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We study the extension of the Chambolle–Pock primal-dual algorithm to non-

smooth optimization problems involving nonlinear operators between function

spaces. Local convergence is shown under technical conditions including metric

regularity of the corresponding primal-dual optimality conditions. We also show

convergence for a Nesterov-type accelerated variant provided one part of the func-

tional is strongly convex. We show the applicability of the accelerated algorithm

to examples of inverse problems with L1
- and L∞-�tting terms as well as of state-

constrained optimal control problems, where convergence can be guaranteed after

introducing an (arbitrary small, still nonsmooth) Moreau–Yosida regularization.

This is veri�ed in numerical examples.

1 Introduction

This work is concerned with the numerical solution of optimization problems of the form

(1.1) min

u ∈X
F (K (u)) +G (u),

where F : Y → R := R ∪ {+∞} and G : X → R are proper, convex and lower semicontinuous

functionals, and K : X → Y is a bounded operator between two Hilbert spaces X and Y . Such

problems arise for example in inverse problems with nonsmooth discrepancy or regularization

terms or in optimal control problems subject to state or control constraints. We are particularly

interested in the situation where K is a nonlinear operator involving the solution of a partial

di�erential equation and F is a nonsmooth discrepancy or tracking term.

To �x ideas, a prototypical example is the L1
�tting problem [7]

(1.2) min

u ∈L2 (Ω)
‖S (u) − yδ ‖L1 +

α

2

‖u‖2L2
,

∗
Faculty of Mathematics, University Duisburg-Essen, 45117 Essen, Germany (christian.clason@uni-due.de)

†
Department of Mathematical Sciences, University of Liverpool, UK (tuomov@iki.fi)

1



i.e., G (u) = α
2
‖u‖2L2

, F (y ) = ‖y ‖L1 , and K (u) = S (u) − yδ where S maps u to the solution y

of −∆y + uy = f for given f and yδ is a given noisy measurement. This problem occurs in

parameter identi�cation from data corrupted by impulsive noise instead of the usual Gaussian

noise. For uniform noise, the constrained (“Morozov”) formulation is more natural [6]:

(1.3) min

u ∈L2 (Ω)

1

2

‖u‖L2 s. t. |S (u) (x ) − yδ (x ) | ≤ δ a. e. in Ω,

i.e., F (y ) = ι{ |y (x ) | ≤δ} (y ). (Note that since the noise level δ is used here explicitly, no regulariza-

tion parameter needs to be chosen.) A related example is the state-constrained optimal control

problem

(1.4) min

u ∈L2 (Ω)

1

2

‖S (u) − yd ‖2L2
+
α

2

‖u‖2L2
s. t. S (u) (x ) ≤ c a. e. in Ω,

where yd ∈ L2 (Ω) is a desired state and c ∈ L∞ (Ω) is a given upper bound. (Lower bounds are

also possible.)

One possible approach to solving (1.1) is to apply a Moreau–Yosida regularization to the non-

smooth functional F , which allows deriving classical �rst-order necessary optimality conditions

that can be solved by a semismooth Newton method in function spaces; see, e.g. [12, 19] for

semismooth Newton methods in general as well as [7, 6, 11] for their application to (1.2), (1.3)

and (1.4), respectively. Such methods are very e�cient due to their superlinear convergence and

mesh independence; however, they su�er from local convergence, with the convergence region

depending strongly on the choice of the Moreau–Yosida parameter. For this reason, usually

continuation methods are employed, where a sequence of minimization problems with gradually

diminishing parameter are solved.

An alternative approach which has become very popular in the context of imaging problems

are primal-dual extragradient methods. One widely used example, introduced in [3] for linear

operators and extended in [20] to nonlinear operators, applied to (1.1) reads as

(1.5)




uk+1 = proxτG (u
k − τK ′(uk )∗yk ),

ūk+1 = 2uk+1 − uk ,

yk+1 = proxσ F ∗ (y
k + σK (ūk+1)),

where σ ,τ > 0 are appropriately chosen step lengths, K ′(u)∗ denotes the adjoint of the Fréchet

derivative of K , and proxF ∗ denotes the proximal mapping of the Fenchel conjugate of F ; we

postpone precise de�nitions to later and only remark that if F ∗ is the indicator function of a

convex set C , the proximal mapping coincides with the metric projection onto C . Such methods

do not su�er from local convergence (for a linear operator K ) and, as �rst-order methods, do not

require solving – possibly ill-conditioned – linear systems in each iteration. Consequently, they

recently have received increasing interest also in the context of optimal control; see, e.g., [15, 13].

In addition, other proximal point methods for optimal control problems have been treated in

[1] and [18]; in particular, the latter is concerned with classical forward-backward splitting for

sparse control of linear elliptic PDEs. However, so far these methods have only been considered

in the �nite-dimensional setting, i.e., after discretizing (1.1), or for speci�c (linear) problems.
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Our goal is therefore to show convergence of (1.5) in Hilbert spaces and to show that it can be

applied to problems of the form (1.2), (1.3), and (1.4). To the best of our knowledge, this work is

the �rst to consider (accelerated) primal-dual extragradient methods in function spaces as well

as their application to PDE-constrained optimization problems.

While the general convergence theory is a straightforward extension of the analysis in [20]

(in fact, the proof is virtually identical), it requires verifying a set-valued Lipschitz property –

known as the Aubin or pseudo-Lipschitz property – on the inverse of a monotone operator Hû
encoding the optimality conditions. This is also called metric regularity of Hû . This veri�cation

is signi�cantly more involved in in�nite dimensions. For problems of the form (1.1) where F
and G are given by integral functionals for regular integrands, we can apply the theory from

[8] to obtain an explicit, veri�able, condition for the Aubin property to be satis�ed. While

our analysis will show that for (1.2) or (1.4), this condition in fact does not hold in general

unless a Moreau–Yosida regularization is introduced, we do obtain convergence and mesh

independence for arbitrarily small regularization parameter, and numerical examples show that

this can be observed in practice. Similarly, although for nonlinear operators, the convergence is

only local since smallness conditions on the distance to the solution enter via bounds on the

nonlinearity of the operator, in contrast to semismooth Newton methods we actually observe

convergence for any starting point and arbitrarily small regularization parameter without the

need for continuation.

In addition, Moreau–Yosida regularization results in a strongly convex functional, which can

be exploited for accelerating the iteration (1.5). The accelerated form di�ers from (1.5) in adaptive

step length and extrapolation parameters. In particular, we consider for a given acceleration

parameter γ̄ ≥ 0 the iteration

(1.6)




uk+1 = proxτkG (u
k − τkK

′(uk )∗vk ),

ωk = 1/
√

1 + 2γ̄τk , τk+1 = τk/ωk , σk+1 = σkωk ,

ūk+1 = uk+1 + ωk (u
k+1 − uk ),

vk+1 = proxσk+1
F ∗ (v

k + σk+1K (ūk+1)).

Note that the choice γ̄ = 0 coincides with the unaccelerated version (1.5). The appropriate

choice for γ̄ > 0 is related to the constant of strong convexity of F ∗, and in the convex case

yields a convergence rate of O (1/k2) for the functional values rather than the rate O (1/k ) for

the original version, see [3, 4, 21]. A similar acceleration is possible if G is strongly convex.

Such an acceleration was not considered in [20]; our main contribution is therefore to show

convergence of a (�nitely) accelerated primal-dual extragradient method in function spaces.

This work is organized as follows. In the remainder of this section, we summarize some

notations and de�nitions necessary for what follows. Section 2 is concerned with the convergence

analysis of the accelerated algorithm (1.6) in in�nite-dimensional Hilbert spaces, where we

discriminate the case of F ∗ (§ 2.1) or G (§ 2.2) being strongly convex. We also brie�y address

the veri�cation of the Aubin property for functionals of the form (1.1) in § 2.3. A more detailed

discussion for the speci�c case of the motivating problems (1.2), (1.3), and (1.4) is given in section 3,

where we also derive the explicit form of the accelerated algorithm (1.6) in these cases. Section 4

concludes with numerical examples for the three model problems.
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1.1 Notation and definitions

Convex analysis We assume G : X → R and F : Y → R to be convex, proper, lower

semicontinuous functionals on Hilbert spacesX andY , satisfying int domG , ∅ and int dom F ,
∅. We call, e.g., F strongly convex with constant γF > 0 if

(1.7) F (v ′) − F (v ) ≥ 〈z,v ′ −v〉 +
γF
2

‖v ′ −v ‖2 (v,v ′ ∈ Y ; z ∈ ∂F (v )),

where ∂F denotes the convex subdi�erential of F . We denote by

F ∗ : Y ∗ → R, F ∗ (p) = sup

y ∈Y
〈p,y〉Y − F (y )

the Fenchel conjugate of F , which is convex, proper and lower semicontinous. As usual, we

identify the topological dual Y ∗ of Y with itself. The Moreau–Yosida regularization of F for the

parameter γ > 0 is de�ned as

(1.8) Fγ (y ) := min

y ′∈Y
F (y ′) +

1

2γ
‖y ′ − y ‖2,

whose Fenchel conjugate is (cf., e.g., [2, Prop. 13.21 (i)])

(1.9) F ∗γ (p) = F ∗ (p) +
γ

2

‖p‖2.

Note that F ∗γ is strongly convex with constant at least γ .

Since G is convex and K ∈ C1 (X ;Y ), we can apply the calculus of Clarke’s generalized

derivative (which reduces to the Fréchet derivative and convex subdi�erential for di�erentiable

and convex functions, respectively; see, e.g., [5, Chap. 2.3]) to deduce for (1.1) the overall system

of critical point conditions

(1.10)




K (û) ∈ ∂F ∗ (v̂ ),

−K ′(û)∗v̂ ∈ ∂G (û).

The iterations (1.5) can be derived from these conditions with the help of the proximal mapping
(or resolvent)

proxG (v ) = arg min

w ∈X

1

2

‖w −v ‖2X +G (w ) = (Id+∂G )−1 (v )

and similarly for F ∗. We recall the following useful calculus rules for proximal mappings, e.g.,

from [2, Prop. 23.29 (i), (viii)]:

(p1) For any σ > 0 it holds that

proxσ F ∗ (v ) = v − σ proxσ −1F (σ
−1v ).

(p2) For any γ > 0 it holds that

proxF ∗γ (v ) = prox(1+γ )−1F ∗ ((1 + γ )
−1v ).
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Set-valued analysis We �rst de�ne for U ⊂ X the set of Fréchet (or regular) normals to U at

u ∈ U by

N̂ (u;U ) :=

{
z ∈ X

�����
lim sup

U 3u′→u

〈z,u ′ − u〉

‖u ′ − u‖
≤ 0

}

and the set of tangent vectors by

T (u;U ) :=

{
z ∈ X

�����
exist τ i ↘ 0 and ui ∈ U such that z = lim

i→∞

ui − u

τ i

}
.

For a convex set U , these coincide with the usual normal and tangent cones of convex analysis.

For any cone V ⊂ X , we also de�ne the polar cone

V ◦ := {z ∈ X | 〈z, z ′〉 ≤ 0 for all z ′ ∈ V }.
We use the notation R : Q ⇒W to denote a set-valued mapping R from Q toW ; i.e., for every

q ∈ Q holds R (q) ⊂ W . For R : Q ⇒W , we de�ne the domain domR := {q ∈ Q | R (q) , ∅}
and graph GraphR := {(q,w ) ⊂ Q ×W | w ∈ R (q)}. The regular coderivatives of such maps

are de�ned graphically with the help of the normal cones. Let Q andW be Hilbert spaces, and

R : Q ⇒W with domR , ∅. We then de�ne the regular coderivative D̂∗R (q |w ) : W ⇒ Q of R at

q ∈ Q for w ∈W as

D̂∗R (q |w ) (∆w ) :=
{
∆q ∈ Q | (∆q,−∆w ) ∈ N̂ ((q,w ); GraphR)

}
.

We also de�ne the graphical derivative DR (q |w ) : Q ⇒W by

DR (q |w ) (∆q) :=
{
∆w ∈W | (∆q,∆w ) ∈ T ((q,w ); GraphR)

}
and its convexi�cation D̃R (q |w ) via

Graph D̃R (q |w ) = conv Graph[DR (q |w )].

Finally, we say that the set-valued mapping R : Q ⇒ W is metrically regular at ŵ for q̂ if

GraphR is locally closed and there exist ρ,δ , ` > 0 such that

inf

p :w ∈R (p )
‖q − p‖ ≤ `‖w − R (q)‖ for any q,w such that ‖q − q̂‖ ≤ δ , ‖w − ŵ ‖ ≤ ρ.

We denote the in�mum over valid constants ` by `R−1 (ŵ |q̂), or `R−1 for short when there is no

ambiguity about the point (ŵ, q̂). If `R−1 (ŵ |q̂) > 0 holds, we say that R−1
has the Aubin property.

2 Convergence

We now demonstrate in in�nite-dimensional Hilbert spaces the convergence of algorithm

(1.6), where the acceleration is stopped at some iteration N . We do not attempt to prove any

convergence rates, and acceleration is merely observed numerically.
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The general outline of the proof of the convergence of (1.6) is nearly unchanged from the

original proof in [20] for �nite-dimensional spaces. For this reason, we merely give a sketch

of the proof and only detail the modi�cations necessary to exploit the strong convexity. Here

we distinguish between whether F ∗ or G is strongly convex. The former is always guaranteed

by Moreau–Yosida regularization of F , while the latter – if it holds in addition, which is the

case in the examples considered here – might allow stronger acceleration, independent of the

(regularization or control cost) parameter α . The main di�culty in function spaces lies in the

veri�cation of the Aubin property required for the convergence result, which we will investigate

based on the results of [8] at the end of the section.

We begin by observing from the de�nition of the proximal mapping that the algorithm (1.6)

may be written in the form

0 ∈ Hu i (q
i+1) + ν i +Mi (q

i+1 − qi )

for the monotone operator

Hū (u,v ) :=

(
∂G (u) + K ′(ū)∗v
∂F ∗ (v ) − K ′(ū)u − cū

)
, where cū := K (ū) − K ′(ū)ū,

the preconditioning operator

Mi :=

(
τ−1

i Id −K ′(ui )∗

−K ′(ui ) σ−1

i Id

)
,

and the discrepancy term

ν i := ν̄ i + ν iω :=

(
0

K ′(ui )ūi+1 + cu i − K (ūi+1)

)
+

(
0

(1 − ωi )K
′(ui ) (ui+1 − ui )

)
.

Throughout, we set

q = (u,v ) ∈ X × Y , and w = (ξ ,η) ∈ X × Y ,

extending this notation to q̂, etc., in the obvious way. Here we �x R > 0 such that there exists a

solution q̂ to

(2.1a) 0 ∈ Hû (q̂) with ‖q̂‖ ≤ R/2.

The �rst part is the necessary optimality condition (1.10) for (1.1) for linear K , and can under

suitable regularity assumptions be shown to be necessary for nonlinear K as well. Regarding

the operator K : X → Y and the step length parameters σi ,τi > 0, we require that

(2.1b) K ∈ C2 (X ;Y ) and σiτi *
,

sup

‖u ‖≤R
‖K ′(u)‖2+

-
< 1.

Observe that σiτi = σ0τ0 is maintained under acceleration schemes such as the one in (1.6), so

this condition only has to be satis�ed for the initial choice. We then denote by L2 the Lipschitz

factor of u 7→ K ′(u) on the closed ball B (0,R) ⊂ X , namely

(2.1c) L2 := sup

‖u ‖≤R
‖K ′′(u)‖
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in operator norm. By (2.1b), the supremum is bounded. (This can be replaced by K ∈ C1 (X ;Y )
with K ′ locally Lipschitz.) We de�ne the uniform condition number

(2.1d) κ := Θ/θ .

based on Θ and θ from the condition

(2.2) θ 2
Id ≤ Mi ≤ Θ2

Id .

If τi ,σi > 0 are constant, ‖ui ‖ ≤ R, and (2.1b) holds, such θ and Θ exist [20]. Easily this extends

to 0 < C1 ≤ τi ,σi ≤ C2 < ∞.

Remark 2.1. The bound (2.2), on which the analysis from [20] depends, is the reason we need to
stop the acceleration; since τi → 0 and σi → ∞, no uniform bound exists forMi if the acceleration
is not stopped. Possibly the convergence proofs from [20] can be extended to the fully accelerated
case, but such an endeavour is outside the scope of the present work. In numerical practice, in any
case, we stop the algorithm – and hence a fortiori the acceleration – at a suitable iteration N .

2.1 Convergence for strongly convex F ∗

We begin by considering the case of F ∗ being strongly convex, which is closest to the setting of

[20]. In this case, we chose for γ̄ ≥ 0 the acceleration sequence

(2.3) σi+1 := ωiσi and τi+1 := τi/ωi for ωi := 1/
√

1 + 2γ̄σi .

Under the above assumptions, and if the Aubin property holds for H−1

û , algorithm (1.6) then

converges to a solution of (2.1a).

Theorem 2.1. Let (2.1) be satis�ed with the corresponding constants R, Θ, κ and L2, and suppose
F ∗ is strongly convex with factor γF ∗ . Let q̂ solve 0 ∈ Hû (q̂), and H−1

û have the Aubin property at 0

for q̂ with

(2.4) `H−1

û
κL2‖v̂ ‖ < 1 − 1/

√
1 + 1/(2`2

H−1

û
Θ4).

If γ̄ ∈ [0,γF ∗ ) and we use the rule (2.3) for i = 1, . . . ,N for some N ≥ 0, after which τi = τN
and σi = σN for i > N , there exists δ > 0 such that for any q1 ∈ X × Y with

‖q1 − q̂‖ ≤ δ ,

the iterates qi+1 = (ui+1,vi+1) generated by (1.6) converge to a solution q∗ = (u∗,v∗) of (2.1a).

Sketch of proof of Theorem 2.1. We follow [20, Theorem 3.2], which was only stated for �nite-

dimensional spacesX andY . However, nothing in the proof depends on the �nite-dimensionality,

as all the arguments presented in [20] are entirely algebraic manipulations, estimating norms

and inner products in terms of others through the axioms of Hilbert spaces. The inverse mapping

theorem for set-valued functions [20, Lemma 3.8] is extracted from [9], but their results are

also stated in general complete metric spaces. Therefore we conclude that the results of [20,
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Theorem 3.2] are valid in in�nite-dimensional Hilbert spaces. We now outline the idea of the

proof.

First, we need to show that for any �xed i , C, ε > 0, there exists ρ > 0 such that

(A-D
i
) ‖ν i ‖ ≤ ε ‖ui − ui+1‖, (‖ui − ui+1‖ ≤ ρ, ‖ui ‖ ≤ C ).

But this has been shown for the component ν̄ i in [20, Lemma 3.2], whereas for the acceleration

component ν iω , the claim follows from (2.1b) and the fact that ωi → 1. In fact we have more than

that: ν iω = 0 for i ≥ N , as then ωi = 1.

We now use for a self-adjoint linear operator M : X → X the notation

〈a,b〉M := 〈Ma,b〉 and ‖a‖M :=
√
〈a,a〉M .

We de�ne q̃i ∈ X ×Y as the “local perturbed solution” at the current iteration ui as satisfying at

the base point ui the condition

0 ∈ Hu i (q̃
i ) + ν i .

To see why we call this the “perturbed” local solution, we observe that q̂i ∈ X × Y , de�ned as

satisfying at the base point ui the condition

0 ∈ Hu i (q̂
i ),

would be a solution to the linearized problem, where we replace in (1.1) the operator K by its

linearization

u 7→ K (ui ) + K ′(ui ) (u − ui ) = K ′(ui )u + cu i .

With each step adding conditions on starting su�ciently close to a solution, the steps of the

proof are now roughly the following, with details to be found in [20]:

1. [20, Lemma 2.1] for V = Y shows the initial descent estimate

(D̂
2
-loc-γ -F

∗
) ‖qi − q̃i ‖2Mi

≥ ‖qi+1 − qi ‖2Mi
+ ‖qi+1 − q̃i ‖2Mi

+ γF ∗ ‖v
i+1 − ṽi ‖2.

2. In place of [20, Lemma 3.6], Lemma 2.3 below uses the strong convexity of F ∗ to update

for the next iterate local norms from ‖ · ‖Mi to ‖ · ‖Mi+1
, namely to go from (D̂

2
-loc-γ -F

∗
)

to

(D̂
2
-M) ‖qi − q̃i ‖2Mi

≥ ξ1‖q
i+1 − qi ‖2Mi

+ ‖qi+1 − q̃i ‖2Mi+1

.

3. For technical reasons, we use the Aubin property [20, Lemma 3.11] to remove the squares,

(D̂-M) ‖q̃i − qi ‖Mi ≥ ξ2‖q
i+1 − qi ‖Mi + ‖q̃

i − qi+1‖Mi+1
.

4. Further, again using the Aubin property, [20, Lemma 3.12] bridges from the perturbed

local solutions q̃i to local solutions q̂i ,

(D̂) ‖qi − q̂i ‖Mi ≥ ξ ‖q
i+1 − qi ‖Mi + ‖q

i+1 − q̂i+1‖Mi+1
.
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5. Convergence follows from the general result [20, Theorem 2.1] on descent estimates of

the type (D̂). �

Remark 2.2. Strong convexity of F ∗ with factor γ is equivalent [10] to strong monotonicity of ∂F ∗

in the sense that

〈∂F ∗ (v ′) − ∂F ∗ (v ),v ′ −v〉 ≥ γ ‖v ′ −v ‖2, (v ′,v ∈ Y ),

observing that there is no factor 1/2 in the latter, unlike mistakenly written at [20, the end of page 7].
Hence the slight di�erence in the statement of (D̂

2
-loc-γ -F

∗
) in comparison to the similarly-named

equation in [20]. In the cited article, the exact factors make no di�erence however; in the present
work they do for the acceleration.

Remark 2.3. Theorem 2.1 holds if F ∗ is merely strongly convex on the “nonlinear” subspace

YNL := {y ∈ Y : 〈z,K (·)〉 ∈ L(X ,Y )}⊥,
i.e., if (1.7) holds merely for all v,v ′ ∈ YNL . In this case, v̂ in (2.4) can be replaced by PNLv̂ , the
orthogonal projection of v̂ on YNL . Indeed, Lemma 2.1 in [20] directly applies to V = YNL ( Y to
yield (D̂

2
-loc-γ -F

∗
) for PNL (v

i+1 − ṽi ), and a straightforward modi�cation of Lemma 2.3 below
yields (D̂

2
-M). Since the Moreau–Yosida regularization, required for the Aubin property in our

examples, already implies strong convexity on the full space, we do not treat this more general case
in detail.

We still need to prove Lemma 2.3. This requires the following bound on the step lengths.

Lemma 2.2. If {σi}i ∈N satis�es (2.3), then γ + (σ−1

i − σ
−1

i+1
) ≥ 0.

Proof. We �rst note that

2γ + (σ−1

i − σ
−1

i+1
) = σ−1

i (2γσi + 1 − ω−1

i ).

Thus the claim holds if c = γ satis�es

2γσi + 1 − ω−1

i ≥ cσi ,

i.e., after multiplying both sides by ω2

i and using the de�nition of ωi ,

1 − ωi ≥ cω2

i σi .

In other words, we need to show

(2.5) c ≤
1 − ωi

ω2

i σi
=
ω−1

i − 1

ωiσi
.

But using the concavity of the square root, we can estimate

ω−1

i − 1 = (−
√

1) − (−
√

1 + 2γσi ) ≥ −
1

2

√
1 + 2γσi

(1 − (1 + 2γσi )) = γσiωi .

This shows that (2.5) holds with c = γ . �
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We �nally provide the main lemma needed towards extending the results of [20] to the

present setting.

Lemma 2.3. Suppose (2.1) holds along with the assumption of Theorem 2.1 and assume that
(D̂

2
-loc-γ -F

∗
) holds. Let R, L2, κ be as in (2.1), and choose ξ1 ∈ (0, 1). If

(2.6) ‖qi − q̂‖ ≤ R/4 and ‖qi − q̃i ‖ ≤ C

for a suitable constant C = C (γF ∗ , γ̄ , ξ1,θ ,L2,κ,R), then (D̂
2
-M) holds.

Proof. Using (2.6) and the property ‖q̂‖ ≤ R/2 from (2.1a), we have

(2.7) ‖qi ‖ ≤ ‖qi − q̂‖ + ‖q̂‖ ≤ 3R/4.

The estimate (D̂
2
-loc-γ -F

∗
) implies

‖qi+1 − qi ‖ ≤ κ‖q̃i − qi ‖.

Choosing C ≤ R/(4κ) and using (2.6) and (2.7), we thus get

‖qi+1‖ ≤ ‖qi+1 − qi ‖ + ‖qi ‖ ≤ κ‖q̃i − qi ‖ + ‖qi ‖ ≤ R.

As both ‖qi ‖ ≤ R and ‖qi+1‖ ≤ R, by (2.1c) we have again

(2.8) ‖K ′(ui+1) − K ′(ui )‖ ≤ L2‖u
i+1 − ui ‖.

We expand

‖qi+1 − q̃i ‖2Mi
− ‖qi+1 − q̃i ‖2Mi+1

= −2〈vi+1 − ṽi , (K ′(ui+1) − K ′(ui )) (ui+1 − ũi )〉

+ (τ−1

i − τ
−1

i+1
)‖ui+1 − ũi ‖2 + (σ−1

i − σ
−1

i+1
)‖vi+1 − ṽi ‖2

≥ −2〈vi+1 − ṽi , (K ′(ui+1) − K ′(ui )) (ui+1 − ũi )〉

+ (σ−1

i − σ
−1

i+1
)‖vi+1 − ṽi ‖2

In the �nal step, we have used the fact that {τi}i ∈N is non-decreasing. Using (2.8), we further

derive by application of Young’s inequality

(2.9) ‖qi+1 − q̃i ‖2Mi
− ‖qi+1 − q̃i ‖2Mi+1

≥ (σ−1

i − σ
−1

i+1
)‖vi+1 − ṽi ‖2

− 2L2‖q
i+1 − q̃i ‖‖qi+1 − qi ‖‖ui+1 − ũi ‖.

Using once more Young’s inequality, (2.9), and Lemma 2.2, we now deduce

(2.10) ‖qi+1 − q̃i ‖2Mi
− ‖qi+1 − q̃i ‖2Mi+1

+ γF ∗ ‖v
i+1 − ṽi ‖2

≥ (γ̄ + σ−1

i − σ
−1

i+1
)‖vi+1 − ṽi ‖2 −

L2

2

γF ∗ − γ̄
‖qi+1 − qi ‖2‖qi+1 − q̃i ‖2.

≥ −
L2

2

γF ∗ − γ̄
‖qi+1 − qi ‖2‖qi+1 − q̃i ‖2.
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By application of (2.2) and (D̂
2
-loc-γ -F

∗
), we bound

‖qi+1 − q̃i ‖2 ≤ θ−2‖qi+1 − q̃i ‖2Mi
≤ κ2‖qi − q̃i ‖2,

and

‖qi+1 − qi ‖2 ≤ θ−2‖qi+1 − qi ‖2Mi
.

Setting

c :=
L2

2

γF ∗ − γ̄
and C := (1 − ξ1)

θ 2

cκ2
,

and using (2.6) therefore yields

c ‖qi+1 − qi ‖2‖qi+1 − q̃i ‖2 ≤
cκ2

θ 2
‖qi+1 − qi ‖2Mi

‖qi − q̃i ‖2 ≤ (1 − ξ1)‖q
i+1 − qi ‖2Mi

.

Using (2.10) and this estimate in (D̂
2
-loc-γ -F

∗
), we obtain (D̂

2
-M). �

2.2 Convergence for strongly convex G

In this case, we chose for γ̄ ≥ 0 the acceleration sequence

(2.11) σi+1 := σi/ωi and τi+1 := τiωi for ωi := 1/
√

1 + 2γ̄τi .

Under the above assumptions, and if the Aubin property holds for H−1

û , algorithm (1.6) con-

verges to a solution of (2.1a).

Theorem 2.4. Let (2.1) be satis�ed with the corresponding constants R, Θ, κ and L2, and suppose
G is strongly convex with factor γG . Let q̂ solve 0 ∈ Hû (q̂), and H−1

û have the Aubin property at 0

for q̂ with

`H−1

û
κL2‖v̂ ‖ < 1 − 1/

√
1 + 1/(2`2

H−1

û
Θ4).

If γ̄ ∈ [0,γG ) and we use the rule (2.11) for i = 1, . . . ,N for some N ≥ 0, after which τi = τN and
σi = σN for i > N , there exists δ > 0 such that for any q1 ∈ X × Y with

‖q1 − q̂‖ ≤ δ ,

the iterates qi+1 = (ui+1,vi+1) generated by (1.6) converge to a solution q∗ = (u∗,v∗) of (2.1a).

Sketch of proof of Theorem 2.4. The proof follows that of Theorem 2.1, with the following modi-

�cations:

1. A trivial modi�cation of [20, Lemma 2.1] employing the strong convexity assumptions

shows

(D̂
2
-loc-γ -G) ‖qi − q̃i ‖2Mi

≥ ‖qi+1 − qi ‖2Mi
+ ‖qi+1 − q̃i ‖2Mi

+ γG ‖u
i+1 − ũi ‖2.
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2. In place of Lemma 2.3, we use Lemma 2.6 below to obtain (D̂
2
-M). �

It remains to prove Lemma 2.6. Analogously to Lemma 2.2, we �rst derive the following

bounds.

Lemma 2.5. Let {τi}i ∈N satisfy (2.11). Then γ + (τ−1

i − τ
−1

i+1
) ≥ 0.

We can now show the main lemma in the case of strongly convex G.

Lemma 2.6. Suppose (2.1) holds along with the assumption of Theorem 2.4, and assume that
(D̂

2
-loc-γ -G) holds. Let R, L2, κ be as in (2.1), and choose ξ1 ∈ (0, 1). If

‖qi − q̂‖ ≤ R/4 and ‖qi − q̃i ‖ ≤ C

for a suitable constant C = C (γG , γ̄ , ξ1,θ ,L2,κ,R), then (D̂
2
-M) holds.

Proof. Proceeding as in the proof of Lemma 2.3, since now {σi}i ∈N is non-decreasing, we derive

instead of (2.9) the estimate

‖qi+1 − q̃i ‖2Mi
− ‖qi+1 − q̃i ‖2Mi+1

≥ (τ−1

i − τ
−1

i+1
)‖ui+1 − ũi ‖2

− 2L2‖q
i+1 − q̃i ‖‖qi+1 − qi ‖‖ui+1 − ũi ‖.

Aplying Young’s inequality, (2.9), and Lemma 2.2, we deduce

‖qi+1 − q̃i ‖2Mi
− ‖qi+1 − q̃i ‖2Mi+1

+ γG ‖u
i+1 − ũi ‖2

≥ (γ̄ + τ−1

i − τ
−1

i+1
)‖ui+1 − ũi ‖2 −

L2

2

γG − γ̄
‖qi+1 − qi ‖2‖qi+1 − q̃i ‖2

≥ −
L2

2

γG − γ̄
‖qi+1 − qi ‖2‖qi+1 − q̃i ‖2.

We now conclude analogously to the proof of Lemma 2.3. �

2.3 Metric regularity

We �nally address the veri�cation of the Aubin property required for the convergence of the

algorithm. Motivated by the problems considered in the next section, we assume that

F ∗ (v ) =

∫
Ω
f ∗ (v (x )) dx

for a proper, convex, lower semicontinuous f ∗ and (after rescaling F +G, see below)

G (u) =
1

2

‖u‖2L2
.

We wish to apply the results from [8]. Towards this end, we consider the Moreau–Yosida

regularization (1.8) of F for some parameter γ > 0, and assume (using (1.9)) that the regular

12



coderivative of the regularized subdi�erential satis�es at least at non-degenerate points for

some cone V∂F ∗ (v |η) the expression

(2.12)
KD[∂F ∗γ ](v |η) (∆v ) =




γ∆v +V∂F ∗ (v |η)
◦, ∆v ∈ V∂F ∗ (v |η),

∅, ∆v < V∂F ∗ (v |η).

We denote the corresponding operator Hû by Hγ ,û . We also assume K ∈ C1 (X ;Y ). Then we

have the following result.

Proposition 2.7 ([8, Prop. 4.6]). Suppose q̂ solves 0 ∈ Hγ ,û (q̂) for someγ ≥ 0. Thenw 7→ H−1

γ ,û (w )

has the Aubin property at (0|q̂) if and only if γ > 0 or

¯b (q̂ |0;Hû ) := sup

t>0

inf




‖K ′(û)K ′(û)∗z − ν ‖

‖z‖

�������

0 , z ∈ V∂F ∗ (v
′ |η′), ν ∈ V∂F ∗ (v

′ |η′)◦,
η′ ∈ ∂F ∗ (v ′), ‖v ′ − v̂ ‖ < t ,
‖η′ − K (û)‖ < t



> 0.

This implies convergence for any choice of the Moreau–Yosida regularization parameterγ . On

the other hand, if γ = 0, we have to prove existence of a lower bound for
¯b. This is signi�cantly

more di�cult. We will address the issue of verifying – or disproving – the lower bound on
¯b

with speci�c examples in the next section.

3 Application to PDE-constrained optimization problems

We now discuss the application of the preceeding analysis in the context of the motivating

problems (1.2), (1.3), and (1.4). Since this will depend on the speci�c structure of the mapping S ,

we consider as a concrete example the problem of recovering the potential term in an elliptic

equation.

Let Ω ⊂ Rd
be an open bounded domain with a Lipschitz boundary ∂Ω. For a given coe�cient

u ∈ {v ∈ L∞ (Ω) : v ≥ ε} C U ⊂ X := L2 (Ω) and f ∈ L2 (Ω) �xed, denote by S (u) := y ∈
H 1 (Ω) ⊂ L2 (Ω) C Y the weak solution of

(3.1) 〈∇y,∇v〉 + 〈uy,v〉 = 〈f ,v〉 (v ∈ H 1 (Ω)).

This operator has the following useful properties [16]:

(a1) The operator S is uniformly bounded in U ⊂ X and completely continuous: If for u ∈ U ,

the sequence {un} ⊂ U satis�es un ⇀ u in X , then

S (un ) → S (u) in Y .

(a2) S is twice Fréchet di�erentiable.

(a3) There exists a constant C > 0 such that

‖S ′(u)h‖L2 ≤ C‖h‖X (u ∈ U ,h ∈ X ).

13



(a4) There exists a constant C > 0 such that

‖S ′′(u) (h,h)‖L2 ≤ C‖h‖2X (u ∈ U ,h ∈ X ).

Furthermore, from the implicit function theorem, the directional Fréchet derivative S ′(u)h for

given h ∈ X can be computed as the solution w ∈ H 1 (Ω) to

〈∇w,∇v〉 + 〈uw,v〉 = 〈−yh,v〉 (v ∈ H 1 (Ω)).

Similarly, the directional adjoint derivative S ′(u)∗h is given by yz, where z ∈ H 1 (Ω) solves

〈∇z,∇v〉 + 〈uz,v〉 = 〈−h,v〉 (v ∈ H 1 (Ω)).

Similar expressions hold for S ′′(u) (h1,h2) and (S ′(u)∗h1)
′h2. Hence, assumptions (a3–a4) hold

for S ′∗ and (S ′(u)∗v )′ for given v as well.

Other operators satisfying the above assumptions are mappings from a Robin or di�usion

coe�cient to the solution of the corresponding elliptic partial di�erential equation [7].

3.1 L1 fi�ing

First, we consider the L1
�tting problem (1.2). In order to make use of the strong convexity of

the penalty term for the acceleration, we rewrite this equivalently as

min

u ∈L2

1

α
‖S (u) − yδ ‖L1 +

1

2

‖u‖2L2
,

i.e., we set G (u) = 1

2
‖u‖2L2

, K (u) = S (u) − yδ , and F (y ) = 1

α ‖y ‖L1 in (1.1). Hence

[F ∗ (p)](x ) = ι
[−α−1,α−1

]
(p (x )) (a.e. x ∈ Ω),

where ιC denotes the indicator function of the convex setC in the sense of convex analysis [10].

To guarantee metric regularity, we replace F by its Moreau–Yosida regularization, which

coincides with the well-known Huber norm, i.e.,

Fγ (y ) =

∫
Ω
|y (x ) |γ dx , |t |γ =




1

2γ |t |
2

if |t | ≤
γ
α ,

1

α |t | −
γ
2α if |t | >

γ
α .

Using the calculus of Clarke’s generalized derivative and (1.9), i.e., ∂F ∗γ (p) = ∂F
∗ (p) + {γp}, we

obtain the corresponding regularized optimality conditions (cf. also [7, Theorem 2.7])

(3.2)




S (uγ ) − y
δ − γpγ ∈ ∂F

∗ (pγ ),

−S ′(uγ )
∗pγ = uγ .
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3.1.1 Algorithm

For G and F ∗ as above, the proximal mappings are given by

[proxτG (u)](x ) =
1

1+τ u (x ),

[proxσ F ∗ (v )](x ) = proj
[−α−1,α−1

]
(v (x )).

Using rule (p2) above, we thus obtain for the Moreau–Yosida regularization F ∗γ

[proxσ F ∗γ (v )](x ) = proj
[−α−1,α−1

]

(
1

1+σγ v (x )
)
.

Since G is strongly convex with constant cG = 1, we can use the acceleration scheme (2.11)

for any γ̄ < 1. The full algorithm thus consists in performing for i = 1, . . . ,N the steps

(3.3)




zi+1 = S ′(ui )∗vi ,

ui+1 = 1

1+τi
(ui − τiz

i+1),

ωi = 1/
√

1 + 2γ̄τi , τi+1 = ωiτi , σi+1 = σi/ωi ,

ūi+1 = ui+1 + ωi (u
i+1 − ui ),

vi+1 = proj
[−α−1,α−1

]

(
1

1+σi+1γ
(vi + σi+1 (S (ū

i+1) − yδ ))
)
.

3.1.2 Metric regularity

To show convergence of algorithm (3.3) using Theorem 2.4 and Proposition 2.7, we have to

verify the expression (2.12). This was shown in [8] using the pointwise expression of ∂F ∗, which

we summarize here for the sake of completeness.

Lemma 3.1 ([8, Lem. 2.10]). Let f ∗ : R→ R, f ∗ (z) = ι
[−α−1,α−1

]
(z). Then

D (∂ f ∗) (z |ζ ) (∆z) =




R, |z | = α−1, ζ ∈ (0,∞)z, ∆z = 0,

[0,∞)z, |z | = α−1, ζ = 0, ∆z = 0,

{0}, |z | = α−1, ζ = 0, z∆z < 0,

{0}, |z | < α−1, ζ = 0,

∅, otherwise,

(3.4)

as well as

KD (∂ f ∗) (z |ζ ) (∆z) =




R, |z | = α−1, ζ ∈ (0,∞)z, ∆z = 0,

[0,∞)z, |z | = α−1, ζ = 0, z∆z ≤ 0,

{0}, |z | < α−1, ζ = 0,

∅, otherwise.
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(iv)

(ii)

(iii)

(i)

(a) D (∂ f ) (z |ζ ) (b)
JD (∂ f ) (z |ζ ) (c) D̂∗ (∂ f ) (z |ζ )

Figure 1: Illustration of the graphical derivative and regular coderivative for ∂ f with f = ι[−1,1].

The dashed line is Graph ∂ f . The dots indicate the base points (z, ζ ) where the graphical

derivative or coderivative is calculated, and the thick arrows and gray areas indicate

the directions of (∆z,∆ζ ) relative to the base point. The labels (i) etc. denote the

corresponding case of (3.4). (Taken from [8].)

Corollary 3.2 ([8, Cor. 2.11]). Let f ∗ (z) := ι
[−α−1,α−1

]
(z) and

F ∗ (v ) :=

∫
Ω
f ∗ (v (x )) dx (v ∈ L2 (Ω)).

Then

D[∂F ∗](v |η) (∆v ) =



V∂F ∗ (v |η)
◦, ∆v ∈ V∂F ∗ (v |η) and η ∈ ∂F ∗ (v ),

∅, otherwise,

and

D̂∗[∂F ∗](v |η) (∆η) =



V∂F ∗ (v |η)
◦, −∆η ∈ V∂F ∗ (v |η) and η ∈ ∂F ∗ (v ),

∅, otherwise,

for the cone

V∂F ∗ (v |η) = {z ∈ L2 (Ω) | z (x )v (x ) ≤ 0 if |v (x ) | = α−1 and z (x )η(x ) ≥ 0}
and its polar

V∂F ∗ (v |η)
◦ = {ν ∈ L2 (Ω) | ν (x )v (x ) ≥ 0 if η(x ) = 0 and ν (x ) = 0 if |v (x ) | < α−1}.

Remark 3.1. If (v,η) satisfy the strict complementarity condition |v (x ) | < α−1 or |η(x ) | > 0

for a. e. x ∈ Ω, the degenerate second and third case in (3.4) (corresponding to the gray areas in
Figure 1) do not occur, and the cone simpli�es to

V∂F ∗ (v |η) := {z ∈ L2 (Ω) | z (x ) = 0 if |v (x ) | = α−1, x ∈ Ω}.
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Using a sum rule for regular coderivatives [8, Cor. 2.4], we deduce that (2.12) holds for

F ∗γ . However, as discussed in [8, § 5.1], for γ = 0 (i.e., no regularization), we in general have

¯b (q̂ |0;Hû ) = 0. We remark that in the case of �nite-dimensional data yδ ∈ Yh ⊂ Y , replacing F
by F ◦ Ph , where Ph denotes the orthogonal projection onto Yh , there exists a constant c > 0

such that
¯b (q̂ |0;Hû,h ) ≥ c > 0 holds; see [8, § 5.3].

The next corollary summarizes the convergence result for the present L1
�tting problem.

Corollary 3.3. Let γ > 0 and γ̄ ∈ [0, 1) be arbitrary (setting γ̄ = 0 after a �nite number of
iterations). Let (uγ ,pγ ) ∈ L2 (Ω)2 be a solution to (3.2), and take τ0,σ0 > 0 to satisfy (2.1b) for
K (u) = S (u) − yδ . Then there exists δ > 0 such that for any initial iterate (u1,p1) ∈ L2 (Ω)2 with
‖ (u1,p1) − (uγ ,pγ )‖ ≤ δ , the iterates (uk ,pk ) generated by algorithm (3.3) converge to a solution
(u∗,p∗) to (3.2).

Proof. Note that G is strongly convex with factor 1, while Moreau–Yosida regularization makes

F ∗γ strongly convex with factor γ . By Proposition 2.7, Hγ ,û has the Aubin property at (q̂, 0). The

claim now follows from Theorem 2.4. �

3.2 L∞ fi�ing

We next consider the L∞ �tting (“Morozov”) problem (1.3):

min

u

1

2

‖u‖L2 s. t. |S (u) (x ) − yδ (x ) | ≤ δ a. e. in Ω,

i.e., now F (v ) = ι{ |v (x ) | ≤δ} (v ) with G and K as before.

Again, it is well-known that the Moreau–Yosida regularization of pointwise constraints is

given by its quadratic penalization, i.e.,

Fγ (y ) =
1

2γ
‖max{0, |y | − δ}‖2L2

.

Hence,

(3.5)




S (uγ ) − y
δ − γpγ ∈ ∂F

∗ (pγ ),

−S ′(uγ )
∗pγ = uγ ,

where now F ∗ (v ) = δ ‖v ‖L1 .

3.2.1 Algorithm

In this case, the proximal mapping of F ∗ is given by

[proxσ F ∗ (v )](x ) = ( |v (x ) | − δσ )+ sign(v (x )).

For the Moreau–Yosida regularization F ∗γ , we obtain after some simpli�cation

[proxσ F ∗γ (v )](x ) =
1

1 + σγ
( |v (x ) | − δσ )+ sign(v (x )).
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Again, we use the acceleration scheme (2.11) for γ̄ < cG = 1. The full algorithm thus consists

in performing for i = 1, . . . ,N the steps

(3.6)




zi+1 = S ′(ui )∗vi ,

ui+1 = 1

1+τi
(ui − τiz

i+1),

ωi = 1/
√

1 + 2γ̄τi , τi+1 = ωiτi , σi+1 = σi/ωi ,

ūi+1 = ui+1 + ωi (u
i+1 − ui ),

vi+1 = 1

1+σiγ
( |r i+1 | − δσi )

+
sign(r i+1).

3.2.2 Metric regularity

Convergence of algorithm (3.6) again rests on the pointwise analysis from [8] which we sum-

marize below.

Lemma 3.4 ([8, Lem. 2.12]). Let f ∗ : R→ R, f ∗ (z) = |z |. Then

D (∂ f ∗) (z |ζ ) (∆z) =




{0} z , 0, ζ = sign z,

{0}, z = 0, ∆z ∈ (0,∞)ζ ,

(−∞, 0]ζ , z = 0, ∆z = 0, |ζ | = 1,

R, z = 0, ∆z = 0, |ζ | < 1,

∅, otherwise,

(3.7)

as well as

KD (∂ f ∗) (z |ζ ) (∆z) =




{0} z , 0, ζ = sign z,

(−∞, 0]ζ , z = 0, ∆z ∈ [0,∞)ζ , |ζ | = 1,

R, z = 0, ∆z = 0, |ζ | < 1,

∅, otherwise.

Corollary 3.5 ([8, Cor. 2.13]). Let f ∗ (z) := δ |z | and

F ∗ (v ) :=

∫
Ω
f ∗ (v (x )) dx (v ∈ L2 (Ω)).

Then

KD[∂F ∗](v |η) (∆v ) =



V∂F ∗ (v |η)
◦, ∆v ∈ V∂F ∗ (v |η) and η ∈ ∂F ∗ (v ),

∅, otherwise,

and

D̂∗[∂F ∗](v |η) (∆η) =



V∂F ∗ (v |η)
◦, −∆η ∈ V∂F ∗ (v |η) and η ∈ ∂F ∗ (v ),

∅, otherwise,
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(iv)

(iii)

(ii)

(i)

(a) D (∂ f ∗) (z |ζ ) (b)
KD (∂ f ∗) (z |ζ ) (c) D̂∗ (∂ f ∗) (z |ζ )

Figure 2: Illustration of the graphical derivative and regular coderivative for ∂ f with f = | · |. The

dashed line is Graph ∂ f . The dots indicate the base points (z, ζ ) where the graphical

derivative or coderivative is calculated, and the thick arrows and gray areas indicate

the directions of (∆z,∆ζ ) relative to the base point. The labels (i) etc. denote the

corresponding case of (3.7). (Taken from [8].)

for the cone

V∂F ∗ (v |η) = {z ∈ L2 (Ω) | z (x )η(x ) ≥ 0 if v (x ) = 0 and (δ − |η(x ) |)z (x ) = 0},
and its polar

V∂F ∗ (v |η)
◦ = {ν ∈ L2 (Ω) | ν (x )η(x ) ≤ 0 if |η(x ) | = δ and v (x )ν (x ) = 0}.

Remark 3.2. If (v,η) satisfy the strict complementarity condition v (x ) , 0 or |η(x ) | < δ for
a. e. x ∈ Ω, the degenerate second and third case in (3.7) (corresponding to the gray areas in Figure 2)
do not occur, and the cone simpli�es to

V∂F ∗ (v |η) := {z ∈ L2 (Ω) | z (x ) = 0 if v (x ) = 0, x ∈ Ω}.
As before, we deduce that (2.12) holds for F ∗γ , while the discussion in [8, § 5.2] shows that

metric regularity only holds for γ > 0 (or �nite-dimensional data). Summarizing, we similarly

have the following convergence result.

Corollary 3.6. Let γ > 0 and γ̄ ∈ [0, 1) be arbitrary (setting γ̄ = 0 after a �nite number of
iterations). Furthermore, let (uγ ,pγ ) ∈ L2 (Ω)2 be a solution to (3.5), and take τ0,σ0 > 0 to satisfy
(2.1b) forK (u) = S (u)−yδ . Then there exists δ > 0 such that for any initial iterate (u1,p1) ∈ L2 (Ω)2

with ‖ (u1,p1) − (uγ ,pγ )‖ ≤ δ , the iterates (uk ,pk ) generated by algorithm (3.6) converge to a
solution (u∗,p∗) to (3.5).
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3.3 State constraints

Finally, we address the state-constrained optimal control problem (1.4), which we again rewrite

as

min

u ∈L2

1

2α
‖S (u) − yd ‖2L2

+
1

2

‖u‖2L2
s. t. S (u) (x ) ≤ c a. e. in Ω.

In this case, G is as before and F (y ) = 1

2α ‖v − y
d ‖2L2
+ ιv≤c (y ) with K (u) = S (u). For simplicity,

we assume here that the upper bound c is constant; the extension to variable c ∈ L∞ (Ω) (as well

as lower bounds) is straightforward.

For Fγ , we directly use the de�nition (1.8) to compute pointwise

fγ (x ,v ) =



1

2α |c − y
d (x ) |2 + 1

2γ |v − c |
2

if v > (1 + α
γ )c −

α
γ y

d (x ),
1

2(α+γ ) |v − y
d (x ) |2 if v ≤ (1 + α

γ )c −
α
γ y

d (x ),

and obtain

Fγ (y ) =

∫
Ω
fγ (x ,y (x )) dx .

The corresponding regularized optimality conditions are again given by

(3.8)




S (uγ ) − y
δ − γpγ ∈ ∂F

∗ (pγ ),

−S ′(uγ )
∗pγ = uγ .

It remains to compute F ∗. Since yd ∈ L2 (Ω) is measurable,

f (x ,v ) =
1

2α
|v − yd (x ) |2 + ι (−∞,c]

(v )

is a proper, convex, and normal integrand, and hence we can proceed by pointwise computation.

Let x ∈ Ω be arbitrary. For the Fenchel conjugate with respect to y ,

f ∗ (x , z) = sup

v≤c
vz −

1

2α
|v − yd (x ) |2,

we consider the �rst-order necessary conditions for the maximizer

v̄ = proj(−∞,c]

(
αz + yd (x )

)
.

Inserting this into the de�nition and making the case distinction αv + yd (x ) ≤ c yields

f ∗ (x , z) =



cz − 1

2α |c − y
d (x ) |2 z > α−1 (c − yd (x )),

α
2
|z |2 + zyd (x ) z ≤ α−1 (c − yd (x )).

The subdi�erential (with respect to z) is given by

(3.9) ∂ f ∗ (x , z) =



{c} z > α−1 (c − yd (x )),

{αz + yd (x )} z ≤ α−1 (c − yd (x )).

Note that the cases agree for z = αc − yd (x ), i.e., z 7→ ∂ f ∗ (x , z) is single-valued and hence

z 7→ f ∗ (x , z) is continuously di�erentiable for almost every x ∈ Ω.
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3.3.1 Algorithm

To derive an explicit algorithm, we still need to compute the pointwise proximal mapping

proxσ f ∗ (x, ·) (v ) for given x ∈ Ω. Here we use the resolvent formula

proxσ f ∗ (x, ·) (v ) = (Id+σ∂ f ∗ (x , ·))−1 (v ) =: w,

i.e., v ∈ {w} + σ∂ f ∗ (x ,w ), together with the case distinction to obtain

(i) v = w + σc , i.e., w = v − σc , if w > α−1 (c − yd (x )), i.e., if v > α−1 (c − yd (x )) + σc .

(ii) v = w + σ (αw + yd (x )), i.e., w = (1 + σα )−1 (v − σyd (x )), if w ≤ α−1 (c − yd (x )), i.e., if

v ≤
1 + σα

α
(c − yd (x )) + σz = α−1 (c − yd (x )) + σc .

Together we obtain

[proxσ F ∗ (v )](x ) =



v (x ) − σc v (x ) > 1

α (c − y
d (x )) + σc,

(1 + σα )−1 (v (x ) − σyd (x )) v (x ) ≤ 1

α (c − y
d (x )) + σc .

For the Moreau–Yosida regularization f ∗γ (x ,v ) = f ∗ (x ,v ) +
γ
2
|v |2, we similarly obtain

[proxσ F ∗γ (v )](x ) =



(1 + σγ )−1 (v (x ) − σc ) v (x ) >
1+σγ
α (c − yd (x )) + σc,

(1 + σ (α + γ ))−1 (v (x ) − σyd (x )) v (x ) ≤
1+σγ
α (c − yd (x )) + σc .

Again, we use the acceleration scheme (2.11) for γ̄ < cG = 1. The full algorithm thus consists

in performing for i = 1, . . . ,N the steps

(3.10)




ui+1 = 1

1+τi
(ui − τiS

′(ui )∗vi ),

ωi = 1/
√

1 + 2γ̄τ i , τ i+1 = ωiτ
i , σi+1 = σi/ωi ,

ūi+1 = ui+1 + ωi (u
i+1 − ui ),

r i+1 = vi + σi+1 (S (ū
i+1) − yδ ),

χ i+1 =
�
r i+1 >

1+σi+1γ
α (c − yd ) + σi+1c

�
,

vi+1 = 1

1+σi+1γ
χ i+1

(
r i+1 − σi+1c

)
+ 1

1+σi+1 (α+γ )
(1 − χ i+1)

(
r i+1 − σi+1y

d
)
,

where ~P� for a logical proposition depending on x denotes the pointwise Iverson bracket, i.e.,

~P�(x ) = 1 if P (x ) is true and 0 else.

3.3.2 Metric regularity

The veri�cation of the Aubin property rests on the following explicit characterization of the

regular coderivative of ∂ f ∗ (x , ·), where we suppress the dependence on x for the sake of

presentation.
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Lemma 3.7. For f ∗ as in (3.9), we have

(3.11) D (∂ f ∗) (v |ζ ) (∆v ) =




0, αv > c − yd , ζ = c,

α∆v, αv < c − yd , ζ = αv + yd ,

0, αv = c − yd , ζ = c, ∆v ≥ 0,

α∆v, αv = c − yd , ζ = c, ∆v < 0,

and

(3.12)
KD (∂ f ∗) (v |ζ ) (∆v ) =




0, αv > c − yd , ζ = c,

α∆v, αv < c − yd , ζ = αv + yd ,

(−∞, 0], αv = c − yd , ζ = c, ∆v ≥ 0,

α∆v + (−∞, 0], αv = c − yd , ζ = c, ∆v < 0.

Proof. The claim is best seen by inspecting Figure 3. For completeness we however sketch the

(somewhat tedious) proof based on casewise inspection of (3.9).

(i) If αv , c − yd , we have ∂ f ∗ (v ) = {( f ∗)′(v )} with ( f ∗)′(v ) di�erentiable. Computing

these di�erentials yields the �rst two cases of (3.11), where the constraints on ζ come

from ζ = ( f ∗)′(v ).

(ii) If αv = c−yd , we have ∂ f ∗ (v ) = {c}, so we need ζ = c . Approachingv withvi = v+t i∆v
with ∆v ≥ 0 and t i ↘ 0, we have

lim sup

i→∞

∂ f ∗ (vi ) − ζ

t i
= lim sup

i→∞

c − c

t i
= {0}.

This gives the third case of (3.11).

(iii) If ∆v < 0, we obtain

lim sup

i→∞

∂ f ∗ (vi ) − ζ

t i
= lim sup

i→∞

α (v + t i∆v ) + yd − c

t i
lim sup

i→∞

αt i∆v

t i
= {α∆v}.

This gives the fourth case of (3.11).

Finally, the �rst two cases of the convexi�cation (3.12) correspond directly to those of (3.11),

while the last two cases come from taking the convex hull of the set

A := ([0,∞) × {0}) ∪ {(∆v,α∆v ) | ∆v < 0},
corresponding to the last two cases of (3.11), which is given by

convA = ([0,∞) × (−∞, 0]) ∪ {{∆v} × (−∞,α∆v] | ∆v < 0}. �

Since f is proper, convex, and normal, so is f ∗; see, e.g., [17, Thm. 14.50] for the former.

Furthermore, for almost every x ∈ Ω, the functional f ∗ (x , ·) is piecewise a�ne, and hence

∂ f ∗ (x , ·) is proto-di�erentiable; see [17, Prop. 13.9, Thm. 13.40]. We can thus apply [8, Cor. 2.7]

to obtain the following pointwise characterization of the second-order generalized derivatives

of F ∗.

22



(i)

(ii)

(iv)
(iii)

(a) D (∂ f ∗) (z |ζ ) (b)
KD (∂ f ∗) (z |ζ ) (c) D̂∗ (∂ f ∗) (z |ζ )

Figure 3: Illustration of the graphical derivative and Fréchet coderivative for ∂ f ∗ with f ∗ as in

(3.9). The dashed line is Graph ∂ f . The dots indicate the base points (z, ζ ) where the

graphical derivative or coderivative is calculated, and the thick arrows and gray areas

indicate the directions of (∆z,∆ζ ) relative to the base point. The labels (i) etc. denote

the corresponding case of (3.11).

Corollary 3.8. Let f ∗ be as in (3.9), and

F ∗ (v ) :=

∫
Ω
f ∗ (v (x )) dx (v ∈ L2 (Ω)).

Suppose αv (x ) , c − yd (x ) for a.e. x ∈ Ω. Then

KD[∂F ∗](v |η) (∆v ) =



TF ∗,v∆v +V∂F ∗ (v |η)
◦, ∆v ∈ V∂F ∗ (v |η) and η ∈ ∂F ∗ (v ),

∅, otherwise,
(3.13)

and

D̂∗[∂F ∗](v |η) (∆η) =



T ∗F ∗,v∆η +V∂F ∗ (v |η)
◦, −∆η ∈ V∂F ∗ (v |η) and η ∈ ∂F ∗ (v ),

∅, otherwise,
(3.14)

for the cone

V∂F ∗ (v |η) = L2 (Ω),

its polar

V∂F ∗ (v |η)
◦ = {0} ⊂ L2 (Ω),

and the linear operator TF ∗,v de�ned by

[TF ∗,v∆v](x ) := tv (x )∆v (x ), tv (x ) :=



0, αv (x ) > c − yd (x ),

α , αv (x ) < c − yd (x ).

Remark 3.3. We have excluded αv (x ) = c − yd (x ) – which amounts to a strict complementarity
assumption for v – because the calculations of [8] only apply when the polarity relationships in
(3.13) and (3.14) regarding V hold. We have veri�ed that the calculations could be improved to
handle this non-strictly complementary case. However, since non-strictly complementary solutions
can be replaced by strictly complementary solutions by in�nitesimal modi�cations of v , we have
decided for conciness to simply exclude the case.
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Let us assume that strict complementarity holds, i.e., αv (x ) , c − yd (x ) for a.e. x ∈ Ω. Then

tv (x ) ∈ {0,α} for a.e. x ∈ Ω. Since V∂F ∗ (v |η) = L2 (Ω) and V∂F ∗ (v |η)
◦ = {0}, we deduce

¯b (q̂ |0;Hû ) = sup

t>0

inf

{
‖S ′(û)S ′(û)∗z‖

‖z‖

�����
0 , z ∈ L2 (Ω)

}
.

However, the lower bound

‖S ′(û)∗z‖ ≥ c ‖z‖ (z ∈ L2 (E))

does not hold in general. This can be seen by taking any orthonormal basis of L2 (E), which

converges weakly but not strongly to zero, and use the fact that S ′(u) is a compact operator from

L2 (Ω) to L2 (Ω) due to the Rellich–Kondrachev embedding theorem. Therefore, also
¯b (q̂ |0;Hû ) =

0. By Proposition 2.7, there is thus no metric regularity without regularization (γ > 0). Similarly

to L1
�tting, if the state constraints are only prescribed at a �nite number of points, it is possible

to show metric regularity for γ = 0 as well.

The next corollary, which follows similarly to Corollary 3.3, summarizes the convergence

results Theorem 2.1 and Theorem 2.4 for the present state-constrained problem.

Corollary 3.9. Let γ > 0 and γ̄ ∈ [0, 1) be arbitrary (setting γ̄ = 0 after a �nite number of
iterations). Furthermore, let (uγ ,pγ ) ∈ L2 (Ω)2 be a solution to (3.8), and take τ0,σ0 > 0 to satisfy
(2.1b) forK (u) = S (u)−yδ . Then there exists δ > 0 such that for any initial iterate (u1,p1) ∈ L2 (Ω)2

with ‖ (u1,p1) − (uγ ,pγ )‖ ≤ δ , the iterates (uk ,pk ) generated by algorithm (3.10) converge to a
solution (u∗,p∗) to (3.8).

4 Numerical results

We now illustrate the convergence behavior of the primal-dual extragradient method for the

three model problems in section 3. In each case, the operator S corresponds to the solution

of (3.1) for Ω = [−1, 1] and constant right-hand side f ≡ 1. For the implementation, we use a

�nite element approximation of (3.1) on a uniform grid with (unless stated otherwise) n = 1000

elements with a piecewise constant discretization of u and a piecewise linear discretization of y
as in [7]. The functional values

Jγ (u
i ) = Fγ (K (ui )) +G (ui )

are are computed using an approximation of the integrals by mass lumping, which amounts

to a proper scaling of the corresponding discrete sums. In this way, the functional values are

independent of the mesh size.

The parameters in the primal-dual extragradient method are chosen as follows: The Moreau–

Yosida parameter is �xed at γ = 10
−12

, and we compare the two cases of γ̄ = 0 (no acceleration)

and γ̄ = 1 − 10
−16

(full acceleration). As a starting value, we take in each case u1 ≡ 1 and p1 ≡ 0.

The (initial) step sizes are set toσ1 = L̃−1
andτ1 = 0.99L̃−1

, where L̃ = max{1, ‖S ′′(u1)u1‖/‖u1‖} is

a very simple estimate of the Lipschitz constant of K ′ = S ′. The algorithm (and the acceleration)

is terminated after a prescribed number N of iterations. The MATLAB implementation used to

generate these results can be downloaded from https://github.com/clason/nlpdegm.
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Figure 4: L1
�tting: noisy and exact data
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Figure 5: L1
�tting: reconstruction and true so-

lution

4.1 L1 fi�ing

We �rst consider the L1
�tting problem (1.2) using the example from [7]: We choose the exact

parameter u† (x ) = 2 − |x | and corresponding exact data y† = S (u†) and add random-valued

impulsive noise by setting

yδ (x ) =



y† (x ) + ‖y†‖ξ (x ) with probability r ,

y† (x ) with probability 1 − r ,

where for each x ∈ Ω, ξ (x ) is an independent normally distributed random value with mean 0

and variance d2
. For the results shown, we take r = 0.3 and d = 0.1, i.e., 30% of data points are

corrupted by at least 10% noise. Figure 4 shows a typical realization. We then apply algorithm 3.3

with N = 1000 iterations and α = 10
−2

�xed; the �nal iterate uN (with γ̄ ≈ 1) is shown in

Figure 5 together with u†.
Figure 6 compares the convergence behavior of the functional values with γ̄ = 0 and γ̄ ≈ 1

(for the same data yδ ). The e�ect of acceleration can be seen clearly. Note that the convergence

is nonmonotone due to the acceleration (and the rather aggressive choice of step lengths). Note

also that due to the compactness of the forward operator S , the functional value changes very

little over most of the iteration even though there are still signi�cant changes in the iterates ui .
The convergence behavior for di�erent mesh sizes is illustrated in Figure 7, which shows the

functional values for n ∈ {100, 1000, 1000} (as averages over 10 di�erent realizations of yδ in

order to mitigate the in�uence of the random data). As can be observed, the number of iterations

to reach a given functional value is virtually independent of the mesh size. This property –

shared by many function-space algorithms – is often referred to as mesh independence.
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4.2 L∞ fi�ing

For the L∞-�tting problem (1.3), we choose a test problem from [6], where yδ is obtained from

y† = S (u†) (with u† as above) by quantization. Speci�cally, we set

yδ (x ) = ys

[
y† (x )

ys

]
, ys = n

−1

b
*
,
sup

x ∈Ω

(
y† (x )

)
− inf

x ∈Ω

(
y† (x )

)+
-
,

where nb denotes the number of bins and [s] denoting the nearest integer to s ∈ R (i.e., the data

are rounded to nb discrete equidistant values). Here we take nb = 11; see Figure 8. Applying

algorithm 3.6 for N = 10000 iterations (with full acceleration) yields the reconstruction uN

shown in Figure 9.

Again, Figure 10 compares the functional values over the iteration without and with ac-

celeration and demonstrates the signi�cantly better performance of the latter. Similarly, the

comparison of di�erent mesh sizes in Figure 11 illustrates the mesh independence of the algo-

rithm (with slightly faster convergence for n = 100, which can be explained by the e�ect of

coarse discretization on the rounding procedure).

4.3 State constraints

Finally, we consider the state-constrained optimal control problem (1.4). Here, we choose the

desired state yd = S (u†) (with u† again as before) and the constraint c = 0.68. The control costs

are set to α = 10
−12

. Figure 12 shows target and constraint together with the state yN = S (uN )
reached after N = 10000 (accelerated) iterations; the corresponding control uN is shown in

Figure 13.

As before, Figure 14 and Figure 15 illustrate the bene�t of acceleration and the mesh indepen-

dence of the algorithm, respectively.
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5 Conclusion

Accelerated primal-dual extragradient methods with nonlinear operators can be formulated and

analyzed in function space. Their convergence rests on metric regularity of the corresponding

saddle-point inclusion, which can be veri�ed for the class of PDE-constrained optimization

problems considered here after introducing a Moreau–Yosida regularization. Unlike semismooth

Newton methods (which also require Moreau–Yosida regularization in function space, cf., e.g.,

[7, 6]), however, in practice it is not necessary for convergence to choose γ su�ciently large.

Hence, no continuation or warm starts are required. In addition, formulating and analyzing the

algorithm in function space leads to mesh independence. These properties are observed in our

numerical examples.

This work can be extended in a number of directions. We plan to investigate the possibility

of obtaining convergence estimates on the primal variable alone under lesser assumptions.

An alternative would be to exploit the uniform stability with respect to regularization for

�xed discretization, and with respect to discretization for �xed regularization, to obtain a

combined convergence for a suitably chosen net (γ ,h) → (0, 0). This is related to the adaptive

regularization and discretization of inverse problems [14]. Furthermore, it would be of interest

to extend our analysis to include nonsmooth regularizersG , which were excluded in the current

work for the sake of the presentation.
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