(t)divx(uσi(x))

]
dp dx

(17b)

for all k, l. After performing mass lumping in equation (17a) and exploiting
the orthonormality of the basis functions σi in equation (17b), these equations
yield the semi-discrete versions of the space- and orientation-independent
Fokker-Planck equation (11)

∂ψ(p, t)

∂t
+ divp (ṗψ(p, t))−Dr∆pψ(p, t) = 0, (18)

∂ψ(x, t)

∂t
+ divx (uψ(x, t)) = 0, (19)

respectively. When it comes to calculating ṗ in equation (18), the velocity
gradient ∇xu is evaluated at the grid node associated with the basis function
σi. Equation (19) represents an ordinary spatial convection problem with the
velocity u and no diffusion. Numerical methods for solving such equations are
already extensively discussed in the literature (see, e.g., [7, 11, 14] and refer-
ences therein). For this reason, we will disregard (19) in the next sections but
keep in mind that a spatial convection step of this form must be performed for
each degree of freedom of the orientation discretization. On the other hand,
we must solve the space-independent Fokker-Planck equation (18) at each
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node of the spatial grid. So it is beneficial to reduce the number of degrees
of freedom in the orientation discretization and minimize the computational
effort for simulating orientation changes. Therefore, the key challenge of the
next sections will be the development of a new approach to constructing good
physics-compatible approximations of the space-independent orientation dis-
tribution function ψ with a small number of degrees of freedom.

4. Fourier analysis in 2D

As already mentioned, a physically meaningful distribution function ψ(p)
should be nonnegative for all possible orientations p ∈ Sn−1. Otherwise, the
corresponding orientation tensors A2 and A4 and therefore the effective stress
tensor τeff defined by equation (9) could be physics-incompatible. To preserve
the nonnegativity property at the discrete level, we could use locally defined
interpolatory basis functions like linear finite elements and impose positivity
constraints on the nodal values of the numerical solution. However, a rela-
tively large number of degrees of freedom would be needed to approximate the
distribution function ψ and to compute the corresponding orientation tensors
A2 and A4 for the effective stress tensor τeff accurately enough. Moreover, it
would be expensive to enforce the normalization condition (1) or (12).

In this paper, we favor globally defined trigonometric basis functions
which simplify the preservation of mass and possess the orthonormality prop-
erty, as required by the operator splitting algorithm described in the last
section. More specifically, we choose the normalized Fourier basis functions

%j(φ) =


1√
2π

: j = 0,
1√
π

sin ((j + 1)φ) : j is odd,
1√
π

cos (jφ) : j is even

(20)

in the case of planar orientation distribution functions ψ : S1 ⊂ R2 → R+

0
.

The case of a three-dimensional orientation distribution is treated in sec-
tion 6.

If ψ is square integrable and has a positive parity, then it can be rep-
resented by a Fourier expansion in polar coordinates p(φ) = (cosφ, sinφ)>
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with φ ∈ [0, 2π). We have

ψ(φ) = a0
1√
2π

+ 1√
π

∑
j∈N

(a2j cos(2jφ) + b2j sin(2jφ))

= a0%0(φ) +
∑
j∈N

(a2j%2j(φ) + b2j%2j−1(φ)) =
∑
j∈N0

ψj%j(φ)
(21)

with the Fourier coefficients a0, aj, bj ∈ R, j ∈ 2N, or ψj ∈ R, j ∈ N0 , and
ψ2j = a2j and ψ2j+1 = b2j+2, j ∈ N0 , defined by

a2i =

∫ 2π

0

ψ(φ) cos(2iφ) dφ =

∫ 2π

0

ψ(φ)%2i(φ) dφ i ∈ N0 , (22a)

b2i =

∫ 2π

0

ψ(φ) sin(2iφ) dφ =

∫ 2π

0

ψ(φ)%2i+1(φ) dφ i ∈ N0 . (22b)

So the obvious discretization procedure is to use a truncated Fourier series
of order Np ∈ 2N as an approximation for ψ

ψNp(φ) = ψ

Np∑
j=0

ψj%j(φ) ≈ ψ(φ) (23)

and test the weak formulation of the space-independent Fokker-Planck equa-
tion (18) with the basis functions %i, 0 ≤ i ≤ Np.

One advantage of this approach is the trivial and natural implementation
of the normalization condition (1) or (12): the “mass” of ψ is only depending
on the first Fourier coefficient ψ0 = a0∫ 2π

0

ψNp(φ) dφ =
√

2π

Np∑
j=0

ψj

∫ 2π

0

%j(φ)%0(φ) dp =
√

2πa0. (24)

On the other hand, it is not clear what ψNp ≥ 0 means for a Fourier approx-
imation of a finite order Np ∈ 2N:

If we require that ψNp(φ) be nonnegative for all possible orientations
φ ∈ [0, 2π), then the exact truncated Fourier series PNpψ of a nonnegative
orientation distribution function ψ may not be acceptable (see Figure 1). In
addition, it is very expensive to find the minimum of ψNp for orders Np > 2
due to the global definition of the basis functions %j.
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Figure 1: Demonstration of the Gibbs phenomenon for different orders Np.

Another possible interpretation of the nonnegativity condition is the fol-
lowing: There exists a function ψ̄ ≥ 0 with PNpψ̄ = ψNp , which is the same as
the equality of the first Fourier coefficients, ψ̄j = ψj for all 0 ≤ j ≤ Np. This
is a more realistic choice for the condition ψNp ≥ 0, because the truncated
Fourier series PNpψ is accepted for every ψ ≥ 0 no matter if ψNp(φ) ≥ 0
holds for all φ ∈ [0, 2π) or not. The disadvantage is that the function ψ ≥ 0
with PNpψ = ψNp is generally unknown and therefore we may not know if our
approximation fulfills this interpretation of the condition ψNp ≥ 0. Neverthe-
less, it is possible to derive necessary constraints for the Fourier coefficients
of a nonnegative function ψ ≥ 0. For example, we have

|a2i| =
1√
π

∣∣ ∫ 2π

0

ψ(φ) cos(2iφ) dφ
∣∣ ≤ 1√

π

∫ 2π

0

ψ(φ) |cos(2iφ)| dφ

≤ 1√
π

∫ 2π

0

ψ(φ) dφ ≤
√

2

∫ 2π

0

ψ(φ)%0(φ) dφ =
√

2a0

(25a)

|b2i| =
1√
π

∣∣ ∫ 2π

0

ψ(φ) sin(2iφ) dφ
∣∣ ≤ √2a0, (25b)

or, more generally,

c2i =
∣∣ 1√
π

∫ 2π

0

ψ(φ) cos(2iφ+ κ) dφ
∣∣ ≤ √2a0 (25c)

with c2i =
√
a2

2i + b2
2i and κ ∈ [0, π

i
) defined by

b2i cos(2iφ) + a2i sin(2iφ) = ck cos(2iφ+ κ). (26)
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In this section, we will develop a new approach to constructing additional
inequality constraints depending on (orientation) tensors more general than
those defined in equations (10). For this purpose, we use the property of
positive semi-definiteness of the tensors and focus on the coefficients of the
characteristic polynomial.

Before analyzing the orientation tensors, we start with a useful interpre-
tation of an arbitrary tensor. Each tensor B ∈ Rn×...×n of an arbitrary order
2m ∈ N (this means n × . . . × n 2m times) can be interpreted as a ma-
trix B ∈ Rnm×nm

. The equivalence relation is given by the transformation
ς : {1, . . . , n}m → {1, . . . , nm} defined by

ς(i1, . . . , im) =
m∑
k=1

nk−1(ik − 1)m + 1. (27)

Then the components of B are uniquely defined by

Bς(i1,...,im),ς(im+1,...,i2m) = Bi1...i2m . (28)

This relation motivates the following definition of positive definiteness of a
general tensor, which is a generalization of a definition by Vincenzi [16].

Defintion 4.1 (Positive definiteness of a tensor). A tensor B ∈ Rn×...×n,
n ∈ N of order 2m ∈ 2N (i.e., n × . . . × n 2m times) is positive definite if
and only if

Si1...imBi1...imj1...jmSj1...jm = S : (B : S) > 0 for all S ∈ Rn×...×n\{0},
(29)

where S ∈ Rn×...×n is a tensor of order m.

Other properties like the positive semi-definiteness are defined in a similar
way. This enables us to formulate and prove the following theorem.

Theorem 4.1 (Positive semi-definiteness of an orientation tensor). Let ψ ≥ 0
be a nonnegative function. Then each orientation tensor A2m of order 2m ∈
2N defined by equation (10) is positive semi-definite.
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Proof. For each tensor S ∈ Rn×...×n of order m we have∑
1≤i1...imj1...jm≤n

Si1...imAi1...imj1...jmSj1...jm

=
∑

1≤i1...im≤n

Ai1...imi1...imS2
i1...im

+ 2
∑

1≤i1...imj1...jm≤n,
(i1...im)<(j1...jm)

Ai1...imj1...jmSi1...imSj1...jm

=

∫
Sn−1

ψ(p)
∑

1≤i1...im≤n

(pi1 . . .pim)2S2
i1...im

dp

+ 2

∫
Sn−1

ψ(p)
∑

1≤i1...imj1...jm≤n,
(i1...im)<(j1...jm)

pi1 . . .pimpj1 . . .pjmSi1...imSj1...jmdp

=

∫
Sn−1

ψ(p)
( ∑

1≤i1...im≤n

pi1 . . .pimSi1...im
)2

dp ≥ 0

because of ψ ≥ 0. This proves the assertion.

This result makes it possible to derive conditions for the Fourier coeffi-
cients by analyzing the eigenvalues of the orientation tensors. For example,
a general procedure would be the calculation of A2 by definition (10a) and
checking the signs of the corresponding eigenvalues. If negative eigenval-
ues are found, the Fourier coefficients have to be corrected to satisfy the
requirement of positive semi-definiteness. It is also possible to express the
orientation tensors in terms of the Fourier coefficients. Then there is no need
to calculate the integrals of definition (10) in each correction step. In addi-
tion, inequalities for the Fourier coefficients can be derived a priori using the
corresponding characteristic polynomials and Descartes’ rule of signs [3, 5].

Theorem 4.2 (Descartes’ rule of signs). Let p(x) = pnx
n+pn−1x

n−1+. . .+p0

be a polynomial with real coefficients p0, . . . , pn ∈ R, s be the number of sign
changes between consecutive nonzero coefficients of the sequence (pn, . . . , p0)
and t be the number of positive roots of the polynomial p .Then the difference
s− t is a nonnegative even integer.

A variation of sign in the sequence (pn, . . . , p0) occurs if and only if pipj <
0 for j = i+ 1 or j > i+ 1 with pk = 0 for all i < k < j.

Applying theorem 4.2 to the polynomial

p̃(x) = p(−x) = (−1)npnx
n + (−1)n−1pn−1x

n−1 + . . .+ p0, (30)

12



we find that p has no negative root (p̃ has no positive root) if and only if
(−1)kpk ≥ 0 or (−1)kpk ≤ 0 for all 0 ≤ k ≤ n. The direction that does not
follow from theorem 4.2 could be proven trivially by expanding

p(x) = (x− α1) · . . . · (x− αn), (31)

where α1, . . . , αn ≥ 0 are the nonnegative roots of the polynomial.
Using this result, we can prove the core statement of this paper which is

applicable to an arbitrary orientation tensor A2m.

Theorem 4.3 (Positive semi-definiteness of a tensor). A symmetric tensor
B ∈ Rn×...×n of order 2m ∈ 2N is positive semi-definite if and only if the
characteristic polynomial

χB(λ) := χB(λ) = det(λI −B) = λn
m

+ pnm−1λ
nm−1 + . . .+ p0 (32)

of the corresponding matrix B ∈ Rnm×nm
defined by equation (28) fulfills the

condition

(−1)n
m−kpk ≥ 0 for all 0 ≤ k < nm. (33)

Proof. First we note that all eigenvalues of B and therefore B are real-valued
due to the symmetry of B. Additionally, inequalities (33) ensure that there
is no negative root of χB and therefore no negative eigenvalue of B, which
completes the proof.

To derive conditions for the first Fourier coefficients of our approximation
ψNp making use of theorem 4.3, let us define a generalization of the second
order orientation tensor B(m)

2 ∈ R2×2, m ∈ 2N thus:

B(m)
2 =

∫ 2π

0

(
cos(m

2
φ) cos(m

2
φ) cos(m

2
φ) sin(m

2
φ)

sin(m
2
φ) cos(m

2
φ) sin(m

2
φ) sin(m

2
φ)

)
ψ(φ) dφ

=
1

2

∫ 2π

0

(
1 + cos(mφ) sin(mφ)

sin(mφ) 1− cos(mφ)

)
ψ(φ) dφ

=

√
π

2

∫ 2π

0

(√
2%0 + %m %m−1

%m−1

√
2%0 − %m

)
ψ(φ) dφ

=

√
π

2

(√
2a0 + am bm
bm

√
2a0 − am

)
.

(34)
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Notice that B(2)
2 is equal to A2. The characteristic polynomial of such a tensor

is given by

χB(m)
2

(λ) = det(λI − B(m)
2 ) = det(

√
π

2
λ̃I − B(m)

2 )

=
π

4

((
λ̃−
√

2a0 − am
)(

λ̃−
√

2a0 + am

)
− b2

m

)
=
π

4

(
λ̃2 − 2

√
2a0λ̃+ 2a2

0 − a2
m − b2

m

)
,

(35)

where λ̃ = 2λ√
π
. This yields the inequalities

{
0 ≤ a0,

0 ≤ 2a2
0 − a2

m − b2
m = 2a2

0 − c2
m

(36a)

(36b)

because of the positive semi-definiteness of B(m)
2 . Condition (36a) is triv-

ially satisfied due to the normalization condition (12) and inequality (36b) is
equivalent to equation (25c). Thus we have derived the inequality constraint
2a2

0 ≥ a2
k + b2

k for the Fourier coefficients ak and bk in another way.
Next we analyze the fourth order orientation tensor A4. Using the addi-

tion theorems for trigonometric polynomials and the orthonormality of the
basis functions %j, the fourth order orientation tensor can be written as

A4 =
√
π

8


3
√

2a0 + 4a2 + a4 2b2 + b4 2b2 + b4

√
2a0 − a4

2b2 + b4

√
2a0 − a4

√
2a0 − a4 2b2 − b4

2b2 + b4

√
2a0 − a4

√
2a0 − a4 2b2 − b4√

2a0 − a4 2b2 − b4 2b2 − b4 3
√

2a0 − 4a2 + a4

 .

(37)
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Let λ ∈ R and λ̃ = λ√
π
. The characteristic polynomial of A4 is given by

χA4(λ) = det(λI − A4) = det(
√
πλ̃I − A4)

= −π2

32
λ̃
(

2
√

2a3
0 − 20a2

0λ̃− 2
√

2a0a
2
2 −
√

2a0a
2
4 − 2

√
2a0b

2
2 −
√

2a0b
2
4

+ 32
√

2a0λ̃
2 + 2a2

2a4 + 8a2
2λ̃+ 4a2b2b4 + 2a2

4λ̃− 2a4b
2
2

+8b2
2λ̃+ 2b2

4λ̃− 32λ̃3
)

= −π2

32
λ̃
(
−32λ̃3 + 32

√
2a0λ̃

2 − (20a2
0 − 8c2

2 − 2c2
4)λ̃

+2
√

2a3
0 − 2

√
2a0c

2
2 −
√

2a0c
2
4 + 2a2

2a4 + 4a2b2b4 − 2a4b
2
2

)
= π2λ̃4 − π2

√
2a0λ̃

3 + π2

16
(10a2

0 − 4c2
2 − c2

4)λ̃2

− π2

32
(2
√

2a3
0 − 2

√
2a0c

2
2 −
√

2a0c
2
4 + 2a2

2a4 + 4a2b2b4 − 2a4b
2
2).

This reveals the following conditions
0 ≤ a0,

0 ≤ 10a2
0 − 4c2

2 − c2
4,

0 ≤ 2
√

2a3
0 − 2

√
2a0c

2
2 −
√

2a0c
2
4 + 2a2

2a4 + 4a2b2b4 − 2a4b
2
2,

(38a)

(38b)

(38c)

where inequality (38a) is again satisfied by the normalization condition (12)
and inequality (38b) is satisfied by condition (25c) for i = 1, 2

10a2
0 − 4c2

2 − c2
4 ≥ 10a2

0 − 8a2
0 − 2a2

0 = 0. (39)

All in all, the positive semi-definiteness of the fourth order orientation tensor
yields the condition

0 ≤ 2
√

2a3
0 − 2

√
2a0c

2
2 −
√

2a0c
2
4 + 2a2

2a4 + 4a2b2b4 − 2a4b
2
2 (40)

for the Fourier coefficients a0, a2, a4, b2, b4. This condition can be extended
to coefficients of higher order with a more general orientation tensor B(m)

4 as

in the case of B(m)
2 (see equation (34))

0 ≤ 2
√

2a3
0 − 2

√
2a0c

2
m −
√

2a0c
2
2m + 2a2

ma2m + 4ambmb2m − 2a2mb
2
m. (41)
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Furthermore it is possible to define irregular tensors like

B̂ =

∫ 2π

0

(
cos(3φ) cos(3φ) cos(3φ) sin(φ)
sin(φ) cos(3φ) sin(φ) sin(φ)

)
ψ(φ) dφ

=
1

2

∫ 2π

0

(
1 + cos(6φ) sin(4φ)− sin(2φ)

sin(4φ)− sin(2φ) 1− cos(2φ)

)
ψ(φ) dφ

=

√
π

2

(√
2a0 + a6 b4 − b2

b4 − b2

√
2a0 − a2

)
,

(42)

which also satisfy the condition of positive semi-definiteness of theorem 4.3.
Then the characteristic polynomial of B̂ is given by

χB̂(λ) = det(λI − B̂) = det(
√
πλ̃I − B̂)

= π
4

[
(2λ̃−

√
2a0 − a6)(2λ̃−

√
2a0 + a2)− (b4 − b2)2

]
= π

4

[
4λ̃2 − (4

√
2a0 − 2a2 + 2a6)λ̃

+2a2
0 −
√

2a0a2 +
√

2a0a6 − a2a6 − (b4 − b2)2
]
.

(43)

where λ̃ = λ√
π
, and the conditions{
0 ≤ 2

√
2a0 − a2 + a6,

0 ≤ 2a2
0 −
√

2a0a2 +
√

2a0a6 − a2a6 − (b4 − b2)2,

(44a)

(44b)

must be valid, where the first one is true due to inequalities (36b).

5. Correction techniques

In the last section, we have analyzed the properties of orientation tensors
associated with a nonnegative Fourier approximation ψNp and derived corre-
sponding conditions for the Fourier coefficients. While it is nearly impossible
to take all possible inequalities for a “nonnegative” Fourier approximation
ψNp of high order Np � 2 into account, we are now able to verify if specific
orientation tensors, like the ones appearing in the definition of the effective
stress tensor τeff (see equation (9)), are positive semi-definite and therefore
physics-compatible without solving an eigenvalue problem each time. This
section deals with two methods which correct the coefficients of ψNp if the
corresponding (known) relations are not satisfied.
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After discretizing the space-independent Fokker-Planck equation (18) in
the orientation component as described in section 3 and using the θ-method
for the time discretization, we obtain the linear system

Aψn+1 := (M + ∆tθ(K + D))ψn+1 = (M−∆t(1− θ)(K + D))ψn =: b,
(45)

where A,M,K,D ∈ RNp+1×Np+1 are the system, mass, convection and
diffusion matrices, respectively, and

ψn =
(
an0 , b

n
2 , a

n
2 , . . . , b

n
Np
, anNp

)>
=
(
ψn0 , ψ

n
1 , . . . , ψ

n
Np

)>
∈ RNp+1 (46)

defines the vector of Fourier coefficients of the approximation ψNp at the
time level t = tn, i.e., ψNp,n = ψNp(tn) ≈ ψ(tn). In general, the solution ψNp

defined by the coefficients ψn+1 = A−1b does not ensure nonnegativity or
the conditions deduced in section 4. To enforce these conditions, we correct
the coefficients by solving the constrained least-squares problem

F (ψn+1) =
∥∥P−1(Aψn+1 − b)

∥∥2

2
= min!,

cn+1
2k ≤

√
2an+1

0 for all 1 ≤ k ≤ Np,

0 ≤ 2
√

2(an+1
0 )3 − 2

√
2an+1

0 (cn+1
2 )2 −

√
2an+1

0 (cn+1
4 )2

+ 2(an+1
2 )2an+1

4 + 4an+1
2 bn+1

2 bn+1
4 − 2an+1

4 (bn+1
2 )2,

an+1
0 = an0 ,

(47a)

(47b)

(47c)

(47d)

where equations (47b) and (47c) define the range of admissible values for
the Fourier coefficients of ψn+1, inequality (47d) ensures mass conservation
and P−1 ∈ RNp+1×Np+1 stands for a suitable preconditioner. By choosing
P−1 = I, the error norm of the residual Aψn+1 − b would be minimized
under the above-mentioned conditions. If we define P−1 = A−1, the distance

to an unphysical approximation ψ̃Np(tn+1) with the coefficient vector ψ̃
n+1

=
A−1b would be reduced. This choice is justifiable due to the equality

‖ψn+1 − ψ̃n+1‖2
2 =

∫ 2π

0

(
ψNp(φ, tn+1)− ψ̃Np(φ, tn+1)

)2

dφ (48)

and is used in the following.
If condition (47c) for a positive semi-definite fourth order orientation

tensor A4 is neglected, the minimization problem (47) decomposes into lo-
cal subproblems which can be analyzed independently. After solving these

17



subproblems analytically, the Fourier coefficients of ψNp(tn+1) are defined
by [13]

ak =
√

2an+1
0 (̃cn+1

k )−1ãn+1
k = γn+1

k ãn+1
k ,

bk =
√

2an+1
0 (̃cn+1

k )−1b̃n+1
k = γn+1

k b̃n+1
k ,

(49)

where γn+1
k =

√
2an+1

0 (c̃n+1
k )−1. If we wish to ensure the positive semi-

definiteness of A4, too, bn+1
2 , an+1

2 , bn+1
4 and an+1

4 have to satisfy the reduced
minimization problem

F (. . .) =
2∑

k=1

(an+1
2k + ãn+1

2k )2 + (bn+1
2k + b̃n+1

2k )2 = min!,

cn+1
2 ≤

√
2an+1

0

cn+1
4 ≤

√
2an+1

0

0 ≤ 2
√

2(an+1
0 )3 − 2

√
2an+1

0 (cn+1
2 )2 −

√
2an+1

0 (cn+1
4 )2

+ 2(an+1
2 )2an+1

4 + 4an+1
2 bn+1

2 bn+1
4 − 2an+1

4 (bn+1
2 )2,

(50a)

(50b)

(50c)

(50d)

and the additional coefficients an+1
k and bn+1

k for k > 4 can be defined by
equation (49).

Another approach to enforcing the conditions of positive semi-definiteness
is based on stabilization techniques for Galerkin discretizations of pure con-
vection equations: artificial diffusion is added to dampen possible (especially
high-frequency) oscillations. This can guarantee nonnegativity because the
constant orientation distribution function ψNp ≡ const satisfies the nonneg-
ativity condition ψNp ≥ 0 in all cases. To utilize the artificial diffusion ap-
proach and define the artificial diffusion parameter µ̃ ≥ 0, we apply another
operator splitting to the modified partial differential equation

∂ψ(p, t)

∂t
+ divp (ṗψ(p, t))−∆p (Drψ(p, t))− µ̃∆p (ψ(p, t)) = 0. (51)

The resulting additional initial value problem reads

∂ψ

∂t
− µ̃∆p (ψ(p, t)) = 0 in (tn, tn+1) with ψ(tn) = ψ̃n+1 (52)

and the corresponding discrete problem is given by

AD̃ψ
n+1 :=

(
M + µθD̃

)
ψn+1 =

(
M− µ(1− θ)D̃

)
ψ̃
n+1

=: bD̃, (53)
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where µ := ∆tµ̃. The minimization problem for calculating µ ≥ 0 reads

F (µ) = µ = min!,

cn+1
2k ≤

√
2an+1

0 for all 1 ≤ k ≤ Np,

0 ≤ 2
√

2(an+1
0 )3 − 2

√
2an+1

0 (cn+1
2 )2 −

√
2an+1

0 (cn+1
4 )2

+ 2(an+1
2 )2an+1

4 + 4an+1
2 bn+1

2 bn+1
4 − 2an+1

4 (bn+1
2 )2,

an+1
0 = ãn+1

0 ,

(54a)

(54b)

(54c)

(54d)

with an+1
k and bn+1

k defined by [13]

an+1
k =

π − k2πµ(1− θ)
π + k2πµθ

ãn+1
k =

(
1− k2µ

1 + k2µθ

)
ãn+1
k , (55a)

bn+1
k =

π − k2πµ(1− θ)
π + k2πµθ

b̃n+1
k =

(
1− k2µ

1 + k2µθ

)
b̃n+1
k (55b)

because of the diagonal form of the mass and diffusion matrices M and D̃,
respectively. Here we have to observe the condition

1 ≥ k2µ

1 + k2µθ
⇒ 1− 1

k2µ
≤ θ ≤ 1 for all 1 ≤ k ≤ Np, (56)

because a change in sign of the coefficients an+1
k and bn+1

k is unphysical after
adding pure diffusion. Problem (55) decomposes into local subproblems as
well, where the decomposition depends on the inequalities. Then µ must be
defined as the minimum of artificial diffusion parameters for all subproblems.
If we only take care of conditions (54b) and (54d) and ignore the positive
semi-definiteness of the fourth order tensor A4 (inequality (54c)), then µ ≥ 0
has to satisfy [13]

µ = max
{

0,
c̃n+1
k −

√
2a0

k2(θ
√

2a0 + (1− θ)c̃n+1
k )

}
for all 1 ≤ k ≤ Np. (57)

A detailed derivation of the results of equations (49), (55), and (57) is pre-
sented in [13].

6. Generalization to 3D

After analyzing nonnegative Fourier approximations of planar orientation
distribution functions ψ : S1 → R+

0
and designing correction techniques for
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the Fourier coefficients, let us now summarize the equivalent results for more
general three-dimensional orientation distribution functions ψ : S2 → R+

0

using spherical coordinates defined by p(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ)>

with θ ∈ [0, π] and φ ∈ [0, 2π). For this problem, the corresponding basis
functions of the Galerkin discretization are given by the real-valued spherical
harmonics Yl,m with 2l ∈ N0 and −l ≤ m ≤ l, which are defined by

Yl,m =


√

2(−1)mIm(Y
|m|
l ) : m < 0,

Y 0
l : m = 0,√
2(−1)mRe(Y

|m|
l ) : m > 0.

(58)

The complex spherical harmonics Y m
l form a complete and orthonormal

set of eigenfunctions of the Laplace-Beltrami operator defined on the two-
dimensional sphere

∆θ,φY
m
l (θ, φ) =

( ∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
Y m
l (θ, φ) (59)

= −l(l + 1)Y m
l (θ, φ) (60)

and are given by

Y m
l (θ, φ) =

1√
2π

√
2l + 1

2

(l −m)!

(l +m)!
Pl,m(cos θ) eimφ, (61)

where Pl,m are the associated Legendre polynomials and l ∈ N0 , −l ≤ m ≤ l.
We just need to consider Yl,m with l even because the parity only depends on
the index l. In particular, Y m

l (π− θ, π+φ) = (−1)lY m
l (θ, φ). Additionally, l

determines the order of Yl,m, so the number of basis functions with an order

less than or equal to Np is given by (Np

2
+ 1)(Np + 1).

As in the planar case considered in section 4, all square integrable (real-
valued) functions ψ : S2 → R (with an even parity) can be represented by a
series of spherical harmonics in spherical coordinates

ψ(θ, φ) =
∑
l∈N0

∑
−l≤m≤l

ψ2l,mY2l,m(θ, φ). (62)

Therefore, an approximation of order Np is given by the truncated series

ψNp(θ, φ) =

Np∑
l=0

l∑
m=−l

ψ2l,mY2l,m(θ, φ) ≈ ψ(θ, φ), (63)
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where the “mass” is given by the coefficient ψ0,0 and should again satisfy the
normalization condition (1) or (12).

Theorems like the one on positive semi-definiteness of a tensor (theo-
rem 4.3) and Descartes’ rule of signs (theorem 4.2) are defined generically.
Therefore, we can adopt them for three-dimensional orientation distribution
functions ψ and derive inequalities for their nonnegativity, too. For exam-
ple, after expressing pipj in terms of the real-valued spherical harmonics
Y0,0, Y2,−2, . . . , Y2,2, the second order orientation tensor A2 ∈ R3×3 reads

A2 =
2
√
π

3
√

15

 c1 3ψ2,−2 3ψ2,1

2ψ2,−2 c2 3ψ2,−1

3ψ2,1 3ψ2,−1 c3

 , (64)

where c1, c2, c3 ∈ R are defined by

c1 = 3ψ2,2 −
√

3ψ2,0 +
√

15a0
0, (65a)

c2 = −3ψ2,2 −
√

3ψ2,0 +
√

15a0
0, (65b)

c3 = 2
√

3ψ2,0 +
√

15a0
0. (65c)

Then the characteristic polynomial χA2 yields the conditions

0 ≤ ψ0,0,

0 ≤ 5ψ2
0,0 − ψ2

2,−2 − ψ2
2,−1 − ψ2

2,0 − ψ2
2,1 − ψ2

2,2,

0 ≤ 15
√

15ψ3
0,0 + 27ψ2,2

(
ψ2

2,1 − ψ2
2,−1

)
+ 54ψ2,−2ψ2,−1ψ2,1

− 3
√

3ψ2,0

(
6ψ2

2,−2 − 3ψ2
2,−1 − 2ψ2

2,0 − 3ψ2
2,1 + 6ψ2

2,2

)
− 9
√

15ψ0,0

(
ψ2

2,−2 + ψ2
2,−1 + ψ2

2,0 + ψ2
2,1 + ψ2

2,2

)
.

(66a)

(66b)

(66c)

Similarly, it is possible to derive conditions for other coefficients by analyzing
the associated tensors but inequalities corresponding to tensors of higher
orders become more and more complicated and their derivation is left to the
reader. Spherical harmonics approximations preserving the positive semi-
definiteness of orientation tensors can be constructed using straightforward
extensions of the correction methods introduced in section 5.

7. Numerical examples

To validate the correction procedures for nonnegative orientation dis-
tribution functions, we focus on planar test cases with a constant velocity
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1

2

3 t = 50
t = 100
t = 150

Figure 2: Analytical solution of the planar elongational flow at different points of time.

gradient and no diffusion, i.e., CI = 0. Altan and Tang [4] presented an-
alytical solutions for such configurations with random initial distributions,
i.e., ψ(·, t = 0) = const. To study the effect of the proposed corrections
on approximate solutions of the Fokker-Planck equation, let us focus on the
“planar elongational flow” with the velocity gradient defined by

∇xu =

(
0.01 0

0 −0.01

)
∈ R2×2 (67)

and an aspect ratio of the fibers of re = 10 (for example length L = 1 mm and
diameter d = 0.1 mm), i.e., λ = 99

101
. This problem is deformation dominant

with the preferred orientation p∗ = (1, 0)> of the fibers. Figure 2 shows the
corresponding analytical solution at different time instants.

The space-independent Fokker-Planck equation (18) is discretized using
a Fourier approximation of order Np = 6 and the Crank-Nicolson method
(θ = 1

2
) for discretization in time with the time step ∆t = 1. The following

figures illustrate the performance of the correction methods “Minimization”
(Min.) and “Diffusion” (Diff.) in comparison to the uncorrected Galerkin
method and the analytical solution. In the process of correction, the coef-
ficient ck is adjusted and, additionally, the positive semi-definiteness of A4

is enforced. As expected, the correction methods preserve positive semi-
definiteness of the orientation tensors A2 and A4, if configured to do so (see
figures 3 and 4). The results for the two versions differ in the restriction of
high-frequency oscillations (see figure 5). The artificial diffusion approach
damps high-frequency oscillations more intensively. A further side benefit
of correcting the coefficients is the reduction of the Euclidean error norm of
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−0.1

0

0.1

0.2

analytic
uncorrected
Min. ck
Min. ck, A4

Diff. ck
Diff. ck, A4

Figure 3: Minimal eigenvalue of the second order orientation tensor A2 of the planar
elongational flow with a Fourier approximation of order Np = 6 depending on the time.

50 100 150 200
−0.2

−0.15

−0.1

−5 · 10−2

0

analytic
uncorrected
Min. ck
Min. ck, A4

Diff. ck
Diff. ck, A4

Figure 4: Minimal eigenvalue of the fourth order orientation tensor A4 of the planar
elongational flow with a Fourier approximation of order Np = 6 depending on the time.

the first Fourier coefficients (see figure 6), which is likely to produce more
accurate orientation tensors A2 and A4 (see figures 7 and 8, respectively).

8. Conclusions and outlook

In this paper, we developed correction methods for Fourier approxima-
tions of nonnegative orientation distribution functions. For this purpose,
a weak definition of nonnegativity was introduced. The proposed criterion
allows small undershoots and thereby exact truncated series expansions of
nonnegative functions. For such approximations, inequalities for the Fourier
coefficients could be established on the basis of positive semi-definite orienta-
tion tensors. The corresponding conditions make it possible to verify positive
semi-definiteness without evaluating the function at a considerable number of
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0 1⁄2π π 3⁄2π 2π

0
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exact

Figure 5: Final approximation ψNp at t = 200 of the planar elongational flow with a
Fourier approximation of order Np = 6.

50 100 150 200
0

0.1

0.2

0.3 uncorrected
Min. ck
Min. ck, A4

Diff. ck
Diff. ck, A4

Figure 6: Euclidean error norm of the first Fourier coefficients of the planar elongational
flow with a Fourier approximation of order Np = 6 depending on the time.

50 100 150 200
0

5 · 10−2

0.1 uncorrected
Min. ck
Min. ck, A4

Diff. ck
Diff. ck, A4

Figure 7: Euclidean error norm of the second order orientation tensor A2 of the planar
elongational flow with a Fourier approximation of order Np = 6 depending on the time.
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5 · 10−2
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0.15

0.2 uncorrected
Min. ck
Min. ck, A4

Diff. ck
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Figure 8: Euclidean error norm of the fourth order orientation tensor A4 of the planar
elongational flow with a Fourier approximation of order Np = 6 depending on the time.

points. Also, we have introduced correction techniques which guarantee weak
nonnegativity by solving minimization problems with nonlinear constraints.
These corrections significantly reduce spurious oscillations by enforcing in-
equality conditions that are known to hold for a nonnegative function with
the first Fourier coefficients equal to those of the approximate solution.

The disadvantages of this fast approach to constraining the Fourier coef-
ficients are the complexity of inequalities which are associated with tensors
of high order and the uncertainty regarding the completeness of the nonneg-
ativity conditions. Thus the proposed strategy is feasible only for Fourier
approximations of low order (e.g., Np = 2, 4) for which a verification of
such conditions is practically achievable. In a forthcoming paper, we will
present an alternative method which enforces nonnegativity conditions for
Fourier approximations of arbitrary order without imposing inequality con-
straints on the coefficients. In this method, our definition of nonnegativity
for Fourier approximations is satisfied by designing a nonnegative function
ψ with PNpψ = ψNp making use of exponential reconstructions.

As mentioned in section 6, all concepts and and algorithms developed
in the context of Fourier approximations carry over to the more general
three-dimensional case, in which the orthonormal Fourier basis functions are
replaced by real-valued spherical harmonics. It is hoped that the proposed
correction methods will contribute to obtaining more realistic solutions of the
Fokker-Planck equation (11) when it comes to physics-compatible simulations
of fiber suspensions on the basis of the generalized Navier-Stokes equations.
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